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Supplementary Text
Effective Force

The drop is drawn into the well through a subtle wave-mediated interaction. However, an an-

alytical expression for the effective well-induced force acting on the drop during the incoming

phase, Fw, may be inferred (23) by exploiting two features evident in both experiments and

simulations. First, to a good approximation, the incoming trajectories are Archimedean spirals

centered on the well. Second, the drop speed remains constant along these spirals.

By rotating clockwise the walker trajectories (Fig. S1) by their corresponding scattering

angles α, all collapse onto an Archimedean spiral (Fig. S2A). Note the nearly linear relationship

in r(θ) (Fig. S2B) and the satisfactory fit to a pure Archimedean spiral (Fig. S2C). The spiral

slope b = dr/dθ decreases in magnitude with increasing drop speed v0 but remains unaffected

by γ/γF if drop speed is kept constant (Fig. S2B). Notably, we may accomplish the latter

condition with our simulations by readjusting the impact phase (Table 1). In order to deduce

an expression for the effective well-induced force, Fw, we start from the polar form of the drop

trajectory, r(θ) = a + bθ, where (r, θ) are the polar coordinates in the horizontal plane, and a

and b are constants that may be determined from the initial conditions. Given the equation of

motion mdv/dt = Fw, where m is the drop mass and v = ṙêr + rθ̇êθ in polar coordinates, the

well-induced force may be written as

Fw = m
[(
r̈ − rθ̇2

)
êr +

(
rθ̈ + 2ṙθ̇

)
êθ

]
. (6)

Since the drop speed v = |v| is constant along the incoming spiral, as is the case for r & 2.5λF

(Fig. S2B), it follows that

v2 = v2r + v2θ = ṙ2 + (rθ̇)2 = const, (7)

an expression whose time derivative yields

2ṙr̈ + 2rṙθ̇2 + 2r2θ̇θ̈ = 0. (8)



Noting that ṙ = bθ̇ and r̈ = bθ̈ from the spiral equation, and that ṙ 6= 0 from (7), we may write

r̈ = − rθ̇2(
1 + r2

b2

) , and θ̈ = − rθ̇2

b
(
1 + r2

b2

) . (9)

By substituting (9) into (6), we deduce the well-induced force:

Fw = m

(
2 + r2

b2

)
(
1 + r2

b2

) θ̇2 (−rêr + bêθ) . (10)

Using ṙ = bθ̇ in (7), it follows that

v2 = ṙ2
(

1 +
r2

b2

)
. (11)

We thus obtain the components of Fw by substituting (11) and ṙ = bθ̇ into (10), which leads to

Fw = m

(
1 +

ṙ2

v2

)(
−rθ̇2êr + ṙθ̇êθ

)
. (12)

Denoting vr = ṙ and vθ = rθ̇, we may thus write (12) as

Fw = m

(
1 +

ṙ2

v2

)
Θ̇× v, (13)

where Θ̇ = (vθ/r)êz is the drop’s instantaneous angular velocity about the well center.

It should be noted that the spiral parameters a and b may be determined from the initial

conditions. Denoting the initial position and velocity as (r0, θ0) and (vr0, vθ0), respectively, and

noting that ṙ = bθ̇ may be written as vr = bvθ/r leads to b = r0vr0/vθ0 and a = r0(1 −

vr0θ0/vθ0).

It is interesting to compare the inferred form (13) of the well-induced force with that inferred

by Harris et al. (23) for walker scattering off a submerged circular pillar. While both are lift

forces, acting perpendicular to the walker, the drop is drawn inwards into the well along an

Archimedean spiral, and driven outwards by the pillar along a logarithmic spiral. The slightly

different forms of these lift forces presumably reflects the different forms of the pilot waves in

the two situations. Rationalizing their different forms is left for future consideration.



We conclude by noting that the effective well-induced force may be tuned through the outer

fluid depth h. Notably, decreasing h sufficiently may lead to trapped states, in which the drop

is unable to escape the well (Fig. S2D), as are known to arise for γ > γF (38–40).
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Fig. S 1: Numerical simulation of walker-well interactions. Simulated trajectories with
uniformly-distributed impact parameters yi for a drop with speed v0 = 4.4 mm s−1 at γ/γF =
0.990.
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Fig. S 2: Spiral trajectory and effective force. (A) Unique spiral resulting from suitable
rotation of the trajectories shown in Fig. 2D,E and Fig. S1. Only walkers drawn into the well are
considered. (B) Dependence of the radial coordinate r (solid and dotted lines) on the azimuthal
angle θ for the longest spirals achieved with walkers of different size (speed), as previously
shown in Fig. 1E. The nearly linear relation between r and θ demonstrates that the incoming
drop trajectory is well approximated by an Archimedean spiral. The dashed blue line shows the
normalized instantaneous speed v/v0 corresponding to the drop with speed v0 = 4.4 mm s−1

at γ/γF = 0.990 (solid blue line). (C) Comparison between the drop trajectory (dashed line)
and the Archimedean spiral (solid) obtained with the fit shown in B for v0 = 4.4 mm s−1 at
γ/γF = 0.990. (D) Experimental dependence of walker trajectories at γ/γF = 0.990 on depth
h illustrates well-induced trapping at small h. The red-shaded area corresponds to the extent of
the well. The drop size is the same as in Fig. 1C.



Captions for Supplementary Movies

Movie S1

Oblique view showing a drop walking over the surface of a vibrating fluid bath and interacting

with a submerged circular well. Acquisition frame rate: 34 Hz. Video length: 24 seconds.

Movie S2

Experimental drop trajectories in the vicinity of a submerged well, color-coded according to

drop speed. Video length: 45 seconds.

Movie S3

Top view illustrating the experimental wave field during the walker-well interaction. The wave

field is visualized through a semi-reflective mirror and a diffused-light source. Acquisition

frame rate: 17.2 Hz. Video length: 23 seconds.

Movie S4

Top and oblique view illustrating the form of the wave field during the walker-well interaction,

as obtained via simulation. Strobing frequency: f/4. Video length: 24 seconds.

Movie S5

Top and oblique view illustrating the well-induced wave perturbation during the walker-well

interaction, as obtained via simulation. Strobing frequency: f/4. Video length: 24 seconds.

The supplementary movies have been recorded in MPEG4 format. Its correct reproduction

has been tested with the ‘VLC’ and ‘QuickTime’ players on MacOS, and ‘VLC’ and ‘Windows

Media’ players on PC.
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