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SUMMARY

Aging-associated functional decline is accompanied
by alterations in the epigenome. To explore DNA
modifications that could influence visual function
with age, we perform whole-genome bisulfite
sequencing of purified mouse rod photoreceptors
at four ages and identify 2,054 differentially methyl-
ated regions (DMRs). We detect many DMRs during
early stages of aging and in rod regulatory regions,
and some of these cluster at chromosomal hotspots,
especially on chromosome 10, which includes a
longevity interactome. Integration of methylome to
age-related transcriptome changes, chromatin
signatures, and first-order protein-protein interac-
tions uncover an enrichment of DMRs in altered
pathways that are associated with rod function, ag-
ing, and energy metabolism. In concordance, we
detect reduced basal mitochondrial respiration and
increased fatty acid dependency with retinal age in
ex vivo assays. Our study reveals age-dependent
genomic and chromatin features susceptible to
DNA methylation changes in rod photoreceptors
and identifies a link between DNA methylation and
energy metabolism in aging.

INTRODUCTION

Advanced age is characterized by progressive decline of physi-

ological functions and increased susceptibility to diseases such

as cancer, diabetes, and neurodegeneration. Healthy aging is

regulated by a combination of genetic and non-genetic factors

(Erikson et al., 2016; Kaeberlein et al., 2015). Multiple intercon-

nected endophenotypes, including mitochondrial dysfunction

and epigenomic changes, contribute to the normal aging pro-

cess (Booth and Brunet, 2016; López-Otı́n et al., 2013; Sun

et al., 2016). Genetic variations, such as those in DNA repair
This is an open access article under the CC BY-N
and insulin pathways, have been associated with lifespan differ-

ences in humans (Debrabant et al., 2014; Flachsbart et al., 2017;

Pan et al., 2016; Ziv and Hu, 2011). Lifestyle and environmental

factors, such as caloric-restricted diets and supplementation

with naturally occurring molecules, also correlate with increased

longevity in various organisms including primates (Kaeberlein

et al., 2015). Nonetheless, the response of different tissues to ag-

ing likely involves both universal and unique molecular alter-

ations for cellular and functional adaptability.

The epigenome, defined as chromatin regulatory modifica-

tions that relate to the memory of past stimuli (Corso-Dı́az

et al., 2018), is amenable to aging and environmental influences,

and could mediate physiological alterations that drive age-

related decline and disease (Pal and Tyler, 2016; Booth and

Brunet, 2016). One of the key epigenetic modifications, methyl-

ation of cytosine in the CpG deoxynucleotide context (mCpG),

is shown to frequently change with age (Day et al., 2013) and

contributes to both epigenetic drift (decreased correlation of ep-

igenomes over time) and epigenetic clock (concordance of spe-

cific CpG methylation sites to chronological age) (Jones et al.,

2015). DNAmethylation changes are predicted to mediate adap-

tations in cellular homeostasis and are likely associated with

functional decline with age. Notably, mCpG alterations have

been linked to heterochromatin loss, DNA damage, and chromo-

some instability in humans (Ciccarone et al., 2018; Rodriguez

et al., 2006). However, relevance of specific changes in CpG

methylation to aging-associated dysfunctions in different tissues

and cell types is still far from clear.

Advanced age is the primary risk factor for multifactorial com-

mon neurodegenerative diseases (Wyss-Coray, 2016; Yankner

et al., 2008), including those affecting retinal function, such as

glaucoma (Chrysostomou et al., 2010) and macular degenera-

tion (Swaroop et al., 2009). Vision decline during normal aging in-

cludes impairments in visual acuity, dark adaptation, and

contrast sensitivity (Owsley, 2016) that can be caused by alter-

ations in different retinal cell populations (Cavallotti et al.,

2004). Rod photoreceptors constitute more than 70% of retinal

cells in the human retina and are involved in dim-light vision; their

dysfunction is prominent in aging adults and is an early indicator
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of subsequent vision impairment in both inherited and aging-

associated retinal degenerative diseases (Jackson et al., 2002).

Furthermore, rods are highly vulnerable to metabolic stress

and are considered the primary drivers of age-related synaptic

remodeling in the retina (Samuel et al., 2014). Thus, elucidation

of molecular changes and biological pathways linked with aging

of rod photoreceptors would likely stimulate investigations for

preventing or delaying vision loss in aging and associated

neurodegeneration.

Advent of ‘‘omics’’ technologies has permitted delineation of

transcriptional regulatory networks, including the chromatin

landscape, that guide rod and cone photoreceptor development

(Aldiri et al., 2017; Corso-Dı́az et al., 2018; Kim et al., 2016; Mo

et al., 2016). We have previously reported aging-associated

gene expression changes in rod photoreceptors using microar-

rays (Parapuram et al., 2010). However, to date, there is no

whole-genome study of DNA methylation on a purified neuronal

cell type that incorporates multiple stages of aging. To explore

the association of DNA methylation with gene regulation during

aging, we performed genome-wide base-resolution methylome

analysis of purified mouse rod photoreceptors at four different

ages and integrated these data with transcriptome (generated

by RNA sequencing [RNA-seq]), open chromatin, and histone

modification profiles. In addition to unraveling chromatin fea-

tures and clusters of differentially methylated regions (DMRs) in

aging rods, we uncovered established and unique cellular

pathways, such as longevity and energy metabolism, which

exhibit aging-dependent progressive alterations. We also vali-

dated the impact of age on basal mitochondrial oxygen con-

sumption capacity and fatty acid dependency, and propose a

link between epigenome and energy metabolism, which can

explain, at least in part, the age-related functional decline in rods.

RESULTS

DNA Methylome Analysis Identifies Regulatory Regions
in Rod Photoreceptors
We performed whole-genome bisulfite sequencing (WGBS) of

rod photoreceptors purified from the retina of young (3-month-

old), middle-aged (12-month-old), and old (18- and 24-month-

old) male pNrl-EGFP (enhanced green fluorescent protein)

mice (Figure 1A) (n = 3 for 3, 18, and 24 months; n = 2 for

12 months). This strain expresses an EGFP under the control

of the promoter of the rod-specific gene Nrl (Akimoto et al.,

2006). We obtained a cumulative 16- to 25-fold CpG coverage

genome-wide at all ages (Table S1). In addition, we generated

RNA-seq of all time points (n = 4 for 3 months; n = 3 for 12–

24 months) and H3K27ac and H3K27me3 profiles on native

chromatin of 3-month-old rods (n = 4–6) using male mice to

examine the relevance of DNA methylation to gene regulation

(Figure 1A; Table S1). All samples showed a high degree of cor-

relation across time points (Pearson’s and Spearman’s rank cor-

relation coefficient > 0.94), although older samples were less

correlated in DNA methylation profiles (Figures S1A and S1B).

We initially focused on the analysis of 3-month rod methylome

that revealed high methylation at most CpGs, as reported for

other cell types (Figures S1C and S1D) and similar to levels

shown for mature rods and cones (Mo et al., 2016). DNA methyl-
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ation across genomic regions followed a previously described

pattern at promoters of expressed genes, which have lower

levels of methylation compared with unexpressed genes (Fig-

ure 1B). Even though rods represent about 75% of retinal cells,

this phenomenon is more robust in flow-sorted rods than in the

whole retina, highlighting the importance of using purified photo-

receptors (see Figure S1E for an example of thePde6a promoter,

where lower levels of methylation are detected in rods compared

with whole retina). Methylation levels at different genomic

contexts were also consistent among cell types (Figure S1F).

We then segmented the genome into unmethylated regions

(UMRs; <10% average methylation) and low methylated regions

(LMRs; 10%–50% average) in the pooled 3-month samples us-

ing a Hidden Markov model (Burger et al., 2013) and mapped

UMRs and LMRs in different genomic regions (Figure 1C). We

detected enrichment of UMRs in promoters and intronic regions,

whereas LMRs were over-represented in intergenic and intronic

regions, reflecting their potential role in enhancers (Burger et al.,

2013).We then integratedmethylation levels within these regions

to RNA-seq and histone H3K27ac data that we generated from

3-month-old rods, together with published ATAC-seq profiles

(Mo et al., 2016). Rod chromatin appears to be highly open

and active in UMRs and less open, although higher than in

random regions, in LMRs (Figure 1D). Notably, consensus bind-

ing sites for rod transcription factors are enriched in UMRs and

LMRs, in agreement with their role in rod gene regulation (Fig-

ure S1G). As an example, UMRs and LMRs at the rod photo-

transduction gene Pde6a show chromatin immunoprecipitation

sequencing (ChIP-seq) peaks of rod transcription factors NRL

and CRX (Corbo et al., 2010; Hao et al., 2012), whereas the

cone-specific gene Pde6c that shows very low expression in

rods reveals an overlap of LMRs with small ATAC-seq peaks

and the inhibitory histone mark H3K27me3 (Figure 1E). Overall,

these data demonstrate that DNA methylome profiles can iden-

tify regulatory regions critical for rod-specific transcriptional

programs.

Age-Related Changes in DNA Methylation Are
Distributed Non-randomly in the Genome
Evaluation of global methylation patterns of rods at different

stages of aging revealed high correlation among different sam-

ples but a somewhat higher increase in variability in older sam-

ples (Figure S1A); however, methylation levels at different

genomic elements appeared to be similar (Figure S2A). In addi-

tion, epigenetic clocks trained on other mouse tissues (Meer

et al., 2018; Stubbs et al., 2017) did not appear to work on

isolated rod photoreceptors because the correlation between

chronological and epigenetic age was low and not statistically

significant (Figures S2B and S2C). Therefore, to identify non-sto-

chastic changes in methylation during aging, we profiled three

independent samples per age (3 versus 24 months) and used

the package BSmooth, which performs a t test on each CpG

to identify regions containing differentially methylated neigh-

boring CpGs (Hansen et al., 2012). By comparing the 3- and

24-month samples and using stringent criteria (methylation dif-

ference > 10%, areaStat > 20, t-statistic quantile cutoff of

0.001), we identified 2,054 DMRs (Table S2; see Figure 2A for

examples of three DMRs identified in Dnajb12); of these, 1,037



Figure 1. Epigenomic Characteristics of Young Rod Photoreceptors
(A) Outline of the experimental paradigm. Integrative analysis of base-resolution DNA methylation and RNA-seq profiles from young (3-month-old), middle-aged

(12-month-old), and old (18- and 24-month-old) rods with chromatin accessibility and histone marks from 3-month-old rods.

(B) DNA methylation levels around the TSS of expressed and unexpressed genes in 3-month-old rods.

(C) Distribution of UMRs and LMRs across various genomic regions of 3-month-old rods.

(D) Normalized ATAC-seq and H3K27ac read numbers over total region size of UMRs, LMRs, and random genomic regions of similar size in 3-month-old rods.

(E) Examples of UMRs (pink) and LMRs (purple) in Pde6a and Pde6c. CRX and NRL ChIP-seq peaks are shown in green. ATAC-seq peaks overlap with CRX and

NRL binding in both UMRs and LMRs within the rod-specific Pde6a gene. CpG methylation, ATAC-seq, H3K27ac, H3K27me3, and RNA-seq profiles are shown

for the 3-month time point over the entire gene and its surroundings.

DMR, differentially methylated region; LMR, low methylated region; TF, transcription factor; TSS, transcription start site; UMR, unmethylated region.
DMRs were hypomethylated and 1,017 hypermethylated. A ma-

jority of methylation changes were modest (10%–20%) and

occurred within 1-kb regions (Figures S2D and S2E).

The DMRs associated with rod aging were not evenly distrib-

uted across the genome and revealed two distinct characteris-

tics. First, the majority of DMRs localized to coding regions,

especially introns (mCpG loss = 479 [45%], gain = 427 [51%]),
with less than 6% localizing in promoters (0–1 kb from transcrip-

tion start site [TSS]; mCpG loss = 52, mCpG gain = 59) (Fig-

ure 2B). Nonetheless, DMRs were significantly enriched (false

discovery rate [FDR] % 0.05) for promoters, introns, and CpG

shore regions, and were depleted in CpG islands, repetitive ele-

ments, and intergenic regions (Figures 2B and S2F). Second,

DMRs clustered in 13 chromosomal regions, based on the higher
Cell Reports 31, 107525, April 21, 2020 3
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density of DMRscomparedwith the genomic average (Figure 2C;

Figures S2G and S3; Table S3). To identify statistically significant

enriched regions (hotspots) with high density of DMRs, taking

into account the CpG context and gene density, we used an al-

gorithm that implements a generalized linear modeling with local

CpG content and gene density as covariates. The probability of

observing the actual number of DMRswas determined within the

hotspot using an FDR of 0.01 and focused on regions longer than

1 Mb. Notably, a cluster on chromosome 14 contains the Nrl

gene, which controls rod cell fate and function (Mears et al.,

2001; Figure S3). Another cluster on chromosome 6 includes

Hk2, which encodes a key enzyme for photoreceptor function

(Petit et al., 2018; Figure S3).

Importantly, 8 of the 13 DMR hotspots were located on chro-

mosome 10 (Figure 2C). One of these hotspots was centered on

the Foxo3 gene (Figure 2C), which is proposed to function as part

of a longevity interactome, including cell survival genes looping

together over a 7-Mb region in humans (Donlon et al., 2017),

and belongs to a topological-associated domain (TAD) in the

retina (Norrie et al., 2019). Notably, we observed a DMR in the

gene body of Foxo3 itself (Figure 2E). Within this hotspot, we

identified altered expression of several genes (Figure 2C; blue,

downregulated; red, upregulated), including Prdm1, which is

crucial for rod development (Brzezinski et al., 2010). A DMR in

the gene body of Prdm1 is shown in Figure 2F. Other DMR hot-

spots on chromosome 10 harbored genes associated with cell

survival and rod function; e.g., hotspot h contains the autophagy

gene Pawr and several synaptic genes (Gene Ontology [GO]:

0097060; p = 0.04). Differentially expressed genes in this region

include Atxn7l3b and Cct2 (Table S2), defects in these can be

associated with retinal degeneration (Minegishi et al., 2016;

Tan et al., 2014).

To assess whether the identified DMR hotspots are unique to

rod aging, we re-analyzed five published aging methylomes of

four different cell types (Avrahami et al., 2015; Cole et al.,

2017; Lister et al., 2013). We observed chromosomal hotspots

of DMRs in other aging cell types with varying degree of overlap

with rods (Figures 2C and 2D; Figure S4; Table S3). The hotspot h

on chromosome 10 and the hotspot on chromosome 2 contain-

ing the mitochondrial ATP synthase Atp5g3 are shared with

neuronal and non-neuronal cells from the frontal cortex (Figures

2C and 2D, highlighted in yellow; Figure S4; Table S3). Similarly,

hotspots e, f, and g on chromosome 10 are shared with non-

neuronal cells from the frontal cortex (Figure 2C). Interestingly,
Figure 2. Age-Dependent Differential Methylation Accumulates in Chr

(A) Example of DMRs with loss and gain of DNA methylation (green bars) in Dn

samples are shown in the zoomed-in regions (n = 3 for 3 and 24 months).

(B) Distribution of DMRs that lose or gain DNA methylation with age in distinct g

(C) Idiogram of chromosome 10 showing hotspots of clustered DMRs (colored bo

non-neuronal (NN, brown shadow) cell populations. Frontal cortex profiles were o

blue) and expressed genes >10 counts per million (CPM) (darker blue) in rod

respectively. CpG density is shown in purple. A zoom-in of hotspot c is presented

transcriptional unit centered in Foxo3 (Donlon et al., 2017). Downregulated and up

are shown in black. Topological-associated domains (TADs) (Norrie et al., 2019)

(D) Circos plot showing the density of DMRs for rods and N and NN cells from the

among all cell types.

(E and F) Examples of DMRs (green) in (E) Foxo3 and (F)Prdm1 genes. Methylation

H3K27ac, and H3K27me3 profiles are shown for the 3-month time point over the
the high density of clusters on chromosome 10 seems to be

unique to rod cells and was not influenced by CpG coverage.

Overall, our results show that age-related DNA methylation

changes are non-random and enriched at specific genomic ele-

ments and chromosomal regions.

Age-Related DMRs Occur in Candidate Rod Regulatory
Regions
Our analysis revealed that most DMRs were present in and

around UMRs and LMRs (UMRs = 179, LMRs = 986), and 733

overlapped with ATAC-seq peaks (±<500 bp from peak) (Fig-

ure 3A; Table S2). Gain of DNA methylation was frequently

observed within regions spanning LMRs (Figure 3A). In many in-

stances, DMRs seem to occur at open chromatin boundaries

(Figures 3A–3C), which indicate regions involved in the mainte-

nance of open chromatin domains (Chai et al., 2013). Our results

therefore suggest that mechanisms that support chromatin sta-

bility at regulatory elements may be perturbed with age.

To evaluate whether DMRs were present in active or

repressed regulatory regions, we studied the occupancy of

H3K27ac, which is associated with active regulatory elements

(n = 4), and H3K27me3, which is associated with repressed or

poised regions (Young et al., 2011) (n = 6), on native chromatin

by Cleavage Under Targets and Release Using Nuclease (CU-

T&RUN) (Skene and Henikoff, 2017). We noted that most inter-

genic DMRs overlapping with assay for transposase-accessible

chromatin using sequencing (ATAC-seq) peaks contained signa-

tures of H3K27ac, and that only a small number colocalized with

H3K27me3 (Figure 3A). In concordance, DMRswere enriched for

motifs of key rod transcription factors such as NRL and RORb

(Figure 3D).

Aging Progression in Rods Correlates to Distinct
Patterns of DMRs
To identify pathways susceptible to aging-related epigenomic

changes, we performed functional annotation of genes associ-

ated with DMRs. Intragenic DMRs could be easily assigned to

the associated overlapping gene. For intergenic DMRs, we first

identified those that intersected UMRs, LMRs, or open chro-

matin (<500 bp from ATAC-seq peak) as regulatory DMRs

(rDMRs; 68% of intergenic DMRs) (Figure 3E). Expressed genes

within 100 kb of rDMRs were selected, resulting in 39% func-

tional annotation of all intergenic DMRs. We noted that DMRs

are harbored by key genes involved in aging (GeneAge
omosome 10

ajb12 identified by comparing 3 versus 24 months with BSmooth. Individual

enomic regions. LINE(L), SINE(S).

xes) in rods (blue shadows) and frontal cortex of neuronal (N, red shadow) and

btained from Lister et al. (2013). Gene density is also shown for all genes (light

s. Upregulated and downregulated genes are shown as red and blue dots,

. This region corresponds to a longevity interactome proposed to function as a

regulated genes are shown in blue and red, respectively. Genes with no change

are shown for rods, whole retina, and frontal cortex.

frontal cortex. Highlighted in yellow are regions with shared clusters of DMRs

levels at the DMRare shown for 3 and 24months. CpGmethylation, ATAC-seq,

gene and its surroundings.
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Figure 3. Age-Related DMRs Dominate in Rod Regulatory Regions

(A) Heatmap showing chromatin features over a 1-kb region centered on intragenic or intergenic DMRs. DMRs often localize to open chromatin boundaries and

harbor marks of active (H3K27ac) or repressed/poised (H3K27me3) regulatory elements. Color scale bar represents methylation levels in young (3-month-old)

and old (24-month-old) mice, with red being low and yellow being high. Scale for ATAC-seq and histone modifications represents read density, with blue and

green being high and white being low in 2- to 3-month-old rods (n = 6 for H3K27me3 and n = 4 for H3K27ac). ATAC-seq data were obtained fromMo et al. (2016).

The arrow indicates an example of DMRs located at boundaries of ATAC-seq peaks.

(B) Examples of DMRs at boundary regions of ATAC-seq peaks in Osbpl8 or within ATAC-seq peaks in Lipo1.

(C) Distance of DMRs from ATAC-seq peaks. DMRs shown as ‘‘within’’ represent DMRs completely contained in ATAC-seq peaks.

(D) TF motifs enriched in DMRs. Top 20% enriched TFs are shown. p % 0.01.

(E) Euler diagrams showing the numbers of intergenic DMRs overlapping with UMRs, LMRs, and ATAC-seq peaks (±<500 bp from ATAC-seq peak), herein

referred to as regulatory DMRs.
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Figure 4. Aging Progression in Rods Correlates with Distinct Patterns of DMRs

(A) Bar plot showing the number of DMR-associated genes related to aging (as reported in the GeneAge database: https://genomics.senescence.info/genes/)

and retinal disease (as reported in the RetNet database: https://sph.uth.edu/retnet/).

(B) Examples of DMRs present in Irs1, Bbs2, and Lrrn3. Methylation levels at DMRs are shown for 3 and 24 months. CpG methylation, ATAC-seq, H3K27ac, and

H3K27me3 profiles are shown for the 3-month time point over the respective genes and their surroundings.

(C) GO enrichment of genes associated with age-related DMRs.

(D) DMRs in Pcdh15 similar to those reported in (B).

(E) Age-related rod DMRs showing early, progressive, and late change patterns manually grouped from unsupervised clustering analysis (see Figure S5A).

Examples of genes enriched in different pathways after GO analysis using gProfilerR are shown for each pattern of change (see Table S5).
database: https://genomics.senescence.info/genes/, 39 genes,

10%), retinal disease (RetNet database: https://sph.uth.edu/

retnet/), 33 genes, 9.5%) (Figure 4A; Table S4), and those asso-
ciated with environmental factors. These include genes involved

in longevity, such as Irs1 and Kl; several genes related to cilia

maintenance and retinal dystrophy, such as Bbip1, Bbs2,
Cell Reports 31, 107525, April 21, 2020 7
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Figure 5. Age-Related Differential Methylation Associates with Expression Changes of Genes Belonging to Aging Pathways

(A) KEGG and Reactome pathways with a higher proportion of DMRs than global average (DMR/protein ratio > 0.08, FDR % 0.1) (see Table S6). Only pathways

with at least two DMRs were included. This analysis resulted in 88 pathways summarized using a pathway network with ClueGO for gene similarity calculations

based on the entire pathway gene list. Pathways with a kappa score (gene similarity score) of 0.2 or greater are connected. Darker lines represent higher gene

similarity scores. Darker node color indicates a higher DMR content.

(legend continued on next page)
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Bbs7, Bbs10, Ift172, and sdccag8; and a gene highly associated

with cigarette smoking, Lrrn3 (Guida et al., 2015; Table S4). Fig-

ure 4B shows examples of DMRs in candidate regulatory regions

of Irs1 (poised enhancer), Bbs2 (LMR), and Lrrn3 (LMR).

To date, there are no available studies on DNA methylation al-

terations in the aging retina. However, an analysis of DNA

methylation changes in the retinal pigment epithelium (RPE) of

individuals with age-associated macular degeneration (AMD)

identified hypermethylation at the promoter of glutathione

S-transferase 1 (GSTM1) and associated gene expression

changes in GSTM1 and GSTM5 involved in detoxification path-

ways (Hunter et al., 2012). Notably, the promoters of the

Gstm2, Gstm5, and Gstm6 genes were all hypermethylated

with age in our study (Table S2), suggesting that Gstm genes

are highly prone to epigenetic changes in response to homeo-

static imbalance in the retina. A global analysis of genes with

DNA methylation changes by GO revealed enrichment of genes

linked to both intragenic and rDMRs in neuronal function (Fig-

ure 4C; Table S5); Figure 4D shows an example of two DMRs

harboring H3K27ac in the neuronal gene Pcdh15, which is asso-

ciated with Usher syndrome (Fuster-Garcı́a et al., 2018).

To examine whether DNA methylation changes could be

correlated to specific stages in aging, we performed unsuper-

vised cluster analysis on all DMRs and identified 30 patterns (Fig-

ure S5A) that could be categorized into early, progressive, and

late changes (Figure 4E). Surprisingly, most DMRs were de-

tected as early as 12 months regardless of the progression of

the change (Figure 4E; Figure S5A). Pathway enrichment anal-

ysis using g:Profiler revealed that early and progressive DNA

methylation changes were highly associated with neuronal

function (Table S5). To examine whether specific differential

methylation patterns could be related to rod function, we then

evaluated only the DMRs associated with expressed genes.

We observed an enrichment of carbohydrate metabolism genes

in early DMRs, whereas progressive DMRs included DNA dam-

age and splicing (Figure 4E; Table S5). Insulin/mammalian target

of rapamycin (mTOR), neurotrophin signaling, and longevity

pathways were enriched in late DMRs (Figure 4E; Table S5).

Several of the carbohydrate metabolism genes in the early cate-

gory, e.g., St3gal1 andHexb, appear to encode cell-surface pro-

teins, and a few of these are involved in ganglioside biosynthesis

(Table S5). Thus, early methylation changes may influence cell

adhesion and/or cell-cell communication.

Integration of DMRs with Transcriptome Reveals
Dysregulation of Both Established and Unique Aging
Pathways in Rods
To assess the potential relationship of DNAmethylation changes

with gene regulation, we performed RNA-seq analysis of purified

rods during aging (Table S1; Figure S1B, 3 months: n = 4,

12–24 months: n = 3) and identified 445 differentially expressed

genes (F test, absolute fold change R 1.2, FDR % 0.1) associ-

ated with DMRs. Validation of a subset of these genes was per-
(B) Sub-network showing the energy metabolism category from (A) (see Table

of connections. Node color represents upregulated (red) and downregulate

represents genes with DMRs that are detected early (triangle) or late (hexagon),

of change.
formed in sorted rods from a separate group of individuals (Fig-

ure S2H). As observed in other genome-wide methylation

datasets (Cole et al., 2017; Hahn et al., 2017), the direction of

the change in methylation exhibited low correlation with the tran-

scriptional change in aging rods, yet alterations in gene body

methylation were more often linked to upregulation of gene

expression (Figures S5B and S5C). To capture the biological sig-

nificance of DNA methylation changes in rods, we then per-

formed an integrated network analysis (Figure S5D) using the

proteins encoded by 317 differentially expressed DMR-associ-

ated genes that had rod-expressed first-degree interactors

from STRING data: https://string-db.org/ (Szklarczyk et al.,

2017; see Table S6 for information on the network node and

edge list). The resulting network of 3,958 proteins included those

encoded by 622 DMR-associated genes and revealed twomajor

modules, both associated with proteostasis: a downregulated

hub containing highly connected proteins involved in translation,

and an upregulated hub including proteins involved in ubiquityla-

tion and protein degradation (Figure S5D). We further evaluated

pathways with a higher proportion of proteins encoded by DMR-

associated genes compared with the whole network, which ex-

hibited a DMR/protein ratio of 0.08. Enrichment analysis for a

DMR/protein ratio >0.08 and presence of at least two DMRs

identified 88 Reactome or Kyoto Encyclopedia of Genes andGe-

nomes (KEGG) pathways (at FDR % 0.1), corresponding to pro-

cesses such as proteostasis, energy metabolism, cell communi-

cation, and DNA repair (Figure 5A; Table S6). We detected the

highest representation of proteins encoded by DMR-associated

genes in terms corresponding to carbohydrate metabolism,

mitogen-activated protein kinase (MAPK) signaling, and ribo-

some. In addition to many of these established aging-related

pathways, we identified rod-specific aging pathways that

include the LKB1-AMPK axis (Samuel et al., 2014), synaptic

function, and phototransduction. Thus, altered DNA methylation

in rods could be linked to aging hallmarks, as well as specific

pathways.

Aging Rods Show Altered Energy Metabolism
We then specifically examined age-related changes in energy

metabolism because of its prominent role in photoreceptor ho-

meostasis and enrichment in our network analysis (see Fig-

ure 5A). A subnetwork containing all proteins related to energy

metabolism-specific terms, including mitochondrial oxidative

phosphorylation (OXPHOS), glycolysis, and insulin signaling, is

shown in Figure 5B (see Table S6 for a full list of terms). Impor-

tantly, key genes in mitochondrial respiratory chain subunits

(complexes I, III, IV, and V) and Acadm, essential for fatty acid

beta oxidation, harbored DMRs (Figures 5B and 6A). In addition,

we observed a global downregulation of genes related to

glucose metabolism, OXPHOS, and tricarboxylic acid (TCA) cy-

cle (Figure S6A), as well as upregulation of genes related to fatty

acid metabolism, insulin signaling, and glycogen synthesis (Fig-

ure 5B; Figure S6A).
S6 for a list of the terms used). The size of the node represents the number

d (blue) genes. Black borders represent genes with DMRs. Node shape

or that change progressively (square). Circular nodes indicate other patterns
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Figure 6. Age-Related Differential Methyl-

ation Associates with Alterations in Energy

Metabolism

(A) A schematic depicting genes associated with

DMRs involved in mitochondrial oxidation. Blue and

red represent downregulated and upregulated

genes, respectively (absolute fold change [FC] R

1.2, FDR % 0.1).

(B) OCR traces from young (3-month-old), middle-

aged (12-month-old), and old (24-month-old) Nrlp-

EGFP mouse retinal punches (n = 11 punches per

time point from three individuals). Arrows indicate

the injection of a mitochondrial uncoupler (BAM15)

or complex I inhibitor (rotenone) in the sample well.

Error bars are ± SEM.

(C) A lower basal respiration and a larger mito-

chondrial reserve capacity can be observed in older

mice as defined by 100 3 (maximal respiration �
basal respiration)/maximal respiration. The mito-

chondrial reserve capacity was compared by one-

way ANOVA (post-hoc Tukey 3M vs 24M, p = 0.004).

Error bars are ± SEM.

(D) OCR traces from young (4-month-old) and old

(20-month-old) Nrlp-EGFP mouse retinal punches

after adding etomoxir (8 mM) (n = 7 punches for

4 months; n = 9 punches for 20 months from two

individuals each). Error bars are ± SEM.

(E) OCR decrease compared with baseline after

adding different concentrations of etomoxir (n = 7–9

punches per condition from two individuals each).

OCR decrease was compared by Student’s t test.

Error bars are ± SEM. p = 0.8 (vehicle), p = 0.04

(4 mM), p = 0.001 (8 mM), p = 0.07 (20 mM).

BAM15, (2-fluorophenyl)(6-[(2-fluorophenyl)amino]

(1,2,5-oxadiazolo[3,4-e]pyrazin-5-yl))amine; FA, fatty

acid; Glu, glucose; OCR, oxygen consumption rate;

OXPHOS, oxidative phosphorylation.
To directly assess whether these alterations have any func-

tional consequence, we measured mitochondrial respiration in

mouse retina punches ex vivo using the XF analyzer (Seahorse

Bioscience) microplate-based assay. As shown earlier (Koora-

gayala et al., 2015), the mature 3-month retina exhibited rela-

tively low (�15%) mitochondrial reserve capacity, which primar-

ily indicated a very high demand for ATP from mitochondrial

OXPHOS that was close to themaximal possible rate of ATP syn-

thesis; however, basal respiration was reduced and retinal

reserve capacity increased to �30% at 12 and 24 months of

age, suggesting a lower energy consumption (and therefore

lower ATP requirement from OXPHOS) with age (Figures 6B

and 6C). Becausemaximal mitochondrial respiration is expected

to reflect the content of OXPHOS enzymes, normalization to cy-

tochrome a content resulted in the same peak respiration values

for all three ages. Unnormalized maximal respiratory rates (data

not shown) showed a decrease of �12% in maximal respiration

between 3 and 24 months, suggesting only a slight decrease in

the content of OXPHOS complexes with age. Indeed, when

analyzing wild-type mouse retinas not expressing GFP (Figures

S6B and S6C), a similar pattern was observed in which only

basal (but not maximal) respiration decreased, resulting in a

higher mitochondrial reserve capacity. Furthermore, higher
10 Cell Reports 31, 107525, April 21, 2020
expression of a subset of genes related to fatty acid detoxifica-

tion and beta oxidation in rods (Figures 6A and S6A) indicated

an increased utilization of fatty acids as a source of energy at

an older age. We thus tested the dependency of fatty acid as a

fuel for the TCA cycle by blocking the transport of endogenous

long-chain fatty acids into the mitochondria using etomoxir

(ETO), a specific inhibitor of carnitine palmitoyl-transferase 1A

(Cpt1a). Older retinas displayed a dose-dependent reduction in

oxygen consumption rate (OCR) upon ETO treatment, and thus

a significant dependency on fatty acid as a fuel source, whereas

younger retinas did not respond to the drug at lower doses (Fig-

ures 6D, 6E, and S6D–S6F). Taken together, these data suggest

that older rods display an altered oxidative metabolism linked to

DNA methylation changes.

DISCUSSION

Molecular and functional alterations duringmammalian aging are

progressive, subtle, stochastic, and thereby difficult to dissect.

Transcriptomic studies have begun to elucidate global and tis-

sue-specific biological pathways that can in turn be correlated

to physiological changes in aging (Benayoun et al., 2019; Para-

puram et al., 2010; Park et al., 2009; Stegeman and Weake,



2017). The impact of aging on organismal, tissue, or cellular func-

tions may be largely mediated by changes in the epigenome

(Booth and Brunet, 2016); however, most genome-wide epige-

netic studies have used tissues with mixed cell populations

that could mask cell-type-specific changes. As of yet, no

whole-genome DNA methylation study with nucleotide resolu-

tion has been performed in purified sensory neurons at multiple

stages of aging. Here, we report genome-wide profiles of DNA

methylation in purified rod photoreceptors at four stages of aging

of the mouse retina and correlate aging DMRs to gene expres-

sion changes and biological pathways, which in turn might be

relevant for aging-associated retinal dysfunction. Through inte-

gration of different datasets, our studies have uncovered a

crosstalk between epigenetic alterations and aging hallmarks,

highlighting a link between DNA methylation and rod photore-

ceptor metabolism.

The previously reported multi-tissue epigenetic clocks (Meer

et al., 2018; Stubbs et al., 2017) were trained on a limited number

of tissues and did not apply to rod photoreceptors, possibly

because of CpGs with rod-specific methylation levels. Alterna-

tively, lower coverage of some CpG clock sites in our WGBS

data could lead to discordant values. We note that DNA arrays

and reduced representation bisulfite sequencing (RRBS)

methods employed to develop epigenetic clocks and common

methylation screenings do not cover most of the cell-type-spe-

cific enhancers, which are usually located in regions of low

CpG density (Stadler et al., 2011).

DNAmethylation changes are strongly associated with biolog-

ical age, but we have limited understanding of how these alter-

ations are correlated with cellular function. Some WGBS studies

have shown that DNA methylation changes in normal aging cells

aremodest and can occur at cell-type-specific regulatory regions

(Cole et al., 2017; Sun et al., 2014), and unlike in senescent and

cancer cells (Cruickshanks et al., 2013), may not affect the integ-

rity of heterochromatic domains. Epigenetic changes at distal

regulatory elements have been reported in liver (Cole et al.,

2017) and pancreatic beta cells during aging (Avrahami et al.,

2015). Our genome-wide profiling demonstrated that age-related

DMRs are localized in regions of lowermethylation levels and en-

riched in rod-specific regulatory factors, and thus epigenomic al-

terations associated with age may represent aberrations in strin-

gently controlled transcriptional programs required for rod

homeostasis. Importantly, DNA methylation changes often over-

lapped with boundaries of open chromatin peaks in our study.

We can therefore hypothesize that epigenomic alterations during

rod aging can modulate boundaries of accessible chromatin

regions and impact finely tuned gene expression patterns, as re-

ported previously in studies on yeast (Chai et al., 2013).

An intriguing observation in our study is that aging-related

DNA methylation changes in mouse rods aggregated at specific

chromosomal clusters or hotspots, and that many hotspots ap-

peared to be unique to rods. In addition to the hotspot on chro-

mosome 14 harboring the rod differentiation factor Nrl, 1 of the 8

DMR hotspots on chromosome 10 is centered on Foxo3 and

localized in a syntenic 7-Mb region involved in longevity (Donlon

et al., 2017). Variations at the human Foxo3 locus are suggested

to affect chromatin looping and the response of interacting

genes to oxidative stress (Donlon et al., 2017). We also identified
a DMR in Foxo3 itself, suggesting that epigenomic changes in

rods, including those driven by UV or oxidative stress, could in-

fluence the stability of this longevity locus. Indeed, one of the

genes within this locus, Prdm1, which is associated with stabili-

zation of photoreceptor cell fate (Brzezinski et al., 2010), was

differentially expressed with aging in rods. Other chromosomal

hotspots are also syntenic with human regions susceptible to

disease. For example, hotspot b in Figure 2C is syntenic with hu-

man 6q22, which is associated with intellectual disability (Mack-

enroth et al., 2015) and cancer (Kirchhoff et al., 2009). Hotspot h,

syntenic to human 12q14-21, is enriched in synaptic genes and

is highly unstable in humans; deletions in this region cause neu-

rodevelopmental disorders and cancer (Andrieux et al., 2002;

Rajakulendran et al., 2013; Schneider et al., 2003). In addition,

Atxn7l3b and Cct2 genes, which are located in hotspot h, were

dysregulated with age and carry mutations associated with

retinal degeneration (Minegishi et al., 2016; Tan et al., 2014).

Some of the hotspots located in the distal region of chromosome

10, including hotspot h, are shared with other neural cell types,

suggesting that DNA methylation can accumulate in regions

involved in cell-type-specific functions. We propose that DMR

hotspots represent transcriptional hubs that accumulate epige-

nomic changes with age and modulate responses to stressors,

as proposed for the longevity interactome (Donlon et al., 2017).

Integration of DMRs with RNA-seq data and subsequent

network analyses revealed dysregulation of both established

and rod-specific biological pathways. Notably, 19.8% of rod ag-

ing DMRs are associated with subtle but significant changes in

gene expression, a higher association than previously observed

during aging in whole tissues (Cole et al., 2017; Hahn et al., 2017;

Yuan et al., 2015). The most connected pathways identified by

protein network analysis represent genes involved in known

altered aging pathways, such as metabolism of carbohydrates,

MAPK, and proteostasis. Notably, we detected decreased

expression of genes related to protein translation and increased

expression in those related to protein degradation, a phenome-

non observed in various aging organisms (López-Otı́n et al.,

2013) and linked to DNA methylation changes in our study.

Given the high energy requirements and metabolic activity in

photoreceptors, we were specifically attracted by DMRs and

the correspondingly reduced expression of genes belonging to

glycolysis and mitochondrial respiration during rod aging. We

detected methylation changes in genes related to glucose meta-

bolism and those related to longevity during late stages of rod

aging, indicating their contribution to age-related disease sus-

ceptibility. Interestingly, DNA methylation changes in Irs1, a

part of insulin signaling upstream of glucose metabolism path-

ways, occurred early in the aging process. Aerobic glycolysis

is uniquely critical for maintenance of rod photoreceptors (Chin-

chore et al., 2017; Hurley et al., 2015). Outer segments of photo-

receptors become shorter with age (Cunea and Jeffery, 2007),

and thus whether reduced aerobic glycolysis is correlated with

this aging-related phenotype requires further exploration.

Notably, Hk2, encoding an enzyme crucial for the first step of

glycolysis and rod functioning (Petit et al., 2018), was located

within a DMR hotspot in addition to harboring a DMR itself, sug-

gesting that Hk2 may be highly susceptible to epigenomic

changes that could contribute to its dysregulation.
Cell Reports 31, 107525, April 21, 2020 11



In our study, alterations in mitochondrial oxidative metabolism

were revealed by age-related changes in both DNA methylation

and expression of genes associated with mitochondrial respira-

tory chain and beta oxidation of fatty acids. These changes were

consistent with our ex vivo measurements showing an increased

mitochondrial reservecapacity and fatty aciddependency.Our re-

sults thus suggest that changes in age-related DNA methylation

are linked to reducedmitochondrial respiration and increased reli-

ance of beta oxidation with age, and points to alterations in lipid

homeostasis. In concordance, we found that fatty acid degrada-

tion and glycosphingolipid biosynthesis pathways were enriched

inourprotein interactionnetwork.Similarly, a recent studyshowed

that DNA methylation changes in a gene encoding the enzyme

ELOVL2, involved in elongation of long-chain polyunsaturated

fatty acids, plays a role in loss ofmouse retinal function during ag-

ing (Chen et al., 2020). Furthermore, genes related to peroxisome

beta oxidation, including Abcd2, Abcd3, Akt2, and Ppara, also

presented DNA methylation changes. Consistent with upregula-

tion of beta oxidation and subsequent generation of reactive oxy-

gen species, we observed DNA methylation changes in genes

involved in detoxification pathways, including the aldehyde dehy-

drogenase Aldh3a2, oxysterol binding proteins Osbp3/8/9/10,

and glutathione biosynthesis enzymes Gstm2/5/6. Future studies

should thus focus on the relationship between DNA methylation

and lipid homeostasis in the aging retina.

One important limitation of our study is the inability to distin-

guish themechanistic role of the DNAmethylation changes iden-

tified. Whether these changes are detrimental, beneficial, or just

bystanders requires further studies. However, DMRs occur at

regulatory regions and associate with non-random gene expres-

sion changes and specific aging pathways, indicating their rele-

vance to alterations in rod function with advancing age. In

concordance, defects in enhancer DNA methylation are shown

to result in aging phenotypes and impaired energy homeostasis

in mice (Schäfer et al., 2018). In this study we used male mice to

avoid sex-related confounding factors. Further investigations are

needed to evaluate whether the dynamics of DNA methylation

patterns with age is different in females.

In brief, our studies demonstrate that age-related epigenetic

alterations in rods are linked to aging hallmarks, including

neuronal communication, proteostasis, and mitochondrial

dysfunction (López-Otı́n et al., 2013). Specifically, the DNA

methylome of aging rods uncovered changes in oxidative meta-

bolism that may contribute to (or reflect) rod functional decline

with age. DNA methylation changes in gene bodies, distal regu-

latory regions, and chromosomal neighborhoods are likely asso-

ciated with disruptions in stringently controlled patterns of gene

expression, rendering cells susceptible to stressors that can pre-

cipitate disease at an advanced age.
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Robinson, J.T., Thorvaldsdóttir, H., Winckler, W., Guttman, M., Lander, E.S.,

Getz, G., and Mesirov, J.P. (2011). Integrative genomics viewer. Nat. Bio-

technol. 29, 24–26.

Rodriguez, J., Frigola, J., Vendrell, E., Risques, R.A., Fraga, M.F., Morales, C.,
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Cytoscape version 3.7.1 Shannon et al., 2003 https://cytoscape.org/

ClueGO version 2.5.4 Bindea et al., 2009 http://apps.cytoscape.org/

apps/cluego

toRun_Imputation.R Stubbs et al., 2017 https://github.com/EpigenomeClock/

MouseEpigeneticClock
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Anand

Swaroop (swaroopa@nei.nih.gov). This study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All procedures involving mice were approved by the Animal Care and Use Committee (NEI-ASP#650). C57BL/6J mice expressing

EGFP under the control of the Nrl promoter (Nrlp-EGFP mice) (Akimoto et al., 2006) were used to purify rod photoreceptors and

to performmitochondria oxygen consumption assays in the retina.Wild-type agingmice (C57BL/6J) were obtained from the National

Institutes of Aging (MD, USA). Mice were kept in a 12 light/12 dark hour cycle and fed ad libitum at the NEI animal facility. All animals

used were male. WGBS: n = 3 for 3M, 18M, 24M; n = 2 for 12M; RNA-seq: n = 4 for 3M and n = 3 for 12M, 18M and 24M; H3K27me3:

n = 6 for 3M; H3K27ac: n = 4 for 3M. Mitochondrial oxygen consumption rate: n = 3 per time-point; inhibitor experiments: n = 2 per

drug treatment.

METHOD DETAILS

Isolation of rod photoreceptors
Retinas from 3M, 12M, 18M and 24M male mice were dissected in Hank’s Balanced Salt Solution (Life Technologies, NY, USA) and

dissociated in Papain solution (Worthington Biochemical, NJ, USA) containing DNase I at 28�C for 8 min with constant agitation, pel-

leted at 200 g for 5 minutes and resuspended in a solution containing Albumin and DNase I (100 U/ml). Subsequently, cells were pel-

leted again and resuspended in 1mL of HBSS. EGFP positive cells were isolated by fluorescence-activated cell sorting (FACS) using

FACS Aria II (Becton Dickinson, CA, USA). The purity of isolated EGFP-positive cells was assessed by resorting and only cells that

were over 98% pure were used in subsequent experiments. After sorting, cells were flash frozen with or without TRIzol (Invitrogen,

CA, USA).

Mitochondria oxygen consumption rate (OCR) assay
Oxygen consumption rate was measured in 1 mm retina punches from 3-month old (M) (n = 11), 12M (n = 11) and 24M (n = 11) Nrlp-

EGFPmice using Seahorse XF24 Bioanalyzer (Seahorse Bioscience, North Billerica,MA), as described previously (Kooragayala et al.,

2015). Basal oxygen consumption was established after 5 measurements, and then 4 mm of mitochondrial uncoupler (2-fluoro-

phenyl)(6-[(2-fluorophenyl)amino](1,2,5-oxadiazolo[3,4-e]pyrazin-5-yl))amine (BAM15) (Timtec, Newark, DE) was added to measure

maximum oxygen consumption. Cytochrome a quantification was performed for normalization (Kooragayala et al., 2015) using 6
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retinas per time-point. Validation of OCR differences was performed in a wild-type C57BL/6 colony by comparing 4-5M (n = 9) with

23-24M (n = 11). The mitochondrial reserve capacity was defined as 100*(Maximal OCR-Basal OCR)/Maximal OCR. The basal OCR

and mitochondrial reserve capacity were compared for significance between different time-points as described (Kooragayala et al.,

2015). The inhibitor Etomoxir (ETO) (Agilent Seahorse XF Mito Fuel Flex Test Kit 103260-100) was used to block translocation of long

chain fatty acid into mitochondria. Dependency of fatty acid as a fuel in 4M and 20MNrlp-EGFPmice was calculated by the percent-

age in OCR decrease after addition of Etomoxir and compared for significance between 4- and 20-month oldmice. Vehicle (4M n = 9,

20M n = 6), Etomoxir 4 mM (4M n = 8, 20M n = 8), Etomoxir 8 mM (4M n = 7, 20M n = 9), Etomoxir 20 mM (4M n = 8, 20M n = 7).

WGBS
Genomic DNA was extracted using the PureLink Genomic DNA Mini Kit (Invitrogen, CA, USA) per manufacturer instructions and

treated with bisulfite salt using the EZDNAMethylation-Gold Kit (ZymoResearch, CA, USA) on 100 ng of DNA followingmanufacturer

instructions. Libraries were generated from 3M, 12M, 18M and 24M mice (n = 3) using the Accel-NGS Methyl-Seq DNA Library Kit

(Swift Biosciences, MI, USA) according to manufacturer’s instructions. A spike-in of unmethylated lambda DNA was used to deter-

mine bisulfite conversion. Paired-end sequencing was performed using the HiSeq 2500 platform (Illumina, CA, USA) with read-length

of 125 base pairs. Adapters, reads of low quality (Phred score < 20) and length < 20 bp were trimmed using TrimGalore! version 0.4.5

(http://www.bioinformatics.babraham.ac.uk/projects/trim_galore) with the following parameters as suggested by the library kit

manufacturer:–clip_R1 10–clip_R2 20–three_prime_clip_R1 10–three_prime_clip_R2 15. Quality control was performed using

FastQC version 0.11.5 (http://www.bioinformatics.babraham.ac.uk/projects/fastqc). After removal of duplicate reads, Bismark

version 0.19.1 (Krueger and Andrews, 2011) was used to align reads to the mouse reference genome Ensembl release 84

(GRCm38.p4) with mapping efficiency between 78.5%–83.7%. CpG methylation was extracted using Bismark and values smooth-

ened by applying a smoothing algorithm with the R package bsseq version 1.14.0 (Hansen et al., 2012). After inspection of M-bias

plots, reads were further trimmed 20 base pairs from either end of both reads. One sample from 12Mmice was excluded from further

analysis as it did not pass the conversion efficiency cutoff of > 99%. External datasets analyzed include wild-type rods, cones and

Nr2e3�/� rods (Mo et al., 2016), neural precursor cells (NPC) and embryonic stem cells (ES) (Stadler et al., 2011), cerebellum (Hon

et al., 2013), beta cells (Avrahami et al., 2015), liver cells (Cole et al., 2017), and frontal cortex (Lister et al., 2013).

Cleavage under targets and release using nuclease (CUT&RUN)
Flow-sorted rod photoreceptors from 3M, 12M, 18M and 24Mmalemice (H3K27ac: n = 4, H3K27me3: n = 6) were cryopreserved in a

solution of HBSS containing 10% DMSO and slowly frozen using a Mr.Frosty container (Invitrogen, CA, USA). CUT&RUN was per-

formed as previously described (Skene and Henikoff, 2017) using 200-300,000 cells per experiment. Antibodies against H3K27ac

(Rabbit, cat.no. ab4729, Abcam, Cambridge, UK), and H3K27me3 (mouse IgG3, cat.no. ab6002, Abcam, Cambridge, UK) were

used at a concentration of 1:100 in 100 ml and pA-MNase conjugated to protein A (generous gift of Dr. Steven Henikoff, Howard

HughesMedical Institute, Washington, USA) used at a concentration of 700 ng/ml. Released fragments were purified using QIAquick

PCR Purification Kit (QIAGEN, Hilden, Germany). Libraries were generated using SMARTer� ThruPLEX� DNA-Seq Kit (Takara Bio

USA, Inc, CA, USA) as per manufacturer instructions with 15 PCR cycles and 60�C extension, and sequenced pair-end using the

HiSeq 2500 platform (Illumina, CA, USA) with read-length of 50 base pairs. Reads were quality trimmed 10 bp from the 50 end
and 5 bp from the 30 end using Trim Galore! version 0.4.5. Quality check was performed using FastQC. Reads were aligned against

the Mus musculus genome (Ensembl version 84) and the Saccharomyces cerevisiae genome (Ensembl version 93) using bowtie2

version 2.3.4.1 (Langmead and Salzberg, 2012) with additional parameters as detailed in the CUT&RUN protocol (Skene and Henik-

off, 2017). Deduplicated and high-quality mapped reads (MAPQ value of at least 30) were extracted using samtools version 1.9 (Li

et al., 2009). Cross-correlation analysis implemented in the R package csaw (Lun andSmyth, 2016) was used to determine the enrich-

ment efficiency of each replicate. The deepTools version 3.1.1 suite was used to generate ‘fingerprint’ plots with an IgG control as a

pseudo-input. Visual inspection on IGV (Robinson et al., 2011) of enrichment at positive control regions (i.e., promoters of highly ex-

pressed genes for H3K27ac and unexpressed developmental genes for H3K27me3) was also used as a quality control measure.

Pearson’s correlation coefficients of high read count bins (identified using csaw) was used to measure similarity between samples.

A combination of these quality control measures was used to remove low-quality replicates from further analysis. The samples were

TMM normalized against the yeast spike-in as described in the csaw documentation. Read counts were binned into 1 kb windows

across the mouse and yeast genomes separately, and a global average read count was determined using the median read count of 5

kb windows across both genomes. Bins were considered enriched if they contained at least two times the global average. TMM

normalization was performed on the filtered spike-in bins, and the resulting normalization factors were applied to the endogenous

(mouse) data. Normalized read counts were then written to bedgraph files, and biological replicates were pooled for downstream

analysis.

RNA-seq
Total RNA from FACS-purified rod photoreceptors was extracted using TRIzol� (Invitrogen, Carlsbad, CA), treated with DNase and

cleaned up using the MagMAX mirVana Total RNA Isolation Kit (Applied Biosystems, Foster City, CA) following the manufacturer’s

instructions. Libraries were constructed with SMARTer Stranded Total RNA-Seq Kit v2 – Pico Input Mammalian (Takara Bio USA,

Mountain View, CA) with 4 ng of RNA and 13 PCR cycles library amplification. Paired-end reads of 125 base pairs were obtained
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using the HiSeq 2500 platform (Illumina, San Diego, CA). Sequence reads passing chastity filtering were trimmed for Illumina

adapters, polyA, and polyT sequences using Trimmomatic v0.36 (Bolger et al., 2014) with the following settings: ILLUMINACLIP:Tru-

Seq3-PE-2.fa:2:30:10:1:TRUE HEADCROP:3 TAILCROP:3 MINLEN:42.

Quantitative real-time PCR (qPCR)
RNA from flow-sorted rod photoreceptors (n = 4 for 3M; n = 3 for 24M) was extracted using RNeasy Plus Micro Kit (QIAGEN, Hilden,

Germany). Complementary DNA was synthesized using SuperScript II reverse transcriptase (Life Technologies, Carlsbad, CA, USA)

according tomanufacturer instructions. Quantitative PCRwas performed in a QuantStudio 3 instrument (Applied Biosystems, Foster

City, CA, USA) using PowerUp SYBR Green master mix (Applied Biosystems, Foster City, CA, USA). Data were analyzed using the

delta-delta CT method normalizing against Hnrnpd.

Visualization
All plots and graphs were visualized using any of the following R packages: ggplot2 version 3.2.1 (https://github.com/tidyverse/

ggplot2), ComplexHeatmap version 1.17.1 (Gu et al., 2016), pheatmap version 1.0.10 (https://cran.r-project.org/web/packages/

pheatmap/index.html), Gviz version 1.22.3 (Hahne and Ivanek, 2016), eulerr version 5.1.0 (https://cran.r-project.org/web/

packages/eulerr/index.html), circlize version 0.4.5 (Gu et al., 2014), and karyoploteR version 1.2.2 (https://bioconductor.org/

packages/release/bioc/html/karyoploteR.html)

QUANTIFICATION AND STATISTICAL ANALYSIS

Identification of unmethylated regions (UMRs) and low methylated regions (LMRs)
The R packagemethylSeekR version 1.16.0 (Burger et al., 2013) was used to identify UMRs and LMRs from the pooled unmethylated

and methylated read counts of the 3M biological replicates (n = 3). In order to determine if the dataset contained partially methylated

domains (PMDs), a hiddenMarkovmodel was used to identify such regions, and the quality control measures included in the package

were inspected. It was discovered that the rods, as well as all of the other analyzed datasets, showed no signs of harboring large-

scale PMDs. UMRs and LMRs were subsequently identified without the PMD identification step.

Epigenetic clock analysis
To determine epigenetic age according to Stubbs et al. (2017), the script ‘toRun_Imputation.R’ from https://github.com/

EpigenomeClock/MouseEpigeneticClock was used with default parameters and the coverage files output from Bismark. To deter-

mine epigenetic age according to Meer et al. (2018), smoothed methylation percentages (regardless of coverage) of the clock CpGs

were multiplied by their corresponding weights and summed. Predicted epigenetic age was regressed against chronological age us-

ing the base R function lm, and the p-value and correlation coefficient were found from the model summary statistics.

Identification of differentially methylated regions (DMRs)
CpGs with at least 2x coverage in at least 2 biological replicates of each time point were used for analysis. The R package bsseq

version 1.14.0 was used to identify differential methylation between 3M and 24M sample (n = 3) using a cutoff of > 10%methylation

difference, areaStat > 20, and a quantile cutoff of the t-statistics of 0.001. The same process was used to identify DMRs in aging

datasets that had separate biological replicates (liver and beta cells) (Avrahami et al., 2015; Cole et al., 2017). For datasets that per-

formed WGBS on pooled biological replicates (frontal cortex) (Lister et al., 2013), DMRs were identified using the DSS-single statis-

tical method of the R package DSS (Wu et al., 2015) on CpGs with at least 4x coverage. The same statistical cutoffs were applied

regardless of the DMR calling method.

Motif enrichment analysis
For UMRs and LMRs, the AME tool from MEME Suite (McLeay and Bailey, 2010) was used to determine enrichment of transcription

factor motifs (TRANSFAC release 2017.3) against a shuffled background. For DMRs, the AME tool from MEME Suite was used to

determine enrichment of transcription factor motifs (TRANSFAC release 2017.3) against a background of randomly selected 200

base pair regions of themouse genomewith similar CpG content as the DMRs. Enrichedmotifs were grouped into families according

to TRANSFAC’s classification.

DMR Hotspot Modeling
Finding covariates

The genomewas binned into 1Mbwindows, and the number of DMRs, CpGs, reads, and genes in each of these binswas determined.

Using generalized linearmodeling implemented in the R packageMASS, a negative binomial model of DMRcount as a function of any

combination of the number of CpGs, reads, and genes was created. The significant covariates of the model with the lowest Akaike

information criterion (AIC) were selected for further modeling when defining enriched hotspots. Hotspot defining. A region-growing

algorithm was implemented to identify regions of variable length that contained a high density of DMRs. The average distance

between DMRs was determined, and DMRs within this distance from the following DMR were considered to be in hotspots. This
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algorithm yielded many regions of above-average DMR density. Hotspot enrichment. Each potential hotspot was tested in the

following method to determine if it contained more DMRs than expected. 1000 random regions of the same length of the hotspot

were chosen, and the number of DMRs, CpGs, and genes within them were determined. The DMR count as a function of CpGs

and genes within these regions was modeled as a Poisson distribution, a negative binomial distribution, a hurdle negative binomial

distribution, and a zero-inflated negative binomial distribution [models were created using the R packages stats version 0.1.0 (https://

cran.r-project.org/web/packages/STAT/index.html), MASS version 7.3-50 (https://cran.r-project.org/web/packages/MASS/index.

html) and countreg version 0.2-1 (https://r-forge.r-project.org/R/?group_id=522)]. The model with the lowest AIC was chosen to

predict the expected number of DMRs within the hotspot based on the number of CpGs and genes within the hotspot. Using the

predicted number of DMRs and other parameters of the chosen model, the appropriate probability density function determined

the probability of observing the actual number of DMRs within the hotspot. The p-values were adjusted using the Benjamini-

Hochberg method, and hotspots with an FDR of at most 0.01 were selected.

Network Analysis
Protein-Protein Interaction Network

Differentially expressed genes associated with DMRs (i.e., genes that overlap DMRs or expressed genes with TSSswithin 100 kb of an

rDMR)were selected using an absolute fold-change cutoff of 1.2 and an FDRof 0.10. First-order interacting partners of the correspond-

ing gene products were determined using the STRING database (version 11.0) with a combined score cutoff of at least 700. Proteins

encoded by genes that were not expressed at any time point were removed from the network. The network was visualized on Cyto-

scape (Shannon et al., 2003), and the topological analysiswas performedusing the built-in tool NetworkAnalyzer. Nodeswere clustered

using the ‘Edge-weighted Spring Embedded Layout’ option. Pathway network generation. KEGG and Reactome pathway enrichment

of the entire network was performed using gProfileR version 0.6.7 (Reimand et al., 2007) with 10%FDR. The DMR-to-gene ratio of each

pathwaywas defined as the number of differentially expressed genes associated with DMRs in each pathway divided by the number of

overlapping genes in the pathway. The global DMR-to-gene ratio was defined as the total number of differentially expressed genes

associated with DMRs to all genes in the network. Any pathway with a DMR-to-gene ratio greater than the global DMR-to-gene ratio

was selected for further analysis. The pathways were visualized on Cytoscape version 3.7.1 (https://cytoscape.org/), and the plug-in

ClueGO version 2.5.4 (Bindea et al., 2009) was used to calculate the gene similarity kappa score between each pathway.

DMR enrichment
Every tested CpG and every CpG within a DMRwas categorized into any of the following regions: promoter, intron, exon, intergenic,

CpG island, CpG shore, and LINE/SINE. The odds ratio [implemented in the R package questionr version 0.7.0 (https://cran.r-project.

org/web/packages/questionr/index.html)] was calculated on a 2x2 contingency table of CpG counts within each genomic region.

DMR Clustering
The z-score of the methylation levels of each DMR across each time point was calculated using the scale function in base R. Unsu-

pervised clustering of the negative squared distances of z-score values was performed using the R package apcluster version 1.4.7

(Bodenhofer et al., 2011). Clusters were visualized as line plots of z-score values andweremanually selected for inclusion in the early,

progressive, and late groups.

RNA-seq analysis
Gene-level expression analysis was performed as previously described (Chen et al., 2016) using ENSEMBL v84 annotation (Aken

et al., 2017). Genes that were expressed at or above 5 counts-per-million (CPM) in all replicates of at least one time point were

used for normalization and differential expression analysis as described (DiStefano et al., 2018), using 3M time point as the reference.

Since aging is a subtle phenotype, relatively low absolute cutoffs of fold-change of 1.2 and FDR of 0.1 were used to identify biolog-

ically-relevant differentially-expressed genes.

OCR comparisons
OCRmeasurements between 3M, 12M and 24Mwere compared using one-way ANOVA using R version 3.4.1 (http://www.R-project.

org/). Mitochondrial reserve capacity and treatments with Etomoxir were compared using unpaired two-tailed t test in R.

qPCR analysis
Gene expression levels were analyzed by the delta-delta CT method and differences between 3M and 24M were compared using

unpaired two-tailed t test in R.

DATA AND CODE AVAILABILITY

All raw and processed data have been deposited to Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/GEO) with accession

GSE134873 and to https://neicommons.nei.nih.gov/#/. In-house codes are deposited at https://github.com/NEI-NNRL/

2020-DNA_methylation_signatures_of_aging_in_rods
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Figure S1. Characteristics of the rod methylome and transcriptome. Related to figure 1. Correlation matrix of aging datasets based on A) DNA 
methylation and B) RNA expression. The heatmap shows the correlation coefficients (r, Pearson correlation; rs, Spearman correlation) between 
whole-genome bisulfite sequencing (WGBS) or RNA-seq samples (WGBS: n = 3 for 3M, 18M, 24M; n = 2 for 12M; RNA-seq: n = 4 for 3M and n = 3 
for 12M, 18M and 24M). C) Fraction of methylated CpGs genome-wide. D) Comparison of CpG methylation levels (mean over 10 kb bins) in different 
tissues and cell types. WT = wild type; ES = embryonic stem cell; NPC = neural precursor cell. The methylomes of wild-type rods, cones and Nr2e3 -/- 
rods were obtained from (Mo, et al., 2016), NPC and ES from (Stadler et al., 2011), cerebellum from (Hon et al., 2013) and beta cells from (Avrahami 
et al., 2015). (E) Comparison of CpG methylation levels at the promoter region of Pde6a in purified rods obtained in this study and whole adult retina 
(P21) from a published dataset (Aldiri et al., 2017). Methylation levels were obtained using the same pipeline (see methods). F) CpG methylation 
levels at different genomic regions of various tissues and cell types. Inter = intergenic; CpGi = CpG island; CpGs = CpG shore. G) Transcription 
factor motifs identified in UMRs, LMRs or both regions using TRANSFAC (p -value < 0.05). Families that had at least 3 enriched transcription factors 
(TFs) are shown. The number of TF families represented in DMRs (counts) are depicted by the size of the dots (30 = blue, 60 = purple, 90 = red). 
Paired-related HD family includes CRX. Maf family includes NRL. 
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Figure S2. DNA methylation differences across time-points. Related to figures 2 and 5. A) Mean CpG methylation in different genomic regions at 
different time points. Inter = intergenic; prom = promoter; CpGi = CpG island; CpGs = CpG shore. B,C) Correlation between biological and 
epigenetic age using the B) (Stubbs et al., 2017) and C) (Meer et al., 2018) multi-tissue clocks. D,E) Distribution of DMRs by D) change difference 
and E) length in base pairs (bp). F) Heatmap showing the odds ratio (OR) of CpG counts within each genomic region. G) Table showing the location 
of DMR hotspots and DMR number per hotspot in rods. H) Bar graph showing the fold change expression difference by qRT-PCR of genes that 
harbor differential DNA methylation and expression by RNA-seq. Values were obtained using the delta-delta CT method normalized against Hnrnpd . 
DMR = differentially methylated region; n = 4 for 3M; n = 3 for 24M. Error bars, +/- SEM. Fold change means were compared between 3M and 24M 
using unpaired students t-test. p values are shown for each comparison. 
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Figure S3. Chromosomal DMR hotspots. Related to figure 2. Idiograms showing chromosomes 2, 3, 6,10 and 14 showing regions of DMR 
hotspots (blue boxes). DMRs that gain or lose methylation with age are shown as black ticks. DMR density higher than average, determined by 
a region-growing algorithm (see methods), is displayed in black boxes. Red dotted line indicates the p-value cutoff (FDR ≤ 0.01) of the hotspot 
enrichment after correcting for CpG number and gene density. On top, gene density is shown for all genes (light blue) and expressed genes > 
10 CPM (darker blue). Upregulated and downregulated genes are shown in red and blue dots, respectively. CpG density is shown in purple. 
DMR = differentially methylated region. 
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Figure S4. Distribution of DMR hotspots in various tissues. Related to figure 2. Circos plot showing DMR (differentially methylated region) 
hotspots (high age-associated DMR density, p  -value ≤ 0.01) in rods (blue), whole frontal cortex (green), neuronal frontal cortex (N) (red), non-
neuronal frontal cortex (NN) (purple) cells, beta cells (orange) and liver cells (Hepa) (brown). The combined densities are shown in black. The 
second outermost circle displays the location of unique hotspots for each tissue. Hotspots shared by more than one tissue are shown in the 
outermost circle. A hotspot located in a region reported to function as a longevity interactome is highlighted with a purple box. 
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Figure S5. Patterns of DMR progression. Related to figures 4 and 5. A) Different patterns of DNA methylation changes were identified by 
unsupervised clustering (taking the negative squared distances of z-score values for each DMR). EU = early up; ED = early down; PU = 
progressive up; PD = progressive down; LU = late up; LD = late down; O = other patterns. B,C) Plot of differential methylation against gene 
expression fold change for B) intragenic and C) intergenic DMRs. Names of genes with top 10%-fold-changes are shown. Light blue = Absolute 
Fold-change (FC) ≥	 1.2, q -value ≤	 0.1; Dark blue = Absolute FC ≥ 1.5, q -value ≤	 0.05. D) First-degree protein-protein interaction network 
generated with 317 genes containing age-related DMRs and displaying differential gene expression. Only expressed genes were used. The 
network contains 3958 proteins, out of which, 622 are encoded by genes associated with DMRs. The DMR:protein ratio for the whole network is 
0.08. The node size represents the number of interacting partners a protein has (see table S6 for information on the network node and edge list). 
Blue and red represent downregulated and upregulated genes respectively. Grey represents genes that do not change in expression. Genes with 
black borders have differential methylation. Note two main hubs in the network, “a” and “b”, associated with upregulation of protein degradation 
and downregulation of protein synthesis pathways, respectively. The names of proteins in hubs “a” and “b” are shown. 
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Figure S6. Alterations in energy metabolism with age. Related to figures 5 and 6. A) Heatmap of CPM (counts per million) transcript levels of 
genes involved in electron transport chain (ETC) and oxidative phosphorylation (OXPHOS), glycolysis, tricarboxylic acid (TCA) cycle, fatty acid 
catabolism, and amino acid catabolism. Absolute FC ≥ 1.2; FDR ≤ 0.1. B) OCR traces from young (4-5M) and old (23-24M) C57BL/6 wild-type 
mouse retinas. Arrows indicate the injection of a mitochondrial uncoupler (BAM15) or complex 1 inhibitor (rotenone) in the sample well. (C) A 
lower basal respiration and a larger mitochondrial reserve capacity can be observed in older mice as defined by 100*(maximal respiration-Basal 
respiration)/Maximal respiration. Error bars, +/- SEM. The mitochondrial reserve capacity in 4-5M vs 23-24M retina was compared by unpaired, 
two-sided t-test. D-F) OCR traces from young (4M) and old (20M) Nrlp-EGFP mouse retinas after addition of D) Vehicle (Ames buffer alone) or 
Etomoxir at E) 4 μM or F) 20 μM. Arrows indicate the injection of Etomoxir or rotenone in the sample well. OCR = oxygen consumption rate; 
BAM15 = (2-fluorophenyl)(6-[(2-fluorophenyl)amino](1,2,5-oxadiazolo[3,4-e]pyrazin-5-yl))amine. 
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