

advances.sciencemag.org/cgi/content/full/6/20/eaba4311/DC1

## Supplementary Materials for

## Dissolved oxygen from microalgae-gel patch promotes chronic wound healing in diabetes

Huanhuan Chen, Yuhao Cheng, Jingrun Tian, Peizheng Yang, Xuerao Zhang, Yunhao Chen, Yiqiao Hu\*, Jinhui Wu\*

\*Corresponding author. Email: huyiqiao@nju.edu.cn (Y.H.); wuj@nju.edu.cn (J.W.)

Published 15 May 2020, *Sci. Adv.* **6**, eaba4311 (2020) DOI: 10.1126/sciadv.aba4311

## This PDF file includes:

Figs. S1 to S8



Fig. S1. Releasing dissolved oxygen of S. elongatus PCC7942. (A) Comparison releasing dissolved oxygen of S. elongatus PCC7942 with different carbon source. (B) Comparison releasing dissolved oxygen between the S. elongatus PCC7942 ( $1 \times 10^9$  cells/mL) supplement with different concentration of Na<sub>2</sub>CO<sub>3</sub>. (C) Transfer of dissolved oxygen for control recording into saline at 37 °C. (D and E) Images of S. elongatus PCC7942 solution and alga-gel at day 0, 15 at 4 °C. (F) Images of AGP at day 0, 5, 10, 15 at 4 °C, respectively.



Fig. S2. The expression of HIF-1 $\alpha$  on high glucose induced-cells. (A and B) The expression of HIF-1 $\alpha$  on high glucose induced in HUVECs (n=3). Scale bars, 200 µm. (C and D) The expression of HIF-1 $\alpha$  on high glucose induced in HaCaT (n=3). Scale bars, 200 µm. Significantly different (one-way ANOVA): \**P* < 0.05; \*\**P* < 0.01; \*\*\**P* < 0.001.



Fig. S3. Alga-gel promotes HUVEC cell-migration. (A and B) Representative images and quantification of HUVEC cell-migration (n=3). Scale bars: 200  $\mu$ m. Significantly different (one-way ANOVA): \**P* < 0.05.



Fig. S4. Alga-gel does not evoke immune response.



Fig. S5. AGP promoted acute wound healing. (A) Representative images of the wound area by different treatments on day 0, 4, 8 and 10 after operation. (B) Fractions of wounds healed by different treatments at days 0, 4, 8 and 10. (C) Wound area over time in mice by different treatment. (D) Summary of the 50% wound-closure times (n $\geq$ 6). Significantly different (one-way ANOVA): <sup>\*\*</sup>*P* < 0.01.



Fig. S6. Wound healing at the inflammatory and proliferative stages in different groups. (A and B) H&E staining of the wound area refected the regenerated skin at day 3, 6, 9 (n=3). Scale bars, 100  $\mu$ m. (C and D) Masson staining of the wound area refected the regenerated skin at day 3, 6, 9 (n=3). Scale bars, 100  $\mu$ m. (V vessels; Fibroblast cell; I inflammatory cell; F fibroblast cells; E epidermis)



Fig. S7. The immunohistochemical images the average macrophage densities in different groups at day 9 (n=3). Scale bars, 50  $\mu$ m. Significantly different (one-way ANOVA): <sup>\*\*</sup>*P* < 0.01.



**Fig. S8. Staining of the flap necrosis in different groups at day 6**. (A and B) Masson and H&E staining.