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Supplementary Fig. 1
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Supplementary Fig.1. Expression of the CPEB1-4 in mammary epithelial and stromal cells. (A) FACS strategy.
Representative FACS plots showing the gating strategy for isolation and analysis of luminal (EpCAM™"CD49f°") and
myoepithelial (EpCAMIowCD49fhigh) populations of the mammary tissue. Lineage staining includes immune (CD45+),
endothelial (CD31+) and erythroid (Ter119+) populations. (B) FACS plot of the sorted populations (left) and western-blot
detection (right) of murine CPEB1-4 in luminal (Lum), myoepithelial (Myo) and stromal (Str) cell populations. GAPSH is

used as a loading control.
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Supplementary Fig. 2
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Supplementary Fig.2. Generation of CPEB2 KO mouse model. (A) Schematic view of the targeting strategy by
homologous recombination (HR) at the Cpeb2 locus in mouse embryonic stem (ES) cells. The Cpeb2 locus in Mus musculus
contains 11 exons (boxes), including protein-coding (grey) and untranslated (clear) sequences. Also loxP and FRT sites are
depicted. The neo cassette was deleted by expressing Flp recombinase in vitro. To obtain excision of exon4 and loss of
CPEB2 ubiquitously, mice were crossed with Sox2-Cre mice. hBactP, promoter. Bgal, beta-galactosidase. Neo, neomycin.
PTC, premature termination codon. IRES, internal ribosome entry site. SA, splicing acceptor. pA, polyA sequence. (B) ES
clones that underwent HR assessed by Southern Blotting. DNA was digested with the indicated restriction enzymes and
hybridized with the 5°, 3” or Neo probes as indicated in (A). (C) PCR amplification for either conditional (upper panel) or
null (lower panel) Cpeb2 alleles. (D) Extracts from whole tissue or isolated MECs from WT and constitutive KO mice
assessed by western blotting for CPEB2 and Vinculin (loading control).



Supplementary Fig. 3

A TGA
Cpeb3(+) ] H— f—— f F—H —F] u ]
Targeting vector . 5'arm 3'arm
(5837bp) (3132bp)
HR 1
Cpeb3 (loxfrt)
x Sox2-Cre 1 <] loxP
Cpeb3 (frt) {7 TaA (PTO) < FRU
pe P TNiRES [ Beal L !
(Cpeb3 KO) [2] Bgal | 3} B Neo probe
B D
Neo probe Testis
WT G03 DO1 kba WT WT KO KO
. | e
- WSS WR— 10.5 Kb S P s < | CPEB3
=y 148—
e s s we | \/incuUlin
— A *Unspecific bands
()
o B B 2o 5 Ko '
w 3 Liver
kDa WT WT KO KO
c S - CPEB3
Cpeb3 148—
bp  +/+ fri/+ fri/frt [ s e \/inculin
1000—
P . 4

Supplementary Fig.3. Generation of CPEB3 KO mouse model. (A) Schematic representation of the targeting strategy
followed and the alleles. Mouse Cpeb3 locus contains 11 exons (boxes) including protein-coding (grey) and untranslated
(clear) sequences. Recombinant ES cells harbouring one CPEB3loxfrt allele (clones HEPD0670_2_C02 and
HEPDO0670_2_G03; Eucomm) were obtained by homologous recombination (HR) with targeting vector PG00205_Z 3 F02
(Eucomm). CPEB3loxfrt allele carries a gene-trap lacZ cassette plus a promotor-DNA recombinases Cre and Flp,
respectively. Excision of neo cassette and exon3 was achieved by crossing Cpeb3+/loxfrt mice with transgenic Sox2-Cre
mice. The resulting Cpeb3frt allele includes a gene-trap lacZ cassette and a premature termination codon (PTC) and is
considered a CPEB3 KO allele. hBactP, promotor. Bgal, B-galactosidase. Neo, neomycin. IRES, internal ribosome entry site.
SA, splicing acceptor. pA, polyA sequence. (B) Southern blot of selected ES clones that underwent HR. DNA was digested
with the indicated restriction enzymes and hybridized with a Neo probe. Images courtesy of Almudena Ferndndez,
CIBERER-ISCIII at CNB-CSIC. (C) PCR amplification of WT (lower band) and FRT (upper band) Cpeb3 alleles. (D)
Western blot detection of CPEB3 and Vinculin (control) in testis and liver protein extracts obtained from WT and CPEB3
KO mice.
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Supplementary Fig. 4. Mammary whole mounts and and FACS plots for CPEB1-4 KO models. (A) Example of an
output image from AngioTool software (see Methods). (B) Whole images from the onsets shown in Fig.1C. (C) Whole
images from the onsets shown in Fig.1D. (D) Representative FACS plots for the indicated genotypes gated on lineage
negative cells. Lum, luminal (EpCAM™" CD49f°"). Myo,myoepithelial (EpCAM"" CD49f"""). Related to Fig.1F.
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Supplementary Fig. 5. Microarray analysis for epithelial populations in WT and CPEB2-KO mice. (A) Mean
expression of probes for markers of the various epithelial cell populations. (B) Principal Component Analysis (PCA) of the
microarray hybridization results and the computed centroid distances and dispersion (see Methods). Pre-ranked GSEA
graphical output for the enrichment in DP«o of the DPwtDOWN signature by p-value (C) or DPwrUP signature by FDR (D).

Enrichment plot: DPYTUP by FDR
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(C) and (D) FDR g-value=0.000. NES, normalized enriched score.
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Supplementary Fig. 6. Proliferation in WT and CPEB2 KO mammary glands. (A) Heatmap illustrating expression
changes from the microarray data. Specifically, hallmark gene sets (Broad Institute) downregulated in CPEB2 KO compared
to WT are shown. FDR+/*/**/*** for 0.25/0.10/0.05/0.01. (B) Representative fields of cleaved caspase-3 staining in the
adult mammary glands with the indicated genotype. Scale bar, 50 um. (C) mRNA levels in total adult mammary gland tissue
normalized to Gapdh and to WT value (n=6). *P < 0.05 b y two-tailed Student’s t-test. (D) Automatic quantification of ER-
positive in WT and KO®*** mammary ducts (n=4). **P<0.01 by Mann-Whitney test. (E) Automatic quantification of
PR-positive in WT K and KO mammary ducts (n=4). **P<0.01 by Mann-Whitney test.
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Supplementary Figure 7. Expression of CPEB1-4 in epithelial populations and RIP-Seq targets. (A) mMRNA levels of
the CPEB-family members in the different mammary epithelial subpopulation-s normalized by Gapdh. (B) Snapshots of
RIP-Seq data for several 3°UTRs depicting normalized RIP-seq coverage for Inputs (blue), WT RIP (green) and KO RIP
(red). Image obtained using the integrated genomic viewer (IGV). Data range: 0-7 arbitrary units for all 3°UTRs except for
Tnfsf11 (Rankl mRNA) (data range: 0-1 arbritary units).
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Supplementary Figure 8. CPEB2-targets in the MECs. (A) Schematic representation of selected 3’ UTRs in mouse and
human. Canonical cytoplasmic polyadenylation elements (CPEs) and polyadenylation signals (PAS) are depicted, as well as
the distance in nucleotides (nt) between these motifs. (B) Western blot image for CPEB2, CREBI, CyclinD1 and a-tubulin
(loading control) in WT and KO MECs. (C) Representative images of RANKL-positive cells by IHC in lymph nodes, same
samples as in Figure 4F are shown.
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Supplementary Fig. 9. Extended data for CPEB2 and breast cancer. (A) Violin plots for mean RNA expression of
CPEB2 in the PAM50 subtypes in tumour and adjacent normal tissue, analysis with TCGA dataset (Genomic Data
Commons); P-values for Wald test indicated in the graph (n=860). (B) Association between tumour size and CPEB2
expression in Metabric dataset, Wald test (n=1954). (C) Distribution of histological lesions in WT < (n=9) and CPEB2
KOk (n=9) classified according to Annapolis nomenclature. MIN, mammary intra-epithelial neoplasia. (D) Images from
ER-positive cells in WT€* and CPEB2 KO®*™ tumours. (E) Kaplan-Meier survival curves for Basal-like Bca patients.

Statistics by Cox test; HR(< 10y) = 0.42; P = 0.03223; n = 228.
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Supplementary Fig. 10
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Supplementary Fig. 10. Characterization of CPEB2 KD cell lines. (A) Quantification of CPEB2 expression levels by RT-
gPCR in ZR-75 cells infected with sh_Control, sh_CPEB2 #28 or #78 lentiviral plasmids to downregulate the expression of
the gene. B2M was used as endogenous control. Statistics by two-tailed unpaired Student’s t-test, ****P < 0.0001. (B)
Percentage of early apoptotic Anexin V-positive cells (grey bars) and dead cells in 75 sh_Control, sh_CPEB2 downregulated
cells. (C) Western blot imae for RANKL and PDI (an ER marker used as control) and normalized quantification in
membrane-enriched lysates of ZR-75 cells infected with sh_Control, shCPEB2#28 or shCPEB2#78. (D) Images from
RANKL IHC in cell pellets from ZR-75 cells infected with sh_Control, shCPEB2#28 or shCPEB2#78. Scale bar, 25 um.
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Supplementary Fig. 11. CPEB2 deficiency could be compensated by CPEB4 during lactation. (A) Mean mRNA
expression of Ccndl in the epithelial subpopulations (microarray data in virgin mammary glands). (B) Mammary
wholemounts from WT and CPEB2 KO females at mid-pregnancy. (C) Weight of heterozygous pups nursed by WT or
CPEB2 KO dams. (D) mRNA levels of Cpebl-4 normalized to Gapdh in whole mammary tissue in adult (n=7) or lactating

(n=2) WT and CPEB2 KO females. Statistics by two-way ANOVA, **P < 0.01, ***P < 0.001. KO.
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