Supp. Fig. 1

1

Supp. Fig. 1. Brain metastasized breast cancer cells (231Br) have different response to AZA treatment compared to their parental regular breast cancer 231 cells. (a) Dose-response curve used to calculate IC 50 values of AZA in 231 and 231Br cells (p<0.01). The figure represents N = 3 technical replicates, three independent experiments. (b) Flow cytometry plot for the detection of percentage of Annexin-V positive cells after various concentrations of AZA treatment for 3 days. The Annexin-V positive cells were gated based on unstained negative control and Annexin-V only stain positive control cells. The plot represents N = 3 technical replicates, two independent experiments. (b) Expression of BAD and BAX in 231 and 231Br cells after AZA treatment for 3 days measured by Western blotting assay. GAPDH was used as the loading control. The blots shown are a presentation of two independent experiments.

Supp. Fig. 2

а

 Wnt-1

 Wnt-5

 Wnt-11

 Wnt-11

 APC

 GAPDH

 0
 20
 50
 100
 231
 231Br

С

Supp. Fig. 2. Inhibition of Wnt, Ras-Raf-MEK-MAPK, PI3K-Akt-mTOR signaling transduction pathways by AZA in two cells lines. (a) Expression of Wnt-1 Wnt-5, Wnt-11, and APC in 231 and 231Br cells after AZA treatment for 3 days measured by Western blotting assay. GAPDH was used as the loading control. The blots shown are a presentation of two independent experiments. (b) Expression of Ras, Raf-1, phosphorylated MEK-1, and MAPK in 231 and 231Br cells after AZA treatment for 3 days measured by Western blotting assay. Beta-actin was used as the loading control. The blots shown are a presentation of two independent experiments. (c). Expression of PI3K, Akt, and phosphorylated mTOR in 231 and 231Br cells after AZA treatment for 3 days measured by Western blotting assay. Beta-actin was used as the loading control. The blots shown are a presentation of two independent experiments. (c). Expression of PI3K, Akt, and phosphorylated mTOR in 231 and 231Br cells after AZA treatment for 3 days measured by Western blotting assay. Beta-actin was used as the loading control. The blots shown are a presentation of two independent experiments. (c).

Supp. Fig. 3

а

Transwell migration assay (3 hours)

Transwell migration assay (16 hours)

b

Transwell invasion assay (16 hours)

Transwell invasion assay (72 hours)

d

Wound-healing assay 231 cells

Wound-healing assay 231Br cells

Supp. Fig. 3. Brain colonizing cells have higher migration and invasion potential compared to regular breast cancer cells. (a) Quantification of cells migrating across transwells 3 and 16 hours after plating cells in the migration chambers measured by transwell migration assay. Y-axis stands for the average number of cell migration per 5 microscope fields. All error bars represent standard deviation (SD), representative of two independent experiments. (b) Quantification of cells migrating across transwells 16 and 72 hours after plating cells in the Matrigel coated migration chambers measured by transwell invasion assay. Y-axis stands for the average number of cell migration per 5 microscope fields. All error bars represent standard deviation (SD), representative of two independent experiments. (c) Quantification of cells presented in the scratch made on day 0 (0 hour time point) at 24, 48, and 96 hours after AZA treatment by wound-healing assay. Cell numbers in the scratch wound were normalized to 0 hour. All error bars represent standard deviation (SD), representative of two independent experiments. *p<0.05, **p<0.01, ***p<0.001. (d) Width of the scratch wound made on day 0 measured at 0, 24, 48, 72 and 96 hours in 231 and 231Br cells with AZA treatment. The images represent N = 3 technical replicates, two independent experiments. (e) Representative microscopic images of the wound area migrated by 231 cells treated by different concertation of AZA at different time points. The width of the wound was measured and labelled with scale. (f) Representative microscopic images of the wound area migrated by 231Br cells treated by different concertation of AZA at different time points. The width of the wound was measured and labelled with scale.

Supp. Fig. 4. Five pairs of primers were designed and used to amplify the bisulfite modified intron 1 region of keratin 18 gene by PCR. In order to measure and compare the DNA methylation of the keratin 18 gene in both cell lines, five pairs of primers (converted primer 1-5) were designed and used to fully cover and amplify the bisulfite modified intron 1 region of keratin 18 gene by PCR. Each of the five pairs of primers yielded a single and clear PCR band using bisulfite converted genomic DNA as the template from both MDA-MB-231 and MDA-MB-231 Br cell lines. Each of the five pairs of primers could not yielded a single and clear PCR

band using regular (non-bisulfite converted) genomic DNA as the template from both cell lines.

Antibody name (clone)	Manufacture	Catalog number
Bcl-2 (C-2)	Santa Cruz biotechnology	sc7382
Bcl-xL (H-5)	Santa Cruz biotechnology	sc8392
Caspase-3 (E-8)	Santa Cruz biotechnology	sc7272
Caspase-9 p35 (A-9)	Santa Cruz biotechnology	sc133109
beta actin (AC-15)	Sigma-Aldrich	A5441
Bad (C-7)	Santa Cruz biotechnology	sc8044
Bax (6A7)	Santa Cruz biotechnology	sc23959
GAPDH (14C10)	Cell signaling	14C10
Wnt-1 (E-10)	Santa Cruz biotechnology	sc514531
Wnt-3 (3A6)	Santa Cruz biotechnology	sc136163
Wnt-4 (B-6)	Santa Cruz biotechnology	sc376279
Wnt-5 (A-5)	Santa Cruz biotechnology	sc365370
Wnt-11 (C-8)	Santa Cruz biotechnology	sc365032
APC (F-3)	Santa Cruz biotechnology	sc9998
GSK-3alpha/beta (0011-A)	Santa Cruz biotechnology	sc7291
Phosphorylated GSK-3	Cell signaling	9331
beta catenin (E-5)	Santa Cruz biotechnology	sc7963
Phospho-beta-catenin	Invitrogen	PA5-17915
pan-Ras (F132)	Santa Cruz biotechnology	sc32
Raf-1 (E-10)	Santa Cruz biotechnology	sc7267
p-MEK-1 (47.Ser 222)	Santa Cruz biotechnology	sc136542
ERK 1 (G-8) / MAPK	Santa Cruz biotechnology	sc271269
PI 3-kinase p85alpha (C1)	Santa Cruz biotechnology	sc376112
Akt1 (B-1)	Santa Cruz biotechnology	sc5298
p-mTOR (59.Ser 2448)	Santa Cruz biotechnology	sc293133
HIF-1alpha (H-206)	Santa Cruz biotechnology	sc10790
VEGF (C-1)	Santa Cruz biotechnology	sc7269
VEGF receptor 1	R&D Systems	49560
VEGF receptor 2	R&D Systems	AF357
TGF beta (3C11)	Santa Cruz biotechnology	sc130348
MMP-2	ABCam	ab37150
MMP-7	ABCam	ab5706
MMP-9 (2C3)	Santa Cruz biotechnology	sc21733
Vimentin (V9)	Santa Cruz biotechnology	sc6260
N-cadherin (13A9)	Santa Cruz biotechnology	sc59987
E-cadherin (G-10)	Santa Cruz biotechnology	sc8426
pan-Cytokeratin (AE1/AE3)	Santa Cruz biotechnology	sc81714
Keratin 18 (E431-1)	ABCam	ab32118
DNMT3a (C-12)	Santa Cruz biotechnology	sc365769
DNMT3b (G-9)	Santa Cruz biotechnology	sc376043

Supp. Table 1. Information of the antibodies used in Western blotting assays

Supp. Table 2. Quantification of Western blotting images by densitometry

Fig. 2c.

		23	31		231Br			
AZA	0	20	50	100	0	20	50	100
conc.(µM)								
BCL-	0.43	0.61	0.83	0.63	0.69	0.46	0.42	0.31
2/beta-								
actin								
Normalized	1	1.40	1.93	1.46	1	0.67	0.61	0.44
to 0 μM								
AZA								

Fig. 2d.

		23	51		231Br			
AZA	0	20	50	100	0	20	50	100
conc.(µM)								
Procaspase	0.63	0.89	0.68	0.79	0.94	1.03	1.11	1.92
9 (upper								
band)/beta-								
actin								
Normalized	1	1.40	1.08	1.24	1	1.10	1.17	2.04
to 0 μM								
AZA								
Cleaved	1.02	1.12	0.93	2.31	0.91	1.26	1.28	1.38
caspase 9								
(lower								
band)/beta-								
actin								
Normalized	1	1.09	0.91	2.25	1	1.38	1.41	1.51
to 0 μM								
AZA								
AZA	0	20	50	100	0	20	50	100
conc.(µM)								
Caspase 3	1.14	1.24	1.32	1.25	0.72	0.73	0.97	1.07
/beta-actin								
Normalized	1	1.08	1.15	1.10	1	1.01	1.35	1.48
to 0 μM								
AZA								

Fig. 3a.	

		2	231			23	1Br	
AZA	0	20	50	100	0	20	50	100
conc.(µM)								
Wnt-3/	1.11	0.65	0.71	0.56	0.83	0.85	0.24	0.22
GAPDH								
Normalized	1	0.58	0.64	0.50	1	1.02	0.29	0.25
to 0 μM								
AZA								
		0.00	0.5	0.0.1.1	1.7.	1.0.4	1.07	0.10
Wnt-4/	0.28	0.68	0.67	0.066	1.56	1.06	1.05	0.18
GAPDH	1	0.42	2.20	0.02	1	0.60	0.00	0.11
Normalized	1	2.43	2.39	0.23	1	0.68	0.68	0.11
to 0 μM								
AZA								
CSK-3	0.52	0.64	0.55	0.23	1 1 1	0.00	0.86	0.23
GSK-J	0.52	0.04	0.55	0.23	1.11	0.99	0.80	0.23
(upper band)/								
GAPDH								
Normalized	1	1.21	1.04	0.43	1	0.89	0.78	0.21
to 0 µM								
AZĂ								
GSK-3	0.66	0.68	0.58	0.21	1.09	0.85	0.56	0.27
(lower								
band)/								
GAPDH								
Normalized	1	1.02	0.87	0.32	1	0.78	0.51	0.24
to 0 μM								
AZA								
Data	1.20	1 20	1 1 2	0.54	1 20	1 10	1.20	0.77
Dela-	1.50	1.38	1.12	0.34	1.38	1.19	1.28	0.77
GAPDH								
Normalized	1	1.06	0.85	0.41	1	0.86	0.92	0.55
to 0 µM	1	1.00		0.11	1	0.00	0.72	0.00
AZA								
		1	1		1		1	

Fig. 3	3b.
--------	-----

		2.	31		231Br			
AZA	0	20	50	100	0	20	50	100
conc.(µM)								
VEGF	1.03	1.58	1.11	1.00	3.12	2.14	1.97	1.17
receptor								
2/GAPDH								
Normalized to	1	1.53	1.08	0.97	1	0.68	0.63	0.37
0 μM AZA								
HIF-1	2.31	3.15	2.57	2.13	2.97	2.39	2.35	2.34
alpha/GAPDH								
Normalized to	1	1.36	1.11	0.92	1	0.80	0.79	0.78
0 μM AZA								

Fig. 4d.

		,	231			231Br			
AZA	0	20	50	100	0	20	50	100	
conc.(µM)									
MMP2/	0.22	0.19	0.20	0.18	1.03	0.52	1.06	0.86	
GAPDH									
Normalized	1	0.85	0.91	0.82	1	0.50	1.02	0.83	
to 0 μM									
AZA									
MMP9/					0.57	0.47	0.51	0.48	
GAPDH									
Normalized					1	0.83	0.90	0.84	
to 0 μM									
AZA									
					_				
Vimentin/ GAPDH	1.03	1.09	0.86	0.87	0.75	0.86	0.86	0.72	
Normalized	1	1.05	0.82	0.84	1	1.14	1.14	0.95	
to 0 μM AZA									
N-cadherin /GAPDH					1.99	0.44	0.55	0.33	
Normalized					1	0.22	0.28	0.16	
to 0 μM AZA									

Pan-	1.27	1.20	1.05	0.99	0.40	0.39	0.17	0.11
cytokeratin/								
GAPDH	1	0.04	0.82	0.77	1	0.07	0.42	0.26
to 0 uM	1	0.94	0.82	0.77	1	0.97	0.43	0.20
AZA								

Fig. 5a.

		2	231		231Br			
AZA	0	20	50	100	0	20	50	100
conc.(µM)								
Keratin 18/	0.71	1.06	0.75	0.96				
GAPDH								
Normalized to	1	1.48	1.06	1.35				
0 μM AZA								

Fig. 5f.

		2.	31		231Br				
AZA	0	20	50	100	0	20	50	100	
conc.(µM)									
DNMT3a/					1.64	0.82	0.96	0.91	
GAPDH									
Normalized to					1	0.51	0.58	0.56	
0 μM AZA									