DOI: 10.1289/EHP5838

Note to readers with disabilities: *EHP* strives to ensure that all journal content is accessible to all readers. However, some figures and Supplemental Material published in *EHP* articles may not conform to <u>508 standards</u> due to the complexity of the information being presented. If you need assistance accessing journal content, please contact <u>ehp508@niehs.nih.gov</u>. Our staff will work with you to assess and meet your accessibility needs within 3 working days.

Supplemental Material

A Quantile-Based g-Computation Approach to Addressing the Effects of Exposure Mixtures

Alexander P. Keil, Jessie P. Buckley, Katie M. O'Brien, Kelly K. Ferguson, Shanshan Zhao, and Alexandra J. White

Table of Contents

Figure S1. Large sample simulation results demonstrating the default graphical output of the "qgcomp" R package showing the point estimates of the exposure weights in quantile g-computation (when weights are estimable in a linear/additive model). Under a linear model when effects of exposures are all in the same direction, the weights correspond to the proportion of the total mixture effect that is due to each exposure.

Figure S2. Large sample simulation results demonstrating the default graphical output of the "gWQS" R package showing the point estimates of the exposures weights in WQS regression. Under a linear model when effects of exposures are all in the same direction, the weights correspond to the proportion of the total mixture effect that is due to each exposure.

Figure S3. Scenario 5: Impact of co-pollutant confounding on the bias of the overall exposure effect estimate (N=500, d=4) for quantile g-computation (q-gcomp) and WQS regression (WQS) at exposure correlations ($\rho_{x_1x_2}$ of 0.0, 0.4, and 0.75) and varying total effect sizes ($\psi = \beta_1 + \beta_2 \in 0.2, 0.15, 0.05$). Boxes represent the median (center line) and interquartile range (outer lines of box) and outliers (points outside of the 1.5*IQR length whiskers) across 1,000 simulations.

Figure S4. Scenario 5: Impact of co-pollutant confounding on the bias of the overall exposure effect estimate (N=500, d=14) for quantile g-computation (q-gcomp) and WQS regression (WQS) at exposure correlations ($\rho_{x_1x_2}$ of 0.0, 0.4, and 0.75) and varying total effect sizes ($\psi = \beta_1 + \beta_2 \in 0.2, 0.15, 0.05$). Boxes represent the median (center line) and interquartile range (outer lines of box) and outliers (points outside of the 1.5*IQR length whiskers) across 1,000 simulations.

Figure S5. Scenario 5: Impact of co-pollutant confounding on the bias of the overall exposure effect estimate (N=100, d=4) for quantile g-computation (q-gcomp) and WQS regression (WQS) at exposure correlations ($\rho_{x_1x_2}$ of 0.0, 0.4, and 0.75) and varying total effect sizes ($\psi = \beta_1 + \beta_2 \in 0.2, 0.15, 0.05$). Boxes represent the median (center line) and interquartile range (outer lines of box) and outliers (points outside of the 1.5*IQR length whiskers) across 1,000 simulations.

Figure S6. Scenario 5: Impact of co-pollutant confounding on the bias of the overall exposure effect estimate (N=100, d=9) for quantile g-computation (q-gcomp) and WQS regression (WQS) at exposure correlations ($\rho_{x_1x_2}$ of 0.0, 0.4, and 0.75) and varying total effect sizes ($\psi = \beta_1 + \beta_2 \in 0.2, 0.15, 0.05$). Boxes represent the median (center line) and interquartile range (outer lines of box) and outliers (points outside of the 1.5*IQR length whiskers) across 1,000 simulations.

Figure S7. Scenario 5: Impact of co-pollutant confounding on the bias of the overall exposure effect estimate (N=100, d=14) for quantile g-computation (q-gcomp) and WQS regression (WQS) at exposure correlations (${}^{\rho_{X_1X_2}}$ of 0.0, 0.4, and 0.75) and varying total effect sizes ($\psi = \beta_1 + \beta_2 \in 0.2, 0.15, 0.05$). Boxes represent the median (center line) and interquartile range (outer lines of box) and outliers (points outside of the 1.5*IQR length whiskers) across 1,000 simulations.

Table S1. Validity of WQS regression and quantile g-computation under the null (no exposures affect the outcome, or exposures counteract) and non-null estimates when directional homogeneity holds, 1,000 simulated samples of N=100.

Table S2. Validity of WQS regression and quantile g-computation under non-null estimates when directional homogeneity holds, individual exposure effects are non-additive, and the overall exposure effect includes terms for linear ($\psi_1 1$) and squared (ψ_2) exposure (e.g. quadratic polynomial), 1,000 simulated samples of N=100.

Table S3. Validity of WQS regression without sample splitting and quantile g-computation under the null (no exposures affect the outcome, 1,000 simulated samples of N=500).

Additional File- Supplemental Code and Data Files