

Supplementary Material

Graphene oxide nanosheets tailored with aromatic dipeptide nanoassemblies for a tunable interaction with cell membranes

Giuseppe Trapani 1†8, Viviana Carmela Linda Caruso2†, Lorena Maria Cucci2, Francesco Attanasio3, Giovanni Tabbì3, Giuseppe Forte4, Diego La Mendola5* and Cristina Satriano2*

1 Scuola Superiore di Catania, University of Catania, 95123 Catania, Italy.

² Nano Hybrid BioInterfaces Lab (NHBIL), Department of Chemical Sciences, University of Catania, 95125 Catania, Italy.

- ³ Institute of Crystallography National Council of Research, 95123 Catania, Italy.
- ⁴ Department of Pharmaceutical Sciences, University of Catania, 95125 Catania, Italy.
- ⁵ Department of Pharmacy, University of Pisa, 56126, Pisa, Italy.

* Correspondence:

Prof. D. La Mendola, lamendola@farm.unipi.it; Prof. C. Satriano, csatriano@unict.it

[§] Current affiliation: Bioactive Materials Laboratory, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany.

Supplementary Figure 1. A schematic representation of Phe-Phe dipeptide at the interface with a GO nanosheet in the presence of Cu(II).

Supplementary Figure 2. UV-visible spectra of free dipeptide (solid curves, 5x10-5 M solution in water) and GO/dipeptide (dotted curves, GO concentration = 17 µg/mL) assemblies at different aging times since dissolution. For t=0 and t=1 week the spectra of the samples added with CuSO₄ (5x10-5 M) are included for comparison.

Supplementary Figure 3. Emission spectra (excitation wavelength = 230 nm) of free dipeptide (solid curves, 5x10-5 M solution in water) and GO/dipeptide (dotted curves, GO concentration = 17 µg/mL) assemblies at different aging times since dissolution. For t=0 and t=1 week the spectra of the samples added with CuSO4 (5x10-5 M) are included.

Supplementary Figure 4. Time dependent Th-T fluorescence profile for FF-GO (50 μ M) in 10 mM phosphate buffer pH = 7.4 (red line) and H₂O (black line) recorded at 25°C for 2 days.

Supplementary Figure 5. EPR spectra of FF-Cu₂₊, YY-Cu₂₊ and the corresponding GO-based platforms. Experimental conditions to record the spectra were as follows: 150 K in MQ-H₂O; [*dipeptide*]=10– $_3M$, *GO* concentration = 340 $\mu g/mL$, [*Cu*₂₊]:[*dipeptide*] = 1:1. The panels in the right hand side show one of the possible coordination environments of the copper chelates in the

peptide-copper complexes as well as the interlayer ions of manganese 'contamination' detected in the EPR spectra.

Supplementary Figure 6. Optimized structures of: (**A**) FF, (**B**) YY, (**C**) 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC).