

Figure S1. CRISPR-cas9 mediated genome-wide screen for TcsL. Related to Figure 1.

(A) SDS-PAGE and Coomassie blue staining showing purified TcsL. Recombinant His6-tagged TcsL was expressed in *B. megaterium* and purified through Ni-NTA column and gel filtration column.

(B) A range of human cell lines were exposed to TcsL for 24 h and the percentages of rounded cells were plotted over toxin concentrations. A549 cells and U2OS cells are the most sensitive ones to TcsL. Error bars indicate mean \pm s.d., N = 3.

(C) Representative images showing the cell rounding effect in A549, HeLa, and 5637 cells after incubation with the indicated concentrations of TcsL for 24 h. Scale bar, 50 μ m.

(**D**) The recovery rates of sgRNAs and genes identified in R0 compared with the original GeCKO-V2 library.

(E-H) Genes identified in each round (E for R0, F for R1, G for R2, H for R3) are plotted based on the number of unique sgRNAs (*y* axis) and total number of sgRNA reads (*x* axis). The top hits investigated here are marked and color-coded. They are enriched from R0 to R3.

Figure S2. Testing the sensitivity of TcsL and TcdB on mixed KO cells and SEMA6A/6B overexpression cells. Related to Figure 2.

(A) The KO efficiency of SEMA6A in A549 and HeLa cells were confirmed via immunoblot detecting endogenous SEMA6A. Actin was used as a loading control. Representative images were shown from three independent experiments.

(B) Experiments were carried out as described in Figures 2A and 2B. Representative images showing the cell rounding effect in A549 WT and the indicated mixed KO cells after 4 h incubation with TcsL (10 ng/mL). Scale bar, 50 μ m.

(C-E) The indicated mixed A549 KO cell lines were exposed to TcdB for 24 h and the percentages of rounded cells were plotted. Their CR₅₀ are plotted in a bar-chart (E). PM, plasma membrane. Error bars indicate mean \pm s.d., N = 3.

(**F-G**) SEMA6A, 6B, 6C, and 6D were expressed in HeLa (panel **F**) or a bladder carcinoma cell line 5637 (panel **G**) via lentiviral transduction. Expressed exogenous SEMA6 proteins in cells were confirmed via immunoblot detecting the triple FLAG tag fused to their C-termini. Actin was used as a loading control. Representative images were shown from two independent experiments.

(H-I) 5637 cells overexpressing SEMA6 family proteins via lentiviral transduction were exposed to TcsL for 24 h and the percentages of rounded cells were plotted (panel H). Their CR₅₀ were determined and shown in a bar-chart (panel I). Ctrl: Control. Error bars indicate mean \pm s.d., N = 3, *, p < 0.01 (one-way ANOVA).

Figure S3. Characterizing TcsL-SEMA interactions. Related to Figure 3.

(A-B) The binding kinetics and affinity were determined using BLI assays for interactions between TcsL and SEMA6A-ECD (A), and between TcsL and SEMA6B-ECD (B). These parameters are summarized in panel E (mean \pm s.d.). Representative sensorgrams from one of two independent experiments are shown.

(C-E) The binding kinetics and affinity were determined using BLI assays for interactions between TcsL₁₂₈₅₋₁₈₀₄ and SEMA6A-ECD (C), and between TcsL₁₂₈₅₋₁₈₀₄ and SEMA6B-ECD (D). These parameters are summarized in panel E (mean \pm s.d.). Representative sensorgrams from one of two independent experiments are shown.

(F) SEMA6A-ECD was treated with Endo H and analyzed by immunoblot, which showed a reduced molecular weight compared with untreated SEMA6A-ECD.

(G) Binding of SEMA6A-ECD treated with Endo H to TcsL was characterized using BLI assays, which showed similar levels of binding comparable with untreated SEMA6A-ECD.

(H) Sequence alignment of TcsL and TcdB at TcdB-FBD region. The conserved residues are marked in red. The key residues involve in TcdB-CRD2 interactions are highlighted in blue and the majority of them are different between TcsL and TcdB.

A549, TcsL, 40 pM, 5 h

Figure S4. SEMA6A and 6B mediate TcsL entry into cells. Related to Figure 4.

(A) Experiments were carried out as described in Figures 4B and 4C. Representative images of the cell rounding effect in A549 cells are shown. Scale bar, 50 μ m.

(B) A549 cells were exposed to either TcdB alone (0.4 pM, 4 h) or TcdB pre-incubated with the indicated proteins at the indicated molar ratio. The percentages of rounded cells at 4 h are shown in a bar chart. Error bars indicate mean \pm s.d., N = 3.

(C) HeLa cells exposed to either TcsL alone (4 nM, 6 h) or TcsL pre-incubated with SEMA6A-ECD at 1:200 or 1:400 molar ratios. The percentages of rounded cells are shown in a bar chart. Error bars indicate mean \pm s.d., N = 3, *, p < 0.01 (Student's *t*-test).

(**D**) Experiments were carried out as described in Figures 4D and 4E. Representative images of the cell rounding effect in HUVECs are shown. Scale bar, 50 μ m.

(E) Validation of siRNA knockdown efficacy. HEK293T cells were seeded in 24-well plate and transfected with SEMA6A or SEMA6B (with C-terminal 3xFLAG tag). The gradient of siRNA was set up as 0, 1, 2, and 3 μ L siRNA (20 μ M stock) plus 2, 2, 4, and 6 μ L Lipofectamine RNAiMAX reagent, respectively. Cells were harvested 48 h later and subjected to immunoblot assays. Expression of SEMA6A and 6B was detected via their FLAG tags. Actin served as a loading control. Representative blots are shown from two independent experiments. SEMA6A siRNA and SEMA6B siRNA-II were selected for the double knockdown experiment in HUVECs.

Figure S5. Expression of SEMA6 family in different cell types in mouse lung tissues. Related to Figure 5.

Expression of SEMA6A (**A**), 6B (**B**), 6C (**C**), and 6D (**D**) in various lung cells were plotted based on published single cell RNAseq data (<u>http://betsholtzlab.org/VascularSingleCells/database.html</u>) (<u>He et al., 2018; Vanlandewijck et al., 2018</u>). FB: Vascular fibroblast-like cells; CP: Cartilage perichondrium; PC: Pericytes; VSMC: Vascular smooth muscle cells; EC: Endothelial cells (highlighted in red); capil - capillary; a - arterial; c - continuum; L - Lymphatic; 1,2,3,4 - subtypes.

Figure S6. His-tagged SEMA6A-ECD reduces TcsL-induced toxicity in mice. Related to Figure 5 and Figure 6.

(A-B) Co-injection of TcsL (20 ng per 25 g bodyweight) with mouse SEMA6A-His protein (mSEMA6A-His) at 1:1000 (w/w) ratio reduced accumulation of fluid in the thoracic cavity (A) and reduced dry-to-wet weight ratio of lung tissue 4 h after the injection (B). Injection of mSEMA6A-His alone was examined in parallel. Boxes indicate \pm s.e.m., error bars indicate \pm s.d., *, p < 0.01 (one-way ANOVA).

(C) Five in a total of eleven mice with co-injection of TcsL and mSEMA6A-His (1:1000 ratio) survived, while all mice injected with TcsL alone died (p < 0.001, Kaplan-Meier Log-Rank test).

Name	Sequence (5'-3')	Purpose
SEMA6A_sg_F	CACCGTTGCCATGCGAAATACTGAT	sgRNA Targeting SEMA6A
SEMA6A_sg_R	AAACATCAGTATTTCGCATGGCAAC	sgRNA Targeting SEMA6A
SEMA6A-II_sg_F	CACCGGGCTTGTGGCCCACAAACAC	sgRNA Targeting SEMA6A
SEMA6A-II_sg_R	AAACGTGTTTGTGGGCCACAAGCCC	sgRNA Targeting SEMA6A
SEMA6B_sg_F	CACCGCGAGTGTCGAAACTTCGTAA	sgRNA Targeting SEMA6B
SEMA6B_sg_R	AAACTTACGAAGTTTCGACACTCGC	sgRNA Targeting SEMA6B
SEMA6B-II_sg_F	CACCGTGGGGGGGCTCCAGCTCTACG	sgRNA Targeting SEMA6B
SEMA6B-II_sg_R	AAACCGTAGAGCTGGAGCCCCCAC	sgRNA Targeting SEMA6B
SEMA6C_sg_F	CACCGTATCCCTTCAGTATCTAACA	sgRNA Targeting SEMA6C
SEMA6C_sg_R	AAACTGTTAGATACTGAAGGGATAC	sgRNA Targeting SEMA6C
SEMA6D_sg_F	CACCGAGTGATAGTCGACAGTATTA	sgRNA Targeting SEMA6D
SEMA6D_sg_R	AAACTAATACTGTCGACTATCACTC	sgRNA Targeting SEMA6D
SEMA6D-II_sg_F	CACCGGAAAGCTGACTGCCCTCAAC	sgRNA Targeting SEMA6D
SEMA6D-II_sg_R	AAACGTTGAGGGCAGTCAGCTTTCC	sgRNA Targeting SEMA6D
EMB_sg_F	CACCGAGTCATAACATATCACTGAC	sgRNA Targeting EMB
EMB_sg_R	AAACGTCAGTGATATGTTATGACTC	sgRNA Targeting EMB
RTN4RL2_sg_F	CACCGATCGAGACAAGATGCTGCCC	sgRNA Targeting RTN4RL2
RTN4RL2_sg_R	AAACGGGCAGCATCTTGTCTCGATC	sgRNA Targeting RTN4RL2
GPR87_sg_F	CACCGGTCTGCGTGTAATGTTTGCC	sgRNA Targeting GPR87
GPR87_sg_R	AAACGGCAAACATTACACGCAGACC	sgRNA Targeting GPR87
SLC27A5_sg_F	CACCGGTCGAACTGCACCAGCTCAA	sgRNA Targeting SLC27A5
SLC27A5_sg_R	AAACTTGAGCTGGTGCAGTTCGACC	sgRNA Targeting SLC27A5
PCDHGB6_sg_F	CACCGTTTCGACCAGACGTCCTACG	sgRNA Targeting PCDHGB6
PCDHGB6_sg_R	AAACCGTAGGACGTCTGGTCGAAAC	sgRNA Targeting PCDHGB6
TBC1D3_sg_F	CACCGGCTTCCGCTTTGATGTGGCA	sgRNA Targeting TBC1D3
TBC1D3_sg_R	AAACTGCCACATCAAAGCGGAAGCC	sgRNA Targeting TBC1D3
ATP6V0B_sg_F	CACCGTTGTTGTTGTAGCTTCGAAA	sgRNA Targeting ATP6V0B
ATP6V0B_sg_R	AAACTTTCGAAGCTACAACAACAAC	sgRNA Targeting ATP6V0B
SLC25A31_sg_F	CACCGCCCTTGAATTGTCGCTCCTC	sgRNA Targeting SLC25A31
SLC25A31_sg_R	AAACGAGGAGCGACAATTCAAGGGC	sgRNA Targeting SLC25A31
PPAT_sg_F	CACCGTTCGTTGTTGAAACACTTCA	sgRNA Targeting PPAT
PPAT_sg_R	AAACTGAAGTGTTTCAACAACGAAC	sgRNA Targeting PPAT
ACTG2_sg_F	CACCGGTGTGACATTGACATCCGTA	sgRNA Targeting ACTG2
ACTG2_sg_R	AAACTACGGATGTCAATGTCACACC	sgRNA Targeting ACTG2
SEMA6A_01F	AGCTTGGTACCGAGCTCGGATCCATGAGGTC	Clone SEMA6A into
SEMA6A 02R		pcDNA3.1-3xFlag-C Clone SEMA6A into
51/11/10/1_02I	GCATCATTGGGCTTCATGG	pcDNA3.1-3xFlag-C

Table S1. Oligonucleotides used in this study. Related to STAR Methods section.

SEMA6B_01F	AGCTTGGTACCGAGCTCGGATCCATGCAGAC	Clone SEMA6A into
	CCCGCGAGCGICCCCIC	pcDNA3.1-3xFlag-C
SEMA6B_02R	GAACCAGAACCAGAACCGAATTCGGGCACG	Clone SEMA6A into
	GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	pcDNA3.1-3xFlag-C
SEMA6C_01F	AGCTTGGTACCGAGCTCGGATCCATGCCCCG	Clone SEMA6A into
	TGCCCCC	pcDNA3.1-3xFlag-C
SEMA6C_02R	GAACCAGAACCAGAACCGAATTCAAAGTTG	Clone SEMA6A into
	AAACGGCCGCCGTTC	pcDNA3.1-3xFlag-C
SEMA6D_01F	AGCTTGGTACCGAGCTCGGATCCATGAGGGT	Clone SEMA6A into
	CTICCIGCITIGIGCC	pcDNA3.1-3xFlag-C
SEMA6D_02R	GAACCAGAACCAGAACCGAATTCGTATGTGT	Clone SEMA6A into
	ATTTGTTCAGTGGTCTGACAGATGG	pcDNA3.1-3xFlag-C
LentiHygro_01F	GGAACCAATTCAGTCGACTGGATCCGCTTGG	Transfer gene from pcDNA3.1
	TACCGAGCTCGGATCC	to LentiHygro
LentiHygro_01F	TTTGTACAAGAAAGCTGGGTCTAGACTCTAG	Transfer gene from pcDNA3.1
	ACTCGAGCGGCCGC	to LentiHygro
TcsL_01F	TTTAAGAAGGAGATATACCATGGGATTCACA	Clone TcsL-1856-2364 into
	ACTATAGATGGTAATAAATATTACTTTGACC	pET28a
	CAAC	
TcsL_02R	GCGGCCGCAAGCTTGTCGACTTCACTAACTA	Clone TcsL-1856-2364 into
	CTAATTCAGCTGTATCAGGGTCAAAATAG	pET28a
TcsL_05F	AAGAAGGAGATATACCATGGGAACTAATGT	Clone TcsL-1285-1804 into
	AAGAATAAATCTAGATGGCAATACTAGAAG	pET28a
TcsL_06R	GCGGCCGCAAGCTTGTCGACAGCTGCAAGTG	Clone TcsL-1285-1804 into
	ΑΑΑΑΤGΤΙGΑΑΑΤΑΑΤΙΤΤ	pET28a
TcsL_12F	AACATTTTCACTTGCAGCTGTCGACACCGAG	Clone 3xFLAG tag between
	CICGGAICCAIG	TcsL-1285-1804 and His tag
TcsL_13R	CGAGTGCGGCCGCAAGCTTGTCGACGAATTC	Clone 3xFLAG tag between
		1csL-1285-1804 and His tag
TcsL_14F		Switch TcdB 1431-1600 to
	AIIGAIGIIAAAIICAAAICAIAIICAACAG	IcdL
Tool 15D		Switch TodD 1421 1600 to
ICSL_IJK		TedI
	тст	ICUL
Test 16F	ΤΟΤ	Switch TedB 1/31-1600 to
rest_tor	ΑΤΑCTΑGATACTΑATTTCATAATAACTGGTA	TedI
	GC	Teal
TesL 17R		Switch TcdB 1431-1600 to
rest_r/R	GTATTTTATAAGATTTTGATACTAAATCAATT	TedL
	тст	Total
Tesl 18F		Switch TesJ 1431-1601 to
ICSE_101	ATTGATAGAAAACTCATCTGATATTCAAC	TcdB
TcsL 19R	TCTAATATAAACTTAATATTAGGGTCTAGAT	Switch TcsL 1431-1601 to
	TATTGTAGAAAATATTTTTTATATTGATACTT	TcdB
	TCTAAG	
TesL 20F	TCTACAATAATCTAGACCCTAATATTAAGTT	Switch TcsL 1431-1601 to
1052_201	TATATTAGATGCTAATTTTATAATAAGTGGT	TcdB
	ACTACTTCTATT	
TcsL 21R	TCTATCAATTTCATACAATTGCCAGAAATAA	Switch TcsL 1431-1601 to
· ···	GTAATTTATATGATTTAGATAATAAATCAAC	TcdB
	ТТСТАТАА	
lentiGP 01F	AATGGACTATCATATGCTTACCGTAACTTGA	PCR the sgRNA locus
	AAGTATTTCG	

lentiGP_03R	ATGAATACTGCCATTTGTCTCAAGATCTAGT	PCR the sgRNA locus
	TACOC	
SEMA6A_Sense	GCAGUGGAGUAUAACACCA[dT][dT]	siRNA for SEMA6A
SEMA6A_Antisense	UGGUGUUAUACUCCACUGC[dT][dT]	siRNA for SEMA6A
SEMA6B_I_Sense	CCGUGAAACAUGACUCCAA[dT][dT]	siRNA for SEMA6B
SEMA6B_I_Antisense	UUGGAGUCAUGUUUCACGG[dT][dT]	siRNA for SEMA6B
SEMA6B_II_Sense	GGGAUGCUCUUCACAGCUA[dT][dT]	siRNA for SEMA6B
SEMA6B_II_Antisense	UAGCUGUGAAGAGCAUCCC[dT][dT]	siRNA for SEMA6B
SEMA6B_III_Sense	GAGUUUAACUACCUGGAGA[dT][dT]	siRNA for SEMA6B
SEMA6A_Antisense	UGGUGUUAUACUCCACUGC[dT][dT]	siRNA for SEMA6B