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Original submission 

 
First decision letter 

 
MS ID#: DEVELOP/2019/183855 
 
MS TITLE: Aging induces aberrant state transition kinetics in murine muscle stem cells 
 
AUTHORS: Jacob C. Kimmel, Ara B. Hwang, Wallace F. Marshall, and Andrew S. Brack 
 
I have now received all the referees' reports on the above manuscript, and have reached a decision. 
The referees' comments are appended below, or you can access them online: please go to 
BenchPressand click on the 'Manuscripts with Decisions' queue in the Author Area. 
 
As you will see, the referees express considerable interest in your work, but have some significant 
criticisms and recommend a substantial revision of your manuscript before we can consider 
publication. If you are able to revise the manuscript along the lines suggested, which may involve 
further experiments, I will be happy receive a revised version of the manuscript. Your revised paper 
will be re-reviewed by one or more of the original referees, and acceptance of your manuscript will 
depend on your addressing satisfactorily the reviewers' major concerns. Please also note that 
Development will normally permit only one round of major revision. 
 
Please attend to all of the reviewers' comments and ensure that you clearly highlight all changes 
made in the revised manuscript. Please avoid using 'Tracked changes' in Word files as these are lost 
in PDF conversion. I should be grateful if you would also provide a point-by-point response detailing 
how you have dealt with the points raised by the reviewers in the 'Response to Reviewers' box. If 
you do not agree with any of their criticisms or suggestions please explain clearly why this is so. 
 
 
Reviewer 1 
 
Advance summary and potential significance to field 
 
The manuscript titled “Ageing induces aberrant state transition kinetics in murine muscle stem 
cells” by Kimmel et al. assesses muscle stem cell dynamics by predominately using single cell RNA 
sequence and presents a unique perspective. The success of this manuscript is the combinatorial 
assays that provide some functional validation to their bioinformatics inferences, such as the use of 
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their imaging platform, EdU assays and assessing different muscle stem cell populations (label and 
non-label retaining cells, LRC and non-LRCs respestively). The authors broadly attempt to answer 
how aging affects the quiescence to activation transitions by first asking whether aged vs young 
satellite cells undergo different paths/states towards activation or merely different kinetics. 
Interestingly, aged and young muscle stem cells are transcriptomically similar, while they differ in 
the activation transitions. They also demonstrate that genes vary in their expression dynamics 
during activation: from monotonic increase and decrease to non-monotonic behaviour.  
The authors also examine LRCs and non-LRCs in the context of aging and activation. Through the 
use of many bioinformatic packages, such as Monocle and RNA velocity, the authors conclude that 
muscle stem cells predominantly undergo the same transitions during aging, but this aging delays 
these transitions.  
 
Comments for the author 
 
Although this study is largely well executed, there are some questions that would be necessary to 
answer to further substantiate their claims. One of bigger issues is the use of in vitro conditions to 
trigger an activation state. While this may be necessary for their experimental design, it can also 
hamper the interpretation of results and their conclusions. Further details and suggestions are 
stated below. 
 
Concern 1: furthering the claims of non-monotonic gene expression The authors show that Pax7 
does not monotonically decrease in expression over the course of activation (Figure 2G). In parallel, 
they present parallel assays showing that even though motility behaviour can be ordered, Pax7 is 
still non-monotonic. A few concerns are raised, since other single cell analyses show the opposite: 
Pax7 decreases upon activation. In the Dell’Orso et al. (2019) study, they found 2 groups of MuSCs: 
one being Pax7Hi and MyodLow and the other being Pax7Low and MyodHigh. In another study by De 
Micheli et al. (2019, bioRxiv), Pax7 also drastically drops upon activation (Figure 3D). These two 
studies seem to conflict the findings presented here. Could the “activation” state that the authors 
present here be merely an in vitro artefact?  
Similarly, Pax7+/MyoG+ cells are rarely observed in floating ex vivo cultured myofiber assays 
(Zammit et al., 2004) and the dogma suggests that MyoG+ cells are Pax7- (Yin et al., 2013). The 
data in Figure 3 suggests a high degree of overlap (Figure 3C-D); otherwise, the data should be 
represented differently. Though it would be technically challenging, the authors should normalize 
their intensity of expression to a ubiquitously expressed protein that does not change during 
activation as normalization is unclear. If Myogenin is expressed as intensely as is Pax7, it suggests 
an in vitro artefact or a staining issue. Figure 3D should also be revised to show comparable images 
of each motility state. Also, inclusion of motility videos with traces would be helpful. 
The authors mention that pseudotemporal gene expression patterns determined by Monocle (Figure 
2F) identify other non-monotonic behaviour. Which gene modules are these (Figure 2F)? To my eye, 
none display this pattern. Also, where is Pax7 in the heat map? What is myogenin expression like in 
the spline-plot (Figure 2G), as it is used as a readout in the following figure.  
In the spline plots (Figure 2G), there seems to be a big gap along the psuedotime axis. For instance, 
between 15-30 on the psuedotime/x-axis, few cells are expressing Myf5, Pax7, or Spry1. Could it be 
that this gap of expression account of the pattern of non-monotonic expression for Pax7? Or could is 
gap be due to in vitro culturing/activation, whereas, in vivo activation would show a smooth 
transition (without gaps)? One suggestion would be to conduct analyses on freshly-isolated 
myotoxin-injured muscle stem cells or compare their data with other published datasets. 
Finally, could the non-monotonic expression of Pax7 be attributed to the dynamics of LRCs? In 
Figure 5F LRCs make up the majority of transcriptional cluster 2 and show significantly differential 
expression of Pax7.  
Therefore, the increase of Pax7 in the spline plots (Figure 2G) could simply be explained by LRCs 
dominating that cluster. Do LRCs predominantly make up an activated muscle stem cell population 
in vivo? If not, this suggests that the in vitro culturing biases for LRCs and may skew the authors’ 
interpretations.  
 
Concern 2: Figures and accompanying text need to be carefully proofread and edited to be more 
rational. Some of the figures are missing scale bars (Figure 2F, Figure S1A). Accompanying text 
refers to supplemental figures as the whole figure; while, it would be better to point the reader to 
the specific data mentioned to support in-text claims. Figures are also mentioned in random order, 
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for example: reference to Figure 2G before Figure 2F (page 7), no reference/mention of Figure 4E, 
as well as figure legends are mentioned in random order (Figure S4).  
The labelling of clusters should also be more logical. One issue is that from figure to figure, the 
clustering is re-drawn (as expected, as it is a different assay) yet the same cluster # is used and 
colour scheme and sometimes can be confusing. This can be amended by changing the colour 
schemes or remaining them.  
Likewise, in Figure 2E, it would be more logical to have clusters numbers ascend accordingly; 
whereas it is currently 3 -> 0 -> 1 -> 2 (from quiescence to activation).Similarly, in Figure 3C, the 
most differentiated cell type would be highest for Myogenin intensity, so logically speaking, it 
would be furthest right on the x-axis and re-labelled as state #4 as being least motile. Again, 
numbers should be edited. Reference to Fig S3 is supposed to be Fig S2 (page 7). In the legend for 
Figure 2C, the authors mention the overlay of MRFs but only 1 MRF is displayed (Myod), while Pax7 
and Sprouty are not MRFs. Reference #13 and #14 are the same. Some of the in figure text is not 
interpretable (for example Figure 1F, the motility features are not described and are coded), 
Figure 4B heat map text is too small to read. 
Though these issues individually are not glaring per se, altogether, they are detracting to the 
reader and the authors’ data. The authors should also carefully check for other issues, as there are 
likely more edits beyond the ones highlighted here. 
 
Concern 3: Lineage regression by psuedotime analyses and differences in aged contexts The authors 
state that lineage regression occurs robustly in both young and aged satellite cells, but do LRCs and 
non-LRCs differ? Further in the discussion, they also seem to contradict themselves by saying that 
there are no bi-stable states. If cells are regressing, would that not indicate that they are bi-stable? 
Perhaps this “basin of attraction” or missing primed state cannot be captured in vitro. Moreover, 
Galert cells can revert back to a QSC state (Rodgers et al., 2014) as well as the existence of reserve 
and self-renewing muscle stem cells would suggest dynamisms and not a simple path down of 
activation.  
Is there significant differential expression of cell cycle genes in LRCs compared to non-LRCs, 
especially if LRCs comprise of the more of the activated cluster? Are the genes displayed in Figure 
5B significant? And what is the significance cutoff? Was if 0.15 log2 (page 7)? If so, why was such a 
lowcut off chosen? 
Aging largely did not change the transcriptional profiles, but rather their rate of activation. 
However, studies have shown transcriptional and functional differences (reviewed in Blau et al., 
2015); thus, suggesting there is a difference in their final state. The authors should amend their 
claims or resolve these confounding results by addressing it in the discussion. 
 
 
Reviewer 2 
 
Advance summary and potential significance to field 
 
By combining time lapse imaging and scRNA-seq, Kimmel and coworkers provide a comprehensive 
and detailed analysis of how young, aged, label-retaining (LRCs), and label-non retaining (nonLRCs) 
muscle stem cells (MuSCs) are activated in culture. The datasets presented in the manuscript 
complement and significantly extend existing scRNA-seq datasets providing a rich source of 
information that will greatly benefit the scientific community. As such, the manuscript is an ideal 
candidate for publication in Development. 
 
Comments for the author 
 
Clarifications of some points will help the readership. 
 
COMMENTS: 
 
1. Young and aged MuSCs are observed to have distinct activation with aged MuSCs displaying 
delayed kinetics (Figure 1). This observation may suggest that, given sufficient time, aged MuSCs 
may catch up with young MuSCs. Have the authors tried to culture MuSCs for longer times (>48 hrs) 
to see if this is the case? Do young MuSCs always retain a temporal advantage over old MuSCs? The 
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inability of older mice to repair injured muscles, even left to recover for long time, would suggest 
that this is the case. 
 
2. Figure 2. The authors report the interesting observation that Pax7 is expressed in activated 
MuSCs. What are the UMIs for Pax7 in quiescent (cluster 3, Figure 2D) and activated (cluster 3 
Figure 2D) clusters? Which other genes (myogenic and non-myogenic) are co-expressed in the Pax7+ 
cells within cluster 2? Also, of the total profiled, how many cells within quiescent and activated 
clusters (Figure 2C) express Pax7 and/or Spry1? 
 
3. Figure 4E. What do the values represented x- and y- axis represent? 
In Figure 4D legend, shouldn’t it be “Gene-wise AUROC analysis demonstrates that single gene is 
NOT predictive of MuSC age state”? 
 
4. Throughout the manuscript genes are reported to be differentially expressed in different cell 
states (quiescence and activation) and in young and aged MuSCs. For instance, expression of 2,631 
is increased and that of 1,034 decreased during activation (page 7). 174 differentially expressed 
genes between aged and young MuSCs (page 10, Figure 4B). 200 differentially expressed genes in 
quiescent aged and young MuSCs (page 10). 275 differentially expressed genes in activated aged 
and young MuSCs (page 10) and in many other instances (Figure 4H, Figure 5D, Figure 5E,G). It 
would be very helpful if the authors could develop Tables in form of Excel spreadsheet where all 
these genes and the different cell conditions are indicated. 
 
5. Figure 6C. For the readership less familiar with scRNA-seq analysis, can the authors elaborate on 
how the shape of RNA velocity curve suggests a switch-like process for myogenic activation? 
 
6. My understanding is the reserve cells fail to enter differentiation. What’s the evidence that 
MuSCs transition “backwards” rather than failing going “forward”? Can the authors indicate which 
genes are differentially modulated in the ~ 16% of young MuSCs regressing in pseudotime (Figure 7) 
and correlate these genes with those expressed in the different clusters reported in Figure 2? 
 
7. Figure 6E. The authors may want to elaborate on young and aged MuSC curves crossing-over after 
1000 timestep. 
 
8. Figure S4. There is no H panel. 
 
 
Reviewer 3 
 
Advance summary and potential significance to field 
 
The Kimmel et al submission seeks to apply a combination of single cell behaviour tracking 
scRNAseq, and machine learning to untangle secrets in the functional discrepancies observed when 
comparing young to aged mouse muscle stem cells. To my knowledge, no others researchers in the 
muscle stem cell field have applied this type of combinatorial approach to the study of muscle stem 
cells, and certainly not in the context of aging, which provides elements of novelty and timeliness.  
 
Comments for the author 
 
Major Issues 
In spite of potential enthusiasm, unfortunately the manuscript in its current state is almost entirely 
descriptive and speculative, while, in the opinion of this reviewer, not offering enough 
experimental evidence to support claims made in the study. And those claims that are supported by 
data (related to single cell tracking) support rather than substantially extending work done by 
others characterizing young and aged muscle stem cell behaviors using time-lapse based clonal 
studies (examples include: Gilbert, Science, 2010; Cosgrove Nat Med, 2014, and others).  
 
It should also be noted that the manuscript is rather overwhelming to read as it is quite dense and 
moves between a number of intellectually stimulating, though rather distinct topics and queries, 
with little depth, but at a substantial speed, and with quite some length.  
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The work may be of importance to the community, but in its current state, it is difficult to pinpoint 
one or two of the speculative statements as ‘key’ and to offer a series of wet lab experiments that 
would bring it up to a level appropriate for a Development reader.  
Ultimately the work requires focus and should be split into at least two smaller stories that are 
interrogated in more depth.  
 
Minor Issue 
Be sure to edit Figures and Figure Legends for typos. 
The abstract should be rewritten to highlight novel aspects of the study. It is not accurate to state 
that ' it remains unclear if the transition states and rates of activation are uniform across cells, or 
how features of this process may change with age' in light of single cell studies by others that 
clearly show the time to first division is quite varied for young muscle stem cells (Gilbert, 2010) 
and that with age, there are populations of cells that failed to enter cell cycle and produce a 
colony in the same time frames observed for young cells (Cosgrove, 2014). The current work is 
showing something a bit different than what they have stated and it is important to make this clear 
for the reader.  
 
 

 
 
First revision 
 
Author response to reviewers' comments 
 
Response to Reviews: [DEVELOP/2019/183855] – Aging induces aberrant state transition kinetics 
in murine muscle stem cells 
 
We thank the reviewers for providing helpful feedback that has greatly improved the 
manuscript. We have performed several additional analyses in response to reviewer 
insights, and we have likewise modified the main text to clarify our intentions and 
moderate claims based on reviewer feedback. 
 
We have outlined responses to specific reviewer comments below, with reviewer feedback 
quoted in gray boxes. 
 
Reviewer 1 Comments 

 
We agree with the reviewer that the in vitro activation assay we use may not perfectly 
reflect the in vivo behavior of muscle stem cells. However, we believe that in vitro systems 
provide useful, if incomplete models of cell biology, as evidenced by the long history of 
discovery through in vitro modeling in the myogenesis field. 
 
In the context of our study, the in vitro model we employ allows us to ensure that all 
cells experience uniform stimulus, unlike the heterogeneous stimulus introduced by an 
in vivo injury model. Likewise, this model provides us with a platform we can 
interrogate using timelapse imaging approaches to complement our molecular work. 
Similar cell behavior studies are unfortunately intractable in the in vivo context [Siegel 
et al., 2009, Gilbert et al., 2010, Cosgrove et al., 2014, Blau et al., 2015]. 
 
In order to ensure that our readers understand the limitations of our model, we have 
added text to the Results and Discussion to highlight this point. We have inserted a 
copy of these additions below. 
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Results: 
 
Our in vitro activation assay may not fully capture in vivo stem cell activation dynamics. 
However, our in vitro assay allows for a homogeneous activation stimulus across all cells, 
unlike in vivo injury models and previous work demonstrates that in vitro MuSC activation 
recapitulates many aspects of in vivo activation. 
 
Discussion: 
 
The in vitro model we employ allows us to assess cell-instrinsic differences between young 
and aged MuSCs with a homogenous activation stimulus, but may not fully recapitulate the 
in vivo biology. Future work may explore stem cell activation in vivo to determine if cell-
extrinsic changes with age exacerbate or dampen the differences in activation we observe 
between young and aged MuSCs. In vivo imaging technologies for MuSCs are nascent 
[Webster et al., 2016], but technological advances may allow for similar quantitative cell 
behavior analysis in vivo in the future. 
 

 
We agree that when averaging across all cells at a given timepoint, Pax7 decreases with 
activation. Classic studies of single cell myogenic transcription (DD Cornellison et. al., 
1999) have demonstrated this point beautifully. 
 
Similar to Dell’Orso 2019 and De Micheli 2019, we find that Pax7 levels are lower in our 18 
hour time point relative to our 0 hour timepoint. We have presented this point more clearly 
in a new supplemental figure panel showing Pax7 expression within each transcriptional 
cluster. 
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Supp. Fig. S3: Pax7 is lower in activated MuSCs than freshly-isolated MuSCs. (A) Expression 
of Pax7 in each transcriptional cluster, ordered by pseudotime. Pax7 expression decreases 
in early activation (Cluster 3, 0, 1), then increases slightly in the final activation cluster 
(2). (B) Data from (A), presented as violin plots. (C) Expression of Pax7 in quiescent, 
freshly-isolated MuSCs and activated MuSCs after 18 hours in vitro. Considering all cells 
at each timepoint, Pax7 expression is decreased in activated cells. (D) Significant 
differentially expressed genes within the Pax7+ population of the activated Transcriptional 
Cluster 4 (q < 0.05, Wilcoxon Rank Sums). We found inhibitors of myogenic differentiation 
Id1, 2, 3 and cell cycle gene Ccnd1 were enriched in Pax7+ cells. 
 
We see that in our data, both clusters in the activated timepoint have lower Pax7 than 
the clusters in the quiescent time point, similar to results in Dell’Orso 2019, De Micheli 
2019. Likewise, we find that one cluster at the quiescent time point has higher Pax7 than 
the other. However, examining expression of Pax7 in the clusters from our 18 hour time 
point, we find that the more activated cluster actually displays higher Pax7 than the less 
activated cluster at the 18 hour timepoint. In a coarse-grained way, this analysis 
recapitulates the result we found through pseudotime – Pax7 decreases with activation, but 
the decreases is not simply monotonic, rather some later stages of activation display higher 
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expression levels than some earlier stages. 
 
The time points in our study (0, 18 hours) are much closer together than those in 
Dell’Orso 2019 (0, 60 hours) or De Micheli 2019 (0, 120, 168 hours). If the slight increase 
in Pax7 we observe (occurring at 18 and 36 hours in our scRNA-seq and imaging assays 
respectively) is transient, this phenomenology may not be observed in these previous 
data sets due to the difference in time points. We believe this difference in timing may 
account of the lack of non-monotonic behavior in the pseudotemporal analysis of De 
Micheli 2019. Because the earliest activated timepoint in that study is at 120 hours, a 
transient increase in Pax7 may have already passed and cells at the region of the 
pseudotemporal curve where this occurs may be poorly populated. 
 
To address this discrepancy, we have amended the Results of our manuscript in the 
relevant section to discuss this point. A section of the additions are included below: 
 
Analysis of the mean expression in each cluster confirms non-monotonic changes in 
Pax7 with activation (Fig. S3B, C). Our data are consistent with previous reports of 
decreased Pax7 with activation at the ensemble level [Cornelison and Wold, 1997, 
Dell’Orso et al., 2019, De Micheli et al., 2019] when we consider only the mean 
expression of Pax7 at the quiescent and activated timepoints 
(Fig. S3A). 
If Myogenin is expressed as intensely as is Pax7, it suggests an in vitro artefact or a 
staining issue. 
 

 
In our fluorescent microscopy setup, we measure Pax7 and MyoG using separate 
fluorescent channels. For this reason, the intensity of fluorescence from each protein 
is not directly comparable. For example, the exposure times of the relevant channels 
are independent of one another, such that the absolute intensity of each fluorophore 
is arbitrary. We therefore focus only on the relative changes of each protein across the 
clusters in our cell behavior assay. 
 
We agree that the normalization scheme as presented is confusing and thank the 
reviewer for pointing this out. We normalized the data such that the intensity of each 
protein in first cluster was equal to 1 to highlight the dynamics of expression. However, 
this leads to a false sense that Pax7/MyoG levels are of similar intensity. 
 
We have amended the main text figure to show the raw Pax7 intensities, as well as a 
binarized version of these intensities as is common in the field. We have also provided 
a panel showing that Pax7+/MyoG+ cells are very rare in our data, as expected from 
the literature the reviewer cites. We have copied the amended main text figure and 
new supplemental figure below. 
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Fig. 3: Pax7 is non-monotonically regulated across MuSC cell behavior states during activation.  
(A) Experimental design schematic. MuSCs were isolated, timelapse imaged in culture 
for 36 hours, and subsequently immunostained. Behavior traces and immunostaining 
results were matched for each cell by image registration. (B) t-SNE visualization of cell 
behavior states in motility state space, as defined by hierarchical clustering. Behavior 
state space was generated analyzing 12 hours of tracking data, from 24 hours after 
isolation to 36 hours. n = 1, 003 cells. (C) Pax7 immunostaining intensity (cell median) 
and binary frequency within each cell behavior cluster. Both quantification schemes 
show a non-monotonic relationship between behavioral activation state and Pax7 
intensity. (D) Representative images of Pax7/MyoG staining in MuSCs after timelapse 
imaging for behavior analysis. Panels on the far left are the final DIC image from the 
timelapse, registered and overlaid with fluorescent immunostains. Remaining panels are 
raw images prior to registration. 
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Supp. Fig. S5: MuSC behavior states are associated with myogenic transcription factor levels. 
(A) Pax7 and MyoG intensities for cells with a paired cell behavior recording. Intensities 
are presented as the median pixel intensity inside the cell nucleus. Pax7 and MyoG 
protein are rarely co-expressed, as expected. (B) MyoG protein intensity (cell median) 
in each cell behavior cluster. MyoG levels decrease slighly with activation, though all 
clusters show low expression. (C) Representative images of Pax7/MyoG staining in cells 
after timelapse imaging. Panels on the far left are the final DIC image from the 
timelapse, registered and overlaid with fluorescent immunostains. Remaining panels 
are fluorescence images prior to registration. Fluorescence images are equitably 
rescaled across cells within each channel for presentation. 
 

 
 
We agree that inclusion of staining images for each cluster would be helpful for readers. 
We have amended Figure 3D to include panels showing images of each motility state 
(inserted above). We have also included cell motility videos as supplemental material. 
 

 
We thank the reviewer for pointing out this oversight. We have added text to the 
Results to highlight modules which display non-monotonic behavior (Module 1, 3). 
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Genes with non-monotonic behavior are evident in both modules where the highest 
expression level (orange-red) is located near the center of the pseudotime trajectory, 
rather than at either end. By contrast, Module 2 shows monotonically decreasing genes, 
and Module 4 shows monotonically increasing genes. 
 
We have amended the results to clarify these points. A sample of the additions are 
copied below 
 
Results: 
 
For example, many genes in Modules 1 and 3 display maximum expression at points in 
between the most quiescent and most activated states. A peak of expression at an 
intermediary point indicates that gene expression in these modules is non-monotonic 
during activation, first increasing then decreasing as cells transition through the 
activation trajectory. Module 1 contains genes related to mRNA processing and splicing, 
as determined by gene ontology analysis (see Methods). Module 3 contains genes related 
to cell cycle regulation and developmental processes (Fig. S3). By contrast, most genes 
in Module 2 decrease monotonically across pseudotime, and most genes in Module 4 
monotonically increase across pseudotime. 

 
We have highlighted the location of Pax7 in the pseudotemporal heatmap, along with 
Myod1 and Myf5. 
 

 
We have included a spline-plot showing Myog expression in the supplemental material. 
At our 18 hour timepoint where we performed single cell RNA-seq, we detect very little 
Myog expression, as expected from previous work [Cornelison and Wold, 1997]. In the 
entire 20,000+ cell dataset, only 22 cells have a detectable level of Myog transcript. The 
pseudotemporal curve inferred for Myog expression is therefore based on very little data 
and may not reflect the true expression dynamics. We have embedded this new 
supplemental figure panel below for convenience. 
 
We note that the following figure (Figure 3) is taken at a later time point (36 hours) than 
our single cell RNA- seq data (18 hours) and therefore we expect the abundance of MyoG 
to be higher in the behavior experiment than the abundance of Myog in the scRNA-seq 
experiment. We observe that both are nonetheless low. 
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Supp. Fig. S4: Pseudotemporal analysis of myogenic activation reveals non-monotonic 
regulation. (A) Spline fit of Myog expression over pseudotime. Only 25 cells in the experiment 
express Myog at detectable levels. (B) Gene ontology enrichment analysis for Pseudotemporal 
Modules, suggesting coherent groups of co-regulated genes. 
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We thank the reviewer for highlighting this point. The “gap” in our pseudotemporal 
trajectory represents regions of state space where we do not collect cells. This indicates 
that there are states of activation between those we observe at 0 hours and 18 hours. 
As such, this is an effect of our sampling times rather than the in vitro nature of our 
assay. Similar gaps in pseudotemporal trajectories are present in many studies where 
the sampling times are not dense enough to capture all intermediary states (Dell’Orso 
2019, De Michelli 2019). 
 
We have amended the Results to reflect this point. 
 
Results: 
 
The discontinuity between the freshly-isolated and activated time points suggests 
that there are intermediary activation states we do not capture. 
 

 
We agree that LRC/nonLRC dynamics may contribute to the non-monotonic Pax7 
expression we observe. We believe LRCs are activating faster than nonLRC based on 
multiple lines of evidence (scRNA-seq, EdU staining). An intrinsically higher level of 
Pax7 in LRCs may account for a higher level of Pax7 in the most activated cells which 
are disproportionately LRCs. We also know that LRCs provide a greater contribution to 
muscle repair after transplantation [Chakkalakal et al., 2012, Chakkalakal et al., 2014], 
consistent with improved regeneration associated with a rapid activation response 
[Rodgers et al., 2014, Rodgers et al., 2017, Scaramozza et al., 2019]. We have amended 
the Results to discuss this possibility. 
 
If this is the case, it would represent a scenario where heterogeneous MuSC 
subpopulation dynamics give rise to non-monotonic gene expression behavior at the 
ensemble level. Regardless of which model is correct (non-monotonic behavior in every 
cell, or LRCs “racing ahead” of nonLRCs), we believe this phenomenon suggests the 
current model of lower Pax7 in more activated cells is incomplete. 
 
A sample of our amendments to the Results is pasted below. 
 
Results: 
 
The enrichment of LRCs in Transcriptional Cluster 4 may also underlie the non-
monotonic behavior of Pax7 across pseudotime (Fig. 2G). LRCs express higher levels of 
Pax7 [Chakkalakal et al., 2012], such that rapid activation of LRCs may give rise to a 
population structure that present non- monotonic changes in Pax7 when averaging 
across all cells at a given activation state. 
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We thank the reviewer for taking the time to provide such detailed feedback. We have 
amended the references to Supp. Figures to include specific subpanels, as well as 
reorganized the main and supplemental figures to improve clarity. We have likewise 
changed panel names to reflect the order in which data are mentioned in the text 
wherever possible. 

 
We agree with the reviewer that this is confusing. We’ve changed the cluster names such 
that higher numbers always indicate more activated clusters. We’ve also prepended assay 
level descriptors (e.g. “Behavior Cluster 1”, “Transcriptional Cluster 1”) to differentiate 
clusters in the different assays. 
 

 
We thank the reviewer for highlighting these issues. We have amended the font sizes 
to ensure all in figure text is readable. In particular, we have increased the font size 
for heatmap labels and provided descriptive names for motility features. We have 
amended the motility features panel in Fig. 1 to use semantic names. We have also 
added descriptions of our motility features in the Supplemental Methods. This 
description is copied below for convenience: 
 
We used a set of 57 motility features from Heteromotility, excluding features that focus 
on turning angles. Features displayed in Fig. 1 include: “Total Distance,” a measure of the 
total distance a cell traveled; “Net Distance,” a measure of the net distance a cell traveled; 
“Linearity,” or the r2 value of a linear regression through cell positions, “Rank Correlation,” 
as computed using a Spearman coefficient; “Progressivity,” computed as the ratio of net 
distance to total distance; “Mean Speed,” computed as the total distance over time; “Mean 
Squared Displacement,” a metric of the distance moved by a cell relative to the starting 
location; “Hurst Coefficient,” a description of the self-similarity between cell behaviors 
when modeled using a fractional Brownian motion process; “Non-Gaussian Coefficient,” 
measuring the degree to which cell displacements do not follow a Gaussian distribution; 
“Kurtosis τ = 1” the kurtosis of the displacement distribution with a time lag of 1; “Kurtosis 
τ = 5” the kurtosis of the displacement distribution with a time lag of 5; “Mean Moving 
Speed,” the mean speed of a cell computed only during times the cell is not stationary; 
“Average Time Moving,” the proportion of time a cell spends moving; and 
“Autocorrelation,” a measure of self-similarity within the displacement time series. 
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We thank the reviewer for pointing out this oversight. We meant to indicate “myogenic 
regulatory genes,” whereas MRFs obviously do not include Pax7, Spry1. This has been 
corrected in the text and figure legends. 
 

 
 
This is a fascinating question. To address this possibility, we have performed lineage 
regression analysis in LRCs and nonLRCs from young and aged animals in our study. 
We find that both LRCs and nonLRCs exhibit “lineage regression” in that some cells of each 
population appear to be moving backward in pseudotime. In young animals, nonLRCs appear 
to move “backward” more often than LRCs in later portions of the activation trajectory. 
Quantitatively, roughly 25% of young nonLRCs are moving backward while only 12% of young 
LRCs move backward (χ2 test p < 0.0001). In aged animals, LRCs and nonLRCs similarly 
exhibit differences in lineage regression frequency (aged LRC 12%, aged nonLRC 21%; χ2 
test p < 0.0001). These data suggest that the more rapid activation we observe in LRCs may 
in part be due to a lower frequency of lineage regression during the activation process. 
 
We have summarized these findings in additions to the supplementary material (copied 
below for convenience). We have also amended the Results and Discussion to address 
this interesting point. 
 
Results: 
This regression behavior appears robust to age-related changes (Fig. S13A). Comparing 
LRCs to nonLRCs, LRCs regress less frequently than nonLRCs in young and aged animals 
(Fig. S13B, C; χ2 test, p < 0.0001). This decreased frequency of lineage regression may 
contribute to the more rapid activation of LRCs we observe based on transcriptional 
profiles (Fig. 5) and EdU incorporation (Fig. S10C). 
 
Discussion: 
 
Here, we find that MuSCs progress through the activation process stochastically, with a 
non-trivial proportion of the population moving “backwards” through the activation 
process. This suggests that the heterogeneity of MuSC positions along the activation 
trajectory arises as an accumulation of differences in the rate of cell state transitions. 
These differences appear to be both stochastic and associated with distinctive features 
between MuSC subpopulations, such as proliferative history. 
 

 
We thank the reviewer for highlighting our lacking of clarity on this point. Lineage 
regression does not necessarily imply that a bistable state exists between the most 
quiescent and most activated states we observe. The regression we observe occurs a 
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minority of the time across the pseudotime trajectory, reminiscent of a biased random 
walk. We define a bistable state here as a state where stability decreases in both the 
forward and backward direction in a local neighborhood, such that the state forms a 
“basin” of stability. If such a state were present, we might expect to see a location 
between the most quiescent and activated state where RNA velocity vectors point 
inward from positions just behind and ahead of the stable point. 
 
We do not observe such a point here, but as the reviewer suggests, it is entirely possible 
that such a point exists in other conditions, such as in vivo. We have amended the 
Results and Discussion to highlight this important caveat of our results. Most 
prominently, we have amended our Discussion of implications related to Galert. The 

activation trajectory we observe is in the context of a strong and constant activation 
stimulus (in vitro culture, Gilbert 2010). Other conditions such as homeostasis in vivo 
may allow for bistable states to emerge between the quiescent and fully-activated 
MuSC state. 
 
We have amended the Results and Discussion to address this point. A sample of the 
additions are copied below. We have additionally removed portions of the text that 
may be misleading in light of this consideration. 
 

 
 
Supp. Fig. S13: Lineage regression frequency with age (A) The proportion of “regressing” cells 
across pseudotime in aged and young MuSCs, revealing little age dependence. Proportions 
were computed by coarse-graining pseudotime into equally sized bins. (B) Proportion of 
“regressing” cells across pseudotime in young LRCs and nonLRCs. nonLRCs regress more 
frequently late in the activation process (χ2 test, p < 0.0001. (C) The difference in lineage 
regression frequency between LRCs and nonLRCs is also present in MuSCs from aged animals 
(χ2 test, p < 0.0001). (D) We computed the difference in velocity for each gene between 
cells moving “forward” and “backward” in the activation trajectory. Gene Ontology 
enrichments suggest forward moving cells have higher velocity for protein translation and 
biogenesis programs, while backward moving cells have higher velocity for mitochondrial 
oxidative phosphorylation programs. 
 
Results: 
 
We note that the switch-like process suggested by these results may be unique to our in 
vitro culture setting, and does not necessarily reflect in vivo activation kinetics. 
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Discussion: 
 
The in vitro model we employ allows us to assess cell-instrinsic differences between 
young and aged MuSCs with a homogenous activation stimulus, but may not fully 
recapitulate the in vivo biology. For instance, while we do not observe bi-stable 
transcriptional states between the most quiescent and most activated cells in our 
experiments, stable intermediary activation states may exist in vivo [Rodgers et al., 
2014]. 

 
We observe that Ccnd1 (Cyclin D1) is significantly enriched in LRCs relative to nonLRCs (log2 FC 
0.7, q < 0.001), consistent with more rapid cell cycle entry in LRCs. We have amended the 
Results and Supplementary Figures to highlight this result. 
 
Only Myod1 differences in activation are signficant in Fig. 5B (q < 0.05). We have added 
indicators to the figure and specified the lack of significance for other contrasts in the 
legend. 
 
We used log2FC 0.15 as a fold-change cutoff. Genes that are significantly different 
between LRCs and nonLRCs may be meaningful, even if the fold-change is small. For 
instance, microRNAs typically repress most targets by < 30%, but the cumulative effects 
of these small fold-changes are biologically meaningful [Ma et al., 2018, Lim et al., 
2005]. For this reason, we prioritize that statistical significance of gene expression 
changes when reporting results, rather than selecting a large arbitrary effect size at 
which to threshold our determination of importance. 

 
We appreciate the reviewer raising this important point. Similar to previous studies, we 
observe some transcriptional differences between young and aged cells. However, we find 
that these differences do not alter the overall trajectory of activation in transcriptional 
space, as recovered in low-dimensional embeddings, unsupervised clustering, and using 
pseudotime analysis. These results are consistent with previous findings of modest 
transcriptional differences between young and aged MuSCs during early activation 
[Cosgrove et al., 2014]. These results show that while transcriptional differences are 
present across ages, MuSCs of both ages share the same set of transcriptional states during 
activation, rather than each age exhibiting a distinct activation trajectory. Further, these 
results show that differences between ages – which exist even for cells in similar states of 
activation – are a much smaller source of variation than differences between a shared set 
of activation states. 
 
We have amended our Discussion to clarify that our results are consistent with the 
existence of transcriptional differences between young and aged cells and serve to 
contextualize these results in light of transcriptome wide measurements. Only given 
our measurements of the whole transcriptome can we appreciate that age-related 
transcriptional changes within a given state are much smaller than changes between 
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states, and differences in the rates of progression between states. 
 
A sample of our amendments is outlined below: 
 
Discussion: 
 
We surprisingly found minor transcriptional differences between aged and young MuSCs at 
a given point in the activation process. These results are consistent with previous reports 
of subtle transcriptional differences between young and aged MuSCs [Sousa-Victor et al., 
2014, Cosgrove et al., 2014, Keyes et al., 2016]. While transcriptional differences with age 
have been observed previously, it remained unknown if these differences were a large 
enough source of variation to alter the trajectory of myogenic activation. Our single cell 
RNA-seq data allows us to observe that age-related changes are much smaller than changes 
between states of activation, such that the sequence of cellular states – i.e. the trajectory 
of activation – is preserved with aging. 
... 
These differences in activation rate suggest that some transcriptional differences 
between young and aged MuSCs observed at the ensemble level may be the result of 
differences in the distribution of cells across the activation trajectory. 
 
Reviewer 2 Comments 

 
We have not performed single cell RNA-sequencing or timelapses at later timepoints. The 
cell tracking step of timelapse imaging makes long timelapses difficult for several technical 
reasons. For this reason, we could not include both early and late activation in a single 
timelapse experiment. We therefore focused this study on early activation. 
 
We agree with the reviewer that the question of whether or not young cells “catch up,” is 
fascinating, and we hope to explore this question in future work. 
 

 
Cells in our quiescent time point show an average of 0.233 UMIs per cell for Pax7 after 
normalization and log scaling (0.262 UMIs per 10,000). Cells in the activated time point 
show an average of 0.195 UMIs per cell for Pax7 after normalization and log scaling (0.21 
UMIs per 10,000). We have presented these data and the corresponding gene expression 
levels by cluster in a new supplementary figure, copied below. 
 
To determine which other genes are co-expressed with the Pax7+ cells in 
Transcriptional Cluster 4 (note: renamed, Fig. 2), we performed differential expression 
analysis comparing Cluster 2 Pax7+ cells Cluster 4 Pax7-cells. We identified 11 genes 
that were significantly upregulated in the Pax7 positive cells, including three members 
of the Inhibitor of DNA binding protein family: Id1, Id2, and Id3 and the cell cycle gene 
Ccnd1. Members Id family are known to inhibit myogenic differentiation, such that these 
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marker genes are consistent with the idea that Pax7+ cells might be less committed and 
more proliferative than counterparts. We have included this analysis in a new 
supplemental figure (copied below). We have included the full differential expression 
results as a new supplementary table. 
 
Results: 
 
Comparing Pax7+ cells in Transcriptional Cluster 4 to Pax7-cells in the same cluster, we 
find that Pax7+ cells show significant upregulation of Id1, Id2, and Id3 which inhibit 
differentiation and cell cycle gene Ccnd1 (Fig. S3D, q < 0.05, Wilcoxon Rank Sums). These 
results are consistent with the idea that Pax7+ cells may be more proliferative [Zammit et 
al., 2006] and less committed than Pax7-counterparts. 
 

 
We find 4,230 cells expressing Pax7, and 2,174 cells expressing Spry1. We have included a 
new supplementary table (Table S2) quantifying the number of cells we detect expressing 
these and other genes of interest (copied below). 
 
Table S2: Number of cells expressing genes of interest. 

 

 
 
 
 
 
 

 

 
The values on the axes are the mean expression of a gene in the population indicated 
by the label (Young or Aged). Each of the points represents a single gene. We have 
amended the axes labels and legend to clarify. 
 
We thank the reviewer for pointing out our error in the figure legend. We have 
corrected the text to reflect that gene wise AUROC analysis shows that a single gene is 
not predictive of age. 

 

Txn 
Cluster 

Pax7 Spry1 Myf5 Myod1 Myog Myf6 

1 511 436 586 313 6 13 

2 1125 812 2279 3346 16 27 

3 516 256 442 4979 1 2 

4 2041 606 551 5039 2 16 
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We agree that this resource would be helpful for readers. We have included tables for 
each of the differentially expressed gene sets as Supplemental Files. 

 
We thank the reviewer for pointing out this lack of clarity. We have amended the 
Results with the following text to justify this description: 
 
 
 

 
 
Supp. Fig. S3: Pax7 is lower in activated MuSCs than freshly-isolated MuSCs. (A) Expression 
of Pax7 in each transcriptional cluster, ordered by pseudotime. Pax7 expression decreases 
in early activation (Cluster 1, 2, 3), then increases slightly in the final activation cluster 
(4). (B) Data from (A), presented as violin plots. (C) Expression of Pax7 in quiescent, 
freshly-isolated MuSCs and activated MuSCs after 18 hours in vitro. Considering all cells 
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at each timepoint, Pax7 expression is decreased in activated cells. (D) Significant 
differentially expressed genes within the Pax7+ population of the activated Transcriptional 
Cluster 4 (q < 0.05, Wilcoxon Rank Sums). We found inhibitors of myogenic differentiation 
Id1, 2, 3 and cell cycle gene Ccnd1 were enriched in Pax7+ cells. 
 
A switch-like process is characterized by one prominent period of transition, with two relatively 
stable states on either side. Concave transition rates are consistent with model, where the 
peak transition rate represents the ”switch” between two states in the switch-like process. The 
concave transition rates we observe by RNA velocity suggests that myogenic activation is a 
switch-like process, corroborating our earlier observations made by cell behavior analysis 
[Kimmel et al., 2018]. 

 
In a fascinating report, Yoshida et. al. [Yoshida et al., 1998] describe “reserve cells” as a 
population of MyoDLow/Myf5Low myogenic cells that emerge from a uniform 
MyoDHigh/Myf5High+ myoblast population upon differentiation challenge. The “rapid 
downregulation of MyoD” in this initial report suggests that myogenic cells have the 
ability to regress in the commitment program (key data in Fig. 6 and Fig. 7 of [Yoshida et 
al., 1998]). 
 
Our RNA velocity data, which indicates how expression levels are changing in a single cell, 
indicate that many MuSCs are undergoing a transcriptional change that brings them 
“backward” in the lineage progression. We infer the future transcriptome of a cell as the 
current transcriptome plus the RNA velocity vector, then infer a pseudotime coorindate 
for each of these future transcriptomes. To our surprise, we found that the predicted 
transcriptomes for many MuSCs are earlier in pseudotime than the current state, 
suggesting “backward” motion. This is in contrast to the result we would expect if MuSCs 
were nearly “stuck” and not going “forward.” In that case, we would see velocity vectors 
that provide positive change in pseudotime, or a change near zero, but not a negative 
change in pseudotime. 
 
We note that we have no evidence cells are failing to activate in the long term, as 
described for reserve cells that do not differentiate even under prolonged serum 
starvation. Rather, we suggest that the process of activation may involve many small 
forwards and backwards movements in the lineage progression, rather than a smooth, 
continuous process. This description is consistent with our knowledge of noise in the 
transcriptional process [Elowitz et al., 2002, Hansen et al., 2018], such that we might 
expect lineage commitment to look more like the biased random walk of a gas particle 
crossing a room than the smooth motion of a ball rolling down a hill. To clarify this 
point, we have amended our Results. Samples of these amendments are included below. 
 
Results: 
 
RNA velocity is a measure of instantaneous change in the cell state, such that these results do 
not necessarily suggest a subset of cells which permanently fails to activate. Rather, these 
results suggest myogenic activation is a two-way process even under growth-promoting 
conditions, perhaps resembling a biased random walk through transcriptional space in which 
some steps in “reverse” occur even as the overall direction of motion progresses forward. 
 

 
This is a very interesting question. We have computed the difference in velocity between 
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forward and back-ward moving cells across all genes. Gene Ontology enrichment suggests 
that terms associated with protein translation and biogenesis have higher velocity in 
forward moving cells, while genes associated with mitochondrial oxidative phosphorylation 
have higher velocity in backward moving cells. These results are consistent with the idea 
that cells moving “forward” in activation need to activate protein translation programs, 
while cells that remain primitive and fail to move forward maintain the high use of 
oxidative phosphorylation characteristic of more primitive cells during activation (see: 
[Ryall et al., 2015]). 
 
We have included the results of these analyses in a new supplemental figure panel 
(copied below) and table. Additions to the Results are included below. 
 
 
Results: 
To determine which genes underlie differences in motion through the activation 
trajectory, we computed the difference in velocity between forward and backward 
moving cells. This analysis reveals that forward moving have higher velocity for protein 
translation and biogenesis genes, while backward moving cells have higher velocity for 
mitochondrial respiration genes (Fig. S13D, Gene Ontology enrichments). These results 
are consistent with upregulation of protein synthesis and downregulation of oxidative 
phosphorylation during myogenic activation [Ryall et al., 2015]. 
 

 
Supp. Fig. S4: Lineage regression frequency with age (A) The proportion of “regressing” cells 
across pseudotime in aged and young MuSCs, revealing little age dependence. Proportions 
were computed by coarse-graining pseudotime into equally sized bins. (B) Proportion of 
“regressing” cells across pseudotime in young LRCs and nonLRCs. nonLRCs regress more 
frequently late in the activation process (χ2 test, p < 0.0001. (C) The difference in lineage 
regression frequency between LRCs and nonLRCs is also present in MuSCs from aged animals 
(χ2 test, p < 0.0001). (D) We computed the difference in velocity for each gene between 
cells moving “forward” and “backward” in the activation trajectory. Gene Ontology 
enrichments suggest forward moving cells have higher velocity for protein translation and 
biogenesis programs, while backward moving cells have higher velocity for mitochondrial 
oxidative phosphorylation programs. 
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We thank the reviewer for highlighting this result. 
 
Our phase simulations update the position of a “phase point,” (i.e. a simulated cell) over 
time. When the phase points reach the edge of the transcriptional space we observe in our 
experiment (near our most activated cells), they reach a metastable point and do not 
progress further. Intuitively, this reflects our simulations reaching the most activated point 
we observe, at which point there isn’t any further information about where the simulations 
might go next. The aged phase points take longer to reach the end of the activation process 
we observe, which we interpret as slower activation kinetics. 
We have amended our Results and Figure Legend to make this point clear to readers. 
A copy of the addition is pasted below: 
 
Results: 
 
After many time steps, both young and aged phase points reach similar inferred 
pseudotime locations as they near the edge of our observed pseudotime trajectory 
(Fig. 6D). 
 
Figure Legend: 
 
Curves cross when young and aged phase points have both reached a steady-state at 
the end of our observed pseudotime trajectory. 
 

 
We thank the reviewer for pointing out this mistake. We have corrected the legend. 
 
Reviewer 3 Comments 

 
We appreciate the reviewer’s candid feedback. 
 
We believe our key contributions are as follows: 
 
1 - Aged and young MuSCs share a common activation trajectory 
We demonstrate that aged and young MuSCs show similar activation trajectories using 
multiple pheno- typing methods. This result is non-obvious given single endpoint 
measurements, like those presented in [Gilbert et al., 2010, Cosgrove et al., 2014]. 
Multiple previous studies have reported transcriptional differ- ences between aged and 
young MuSCs [Chakkalakal et al., 2012, Bernet et al., 2014, Cosgrove et al., 2014, Sousa-
Victor et al., 2014], but it cannot be determined from ensemble measurements if these 
age-related changes define distinct trajectories of activation. Our single cell 
measurements provide quantitative measurements of the proportion of variation 
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explained by age-related changes, and show that aged and young MuSCs share a 
common set of transcriptional states through activation despite the existence of some 
transcriptional changes with age. 
 
2 - Aged MuSCs activate more slowly than young MuSCs transcriptionally & behaviorally 
 
We provide direct measurements of activation dynamics in young and aged MuSCs using 
single cell behavior and RNA velocity and show aged MuSCs activate more slowly by 
both measurements. While time-to-first-division assays have long suggested that aged 
MuSCs show impaired activation, cell cycle entry is but one of many aspects associated 
with stem cell activation. It cannot be deduced from those studies alone whether aged 
MuSCs show an impaired rate of activation (as we find here), or rather if some portion 
of cells travel down an incorrect activation trajectory (for which we find no evidence). 
 
3 - LRCs activate more rapidly than nonLRCs 
 
Work from our lab previously demonstrated that LRCs have better self renewal and 
differentiation under transplantation and retain a more primitive fate (Pax7+/MyoG-) 
when dividing in vitro. The assumption, although never directly tested was that these 
cells divided more slowly. Using orthogonal measures in the present manuscript, we 
show that LRCs activate more rapidly. 
 
Using single cell RNA-seq, we find that LRCs preferentially occupy more activated 
transcriptional clusters relative to nonLRCs. Through an EdU incorporation assay, we 
likewise find that LRCs more rapidly enter the cell cycle. This result is non-intuitive, as 
some models in the field positive that more regenerative cells tend to activate more slowly. 
Our data are further consistent with recent reports of other “reserve” stem cell populations 
that activate quickly [Scaramozza et al., 2019]. Similarly, these results are consistent with 
work that demonstrates rapidly activating cells provide regenerative benefit [Rodgers 
et al., 2014]. 
 
We also believe the following secondary contributions add to the existing body of 
knowledge: 
 
• We develop the first accurate classifier of single cell age in MuSCs. 
• We likewise develop the first accurate classifier of LRC/nonLRC status in MuSCs. 
• We introduce a dynamical systems analytical technique to measure rates of activation 

using RNA velocity vectors. 
• We report for the first time that MuSC activation appears to be a random walk-like 

process, rather than a smooth progression from quiescence to activation. 
 

 
We thank the reviewer for this honest assessment. We have substantially reworked the 
text of our manuscript to improve readability while reducing word count. 
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We agree that many different questions in are addressed in our manuscript pertaining 
to general MuSC activation biology, MuSC aging, and MuSC heterogeneity. We 
deliberately chose to use investigative methods which are unbiased, measuring many 
cell behaviors and molecular changes, such that many questions could be addressed 
with these data. However, we agree that addressing many questions simultaneously can 
be distracting. We have therefore reworked the text of our manuscript to highlight the 
contributions we believe are of the most importance. 

 
We have amended the abstract text to make our distinctions clear. 
 
The pioneering work of Gilbert 2010 & Cosgrove 2014 indeed highlighted for the first 
time that young and aged MuSCs have different time-to-first division and clonal outputs. 
However, cell cycle activity is only one component of the activation process, and it 
cannot be deduced from this singular read-out if the broader program of MuSC 
activation is delayed with age or if the transcriptional trajectory is altered. In order to 
address these latter questions, the transcriptional and behavioral state of young and 
aged MuSCs must be profiled using unbiased methods, such as those we employ here. 
 
We have amended our Introduction to clarify the importance of contributions from 
Gilbert 2010 & Cosgrove 2014, while highlighting the remaining unknowns. A sample of 
these additions is copied below: 
 
In muscle stem cells (MuSCs), the activation process is canonically characterized by 
expression of Myod1 [Grounds et al., 1992, Yablonka-Reuveni and Rivera, 1994], loss of 
Spry1 and Pax7, and entry into the cell cycle [Shea et al., 2010]. Multiple groups have 
characterized the dynamics of activation at the population level using ensemble assays to 
measure these molecular markers [Yablonka-Reuveni and Rivera, 1994, Cornelison and 
Wold, 1997, Fu et al., 2015, Jones et al., 2005, Zhang et al., 2010]. Likewise, it has been 
reported that aged MuSCs show a delayed time to first division relative to young cells, with 
fewer aged cells forming colonies in vitro [Gilbert et al., 2010, Cosgrove et al., 2014]. 
These studies have elucidated many of the molecular players and sequences in MuSC 
activation and shown that aged cells exhibit a delay in at least one activation hallmark 
(first division time). 
 
Genomics studies have revealed that MuSC activation is a complex process, affecting 
many aspects of transcription and cell behavior [Liu et al., 2013]. However, it remains 
unknown how aging affects the progress of activation in MuSCs outside of a small set of 
molecular markers and binary behavior features (i.e. cell cycle events). While it is 
known that aged MuSCs display a delayed cell cycle entry for instance, it is unknown if 
this one feature of cell behavior reflects a broader delay in the activation process across 
the many transcriptional and cell behavior features involved. Traditional molecular 
biology tools have also limited investigation to terminal assays, such that activation 
dynamics in single cells have not been directly observed. In order to disambiguate 
between the Different Paths and Different Rates models of MuSC aging, we require 
single cell measurements of activation dynamics that capture a broad set of 
transcriptional and behavioral features. 
 
 
 
 

age’ 
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