### **Supplementary Material Contents**

- 1. Supplementary Figure 1: Analysis of cell cycle distribution of hPSC cell subpopulations using the FUCCI reporter system.
- 2. Supplementary Figure 2. Analysis of metabolomics data for the GCTM-2highCD9highEPCAMhigh (HHH) and remaining (GEN) cells.
- 3. Supplementary Figure 3. Expression of *TET1*, *DNMT3A*, and *DNMT3B* in subpopulations of hPSC.
- 4. Supplementary Figure 4. ATAC-seq library quality control.
- 5. Supplementary Figure 5. Regions of increased DNA accessibility in GCTM-2highCD9highEPCAMhigh (high) population are enriched for stem cell-specific chromatin sites.
- Supplementary Figure 6. Heatmaps showing distribution of differentially expressed genes in GCTM-2highCD9highEPCAMhigh (a) and unsorted cells (b, general population, GEN) across the cortical neural differentiation time course described in Cortecon (29).
- 7. Supplementary Figure 7. Data from RNA microarray analyses in [1] showing expression in stem cell subpopulations of genes upregulated in the General population in this work.
- 8. Supplementary Figure 8. Distribution of gene expression in processed single cell RNA-seq for human and non-human primate datasets.
- 9. Supplementary Figure 9. Z-scores of ranked expression per cell.
- 10. Supplementary Figure 10. Single cell gene expression analysis for pluripotency associated transcription factors in subsets of hPSC. a, principal component analysis of cell subsets. b, POU5F1. c, SOX2. d, NANOG. e, ZFP42. f, TFCP2L1. G, POU3F1.
- 11. Supplementary Figure 11. Principal component analysis of single cell RNA-seq cynomolgus embryo data from [30]; single embryo cells classified according to [30].
- 12. Supplementary Figure 12. Exemplary flow cytometry gating strategies for this study. a, strategy for isolation of GCTM-2highCD9highEPCAMhigh cells (Figures 2-9). b, strategy for isolation of GCTM-2highCD9high and GCTM-2howCD9how cells and determination of mitochondrial membrane potential with JC1 or TMRM (Figure 3). c, strategy for enumeration of ITGA6+/EPCAM+ cells (Figure 2).
- 13. Supplementary Movie 1: Fate of aggregates of GCTM-2highCD9high cells for 1-24 hours post-plating
- 14. Supplementary Movie 2: Fate of aggregates of GCTM-2midCD9mid cells for 1-24 hours post-plating.
- 15. Supplementary Table 1. LC-MS analysis showing metabolites that differed significantly between GCTM-2highCD9highEPCAMhigh subpopulation and remaining cells (general population).
- 16. Supplementary Table 2. GC-MS analysis showing metabolites that differed significantly between GCTM-2highCD9highEPCAMhigh subpopulation and unsorted cells (general population).

- 17. Supplementary Data 1. Differential chromatin accessible peaks between populations.
- 18. Supplementary Data 2. Results from locus overlap enrichment analysis (LOLA) for chromatin accessible peaks from GCTM-2highCD9highEPCAMhigh and GCTM-2midCD9mid populations.
- 19. Supplementary Data 3. RNA-seq analysis of differential gene expression in GCTM-2highCD9highEPCAMhigh subpopulation and unsorted cells (general population).
- 20. Supplementary Table 3. Pathway analysis of differentially expressed genes in GCTM-2highCD9highEPCAMhigh subpopulation and unsorted cells (general population) identified by RNA-seq.
- 21. Supplementary Table 4. Stage-specific differentially expressed genes.
- 22. Supplementary Table 5. Biological replicate data for assay in Figure 1e showing colony formation of single cell and cell aggregates from GCTM-2highCD9high and GCTM-2midCD9mid subpopulations.
- 23. Supplementary Table 6. Biological replicate data for cell cycle studies using Fucci reporter system shown in Supplementary Figure 1.



Supplementary Figure 1. Analysis of cell cycle distribution of hPSC cell subpopulations using the FUCCI reporter system. The graph shows the proportion of cells in G0/G1 for the GCTM-2<sup>low</sup>CD9<sup>low</sup> (LOW), GCMT-2<sup>high</sup>CD9<sup>high</sup> (HH), and GCTM-2<sup>high</sup>CD9<sup>high</sup>EPCAM<sup>high</sup> (HHH) subpopulations for WA09 cultures grown in E8 defined medium (FUCCI E8), MTeSR defined medium (FUCCI mTeSR), or in serum-containing medium with mouse embryo fibroblast feeder cell support (FUCCI MEF). Values are means and error bars represent standard deviation from three biological replicates.

**Supplementary Figure 2** 



Supplementary Figure 2. Analysis of metabolomics data for the GCTM-2<sup>high</sup>CD9<sup>high</sup>EPCAM<sup>high</sup> (HHH) and remaining (GEN) cells. a-b, unsupervised unbiased principal component analysis of metabolite levels from LC-MS (a) and GC-MS (b) data. PBQC are peripheral blood mononuclear cells used as a control. c, heatmap display of enrichment of metabolites in HHH cells versus GEN population determined by GC-MS analysis. d-e, metabolic pathway analysis of differential metabolite content in the HHH (d) or GEN (e) population by LC-MS. PROTEIN BIOSYNTHESIS AAMOMIA RECVCLING UREA CVCLE GLYCINE, SERNE AND THREONINE METABOLISM GLUCOSEALANINE METABOLISM GLUCAMATE METABOLISM GLUTAMATE METABOLISM GLUTAMATE METABOLISM GLUTAMATE METABOLISM MALATE-ASPARTATE SNUTTLE GALACTOSE METABOLISM ASPARTATE METABOLISM ASPARTATE METABOLISM ASPARTATE METABOLISM STARCH AND SUCKOSE METABOLISM BIOTIN METABOLISM BIOTIN METABOLISM INSURT OLIVER METABOLISM BIOTIN METABOLISM INSURT OLIVER METABOLISM BIOTIN METABOLISM BIOTIN METABOLISM GLUCONEOGENESS GLUCANTONE METABOLISM GLUCONEOGENESS GLUCANTONE METABOLISM GLUCANE BOSYNTHESIS GLUCANE BOSYNTHESIS GLUCANE METABOLISM BETAINE METABOLISM GLUCANE METABOLISM GLUCANEOSIN BETAINE METABOLISM GLUCANEOSIN BETAINE METABOLISM BETAINE METABOLISM GLUCANEOSIN BETAINE METABOLISM PROPADAIR METABOLISM DETAGOLISM PROFOSE HOSPHARE PATHWAY PRUCTOSE HOSPHARE PATHWAY PRUCTOSE AND MAINOSE DE GBAATION PYENUSTE METABOLISM PROFOSE AND MAINOSE DE GBAATION PYENUSTE METABOLISM PHOSPHADATE PATHWAY PRUCTOSE AND MAINOSE DE GBAATION PYENUSE METABOLISM PHOLICHED DE GRAATONI PYENIMIDIRE METABOLISM PHOLICHED DE GRAATONI PYENIMISE AND TYPOSINE METABOLISM PHOLICHED DE GRAATION PYENIMISE AND TYPOSINE METABOLISM PHOLICHED DE GRAATION PYENIMISE AND TYPOSINE METABOLISM PHINOSE PHOSPHARE PATHWAY PORTOSE AND MAINOSE DE GBAATION PYENIMISE METABOLISM PYENIMISE AND TYPOSINE METABOLISM PHOLICHED DE GRAATION PYENIMISE AND TYPOSINE METABOLISM PHOLICACID CYCLE PYENIMISE AND TYPOSINE METABOLISM PHOLICACID CYCLE PYENIMISE AND TYPOSINE METABOLISM PHOLICACID CYCLE PYENIMISE AND TYPOSINE METABOLISM PHOLICACID DE CABOLISM







g









Supplementary Figure 3. Expression of TET1, DNMT3A, and DNMT3B in subpopulations of hPSC. Figure shows expression of TET1, DNMT3A, and DNMT3B in hPSC subpopulations by RNA-seq on bulk subpopulations (a-c) or single cells (d-g) in this study, and in the previous study of Kolle et al. (27) using a similar flow cytometry fractionation strategy (h-j). a-c, expression levels in unsorted (purple symbols) or GCTM-2<sup>high</sup>CD9<sup>high</sup>EPCAM<sup>high</sup> (orange) symbols. Values in log<sub>2</sub> TMM RPKM. d, principal component analysis of single hPSC cell gene expression by subpopulation (low, red symbols, GCTM-2lowCD9low; mid, green symbols, GCTM-2<sup>mid</sup>CD9<sup>mid</sup>; hh, grey symbols, GCMT-2<sup>high</sup>CD9<sup>high</sup>; hhh, blue symbols, GCTM-2<sup>high</sup>CD9<sup>high</sup>EPCAM<sup>high</sup>). e-g, single cell expression of the three genes relative to position of cell in PCA in d. h-i, microarray gene expression data on three hPSC cell lines (WA09 grown in defined mTeSR medium, ESI-02 and MEL1 grown in Knockout Serum Replacer in the presence of mouse embryo fibroblast feeder cells), and sorted into four populations showing highest (P7) to lowest (P4) expression of cell surface antigens GCTM-2 and CD9 (27). Values are mean log<sub>2</sub> expression +/- standard deviation of three biological replicates.



h TET1

i

002 Ext

j



С





Supplementary Figure 4. ATAC-seq library quality control. A, Percent of reads mapped to mitochondria. FAST-ATAC protocol was developed to reduce the proportion of mitochondria to the total library. b, fraction of reads mapped to peak regions for each replicate. C, aggregate ATAC-seq signal surrounding all unique annotated TSS sites. d, distribution of fragment insert sizes from GCTM-2<sup>mid</sup>CD9<sup>mid</sup> replicate 1. High quality libraries have a large number of sequence lengths from nucleosome depleted regions (< 150 bp), and clear mono- and dinucleotide sequences. e, scatterplot of the first two principle components of all open chromatin regions. f, barplot of variance explained for each principle component. m and mid and hi and high refer to GCTM-2<sup>mid</sup>CD9<sup>mid</sup> and GCTM-2<sup>high</sup>CD9<sup>high</sup>EPCAM<sup>high</sup> replicates respectively.





Supplementary Figure 5. Regions of increased DNA accessibility in GCTM-2<sup>high</sup>CD9<sup>high</sup>EPCAM<sup>high</sup> (high) population are enriched for stem cell-specific chromatin sites. a, bar chart of differential open chromatin regions between GCTM-2<sup>high</sup>CD9<sup>high</sup>EPCAM<sup>high</sup> (high, yellow) and GCTM-2<sup>mid</sup>CD9<sup>mid</sup> (mid, blue) populations showing overlap with annotated genomic features. GCTM-2<sup>high</sup>CD9<sup>high</sup>EPCAM<sup>high</sup> peaks are found in intergenic and intronic regions, while GCTM-2<sup>mid</sup>CD9<sup>mid</sup> peaks are more frequently found at promoters. b and c, bar chart of 75 most significant enriched overlaps of GCTM-2<sup>mid</sup>CD9<sup>mid</sup> (b) and GCTM-2<sup>high</sup>CD9<sup>high</sup>EPCAM<sup>high</sup> (c) population with the Sheffield DNAse hypersensitivity clusters. Overlap with stem cell specific clusters is indicated in orange. Red bar is annotated as "stem cell specific (weak)".



Supplementary Figure 6. Heatmaps showing distribution of differentially expressed genes in GCTM-2<sup>high</sup>CD9<sup>high</sup>EPCAM<sup>high</sup> (a) and unsorted cells (general population, GEN, b) across the cortical neural differentiation time course described in Cortecon (29). PP, pluripotency; ND, neural differentiation; CS, cortical specification; DL, deep layer; UL, upper layer.

#### LHX5



#### TNFRSF19



#### FST



LRP2



SDK2



FRZB



LIXL1



Supplementary Figure 7. Data from RNA microarray analyses in [1] showing expression in stem cell subpopulations of genes upregulated in the General population in this work. Data from three stem cell lines grown under defined conditions or in medium containing serum replacement with feeder cells are shown.

1. Kolle G, Ho M, Zhou Q, Chy HS, Krishnan K, Cloonan N, Bertoncello I, Laslett AL, Grimmond SM: Identification of human embryonic stem cell surface markers by combined membrane-polysome translation state array analysis and immunotranscriptional profiling. *Stem Cells* 2009, **27**:2446-2456.

# CDH6

Gene Expri



sion Graph for Gane CDH

GREB1L





Supplementary Figure 8. Distribution of gene expression in processed single cell RNA-seq for human and non-human primate datasets. a, histogram displaying expression of all 30445 genes in the human scRNA-seq data. X-axis represents Log2(CPM+1) expression and Y-axis represents density. b, histogram displaying expression of all 34142 genes in the non-human primate scRNA-seq data. X-axis represents Log2(CPM+1) expression and Y-axis represents density. C, histogram of the 11165 genes expressed above 5 Log2(CPM+1) in at least 10% of cells classified in a given phenotype in the human scRNA-seq data. Xaxis represents Log2(CPM+1) expression and Y-axis represents density. d, histogram of the 12986 genes expressed above 1 Log2(CPM+1) in at least 10% of cells classified in a given phenotype in the non-human primate scRNA-seq data. X-axis represents Log2(CPM+1) expression and Y-axis represents density. d, histogram of the 12986 genes expressed above 1 Log2(CPM+1) in at least 10% of cells classified in a given phenotype in the non-human primate scRNA-seq data. X-axis represents Log2(CPM+1) expression and Y-axis represents density. d, histogram of the 12986 genes expressed above 1 Log2(CPM+1) in at least 10% of cells classified in a given phenotype in the non-human primate scRNA-seq data. X-axis represents Log2(CPM+1) expression and Y-axis represents density. e, Venn diagram displaying the overlap of expressed genes between human (left) and non-human primate (right) gene-filtered datasets.



Supplementary Figure 9. Z-scores of ranked expression per cell. a, box plots indicating z scores of ranked gene expression in each cell of the human dataset. X-axis represents sample and Y-axis represents Z-score of ranked expression. Color indicates cell phenotype. The midline point of each colored box represents the median, with upper and lower limits of the colored box describing the 75th and 25th percentile respectively. Whiskers extend up to 1.5 times the interquartile range. b, box plots indicating z scores of ranked gene expression in each cell of the non-human primate dataset. X-axis represents sample and Y-axis represents Z-score of ranked expression. Color indicates cell phenotype. The midline point of each colored box represents the median, with upper and lower limits of the colored box describing the 75th and 25th percentile respectively. Whiskers extend up to 1.5 times the interquartile range is the colored box describing the 75th and 25th percentile respectively. Whiskers extend up to 1.5 times the median, with upper and lower limits of the colored box describing the 75th and 25th percentile respectively. Whiskers extend up to 1.5 times the interquartile range.



Supplementary Figure 10. Single cell gene expression analysis for pluripotency associated transcription factors in subsets of hPSC. a, principal component analysis of cell subsets. b, POU5F1. c, SOX2. d, NANOG. e, ZFP42. f, TFCP2L1. G, POU3F1.



Supplementary Figure 11. Principal component analysis of single cell RNA-seq cynomolgus embryo data from [30]; single embryo cells classified according to [30]. Top left, Screeplot demonstrating the amount of variability in the data accounted for by each component; top right, graph displaying data distribution along first and second components; bottom left; graph displaying data distribution along the second and third components; bottom right, graph displaying data distribution distribution along the second and third components. Color and shape of point indicate sample phenotype, each point representing a single cell.

- Low
- Mid
- Double\_high
- Triple\_high
- + Post\_paTE
- + PreL\_TE
- + Hypoblast
- + PreE\_TE
- ICM
- ▲ Pre\_EPI
- PostE\_EPI
- PostL\_EPI
- Gast1
- Gast2a
- Gast2b
- × VEYE
- × EXMC



Supplementary Figure 12. Exemplary flow cytometry gating strategies for this study. a, strategy for isolation of GCTM-2highCD9highEPCAMhigh cells (Figures 2-9). b, strategy for isolation of GCTM-2highCD9high and GCTM-2lowCD9low cells and determination of mitochondrial membrane potential with JC1 or TMRM (Figure 3). c, strategy for enumeration of ITGA6+/EPCAM+ cells (Figure 2).

Supplementary Table 1. LC-MS analysis showing metabolites that differed significantly between GCTM-2<sub>high</sub>CD9<sub>high</sub>EPCAM<sub>high</sub> subpopulation and remaining sorted cells (general population). Table lists metabolites that are significantly changed in cell extracts of GCTM-2<sub>high</sub>CD9<sub>high</sub>EPCAM<sub>high</sub> and general populations (in order of significance). Blue rows show metabolites that were higher in HHH population while orange rows show metabolites that were higher in general population. A two-sided Student's t-test was performed with alpha = 0.05. This was followed by correcting for multiple comparisons using the Benjamini–Hochberg method for controlling false discovery rate with a false discovery threshold of 0.05.

|                           |          | BH Adjusted | Log2 fold   |          |
|---------------------------|----------|-------------|-------------|----------|
| Metabolite                | p-value  | p-value     | change      | ID type  |
| Isocitric acid            | 1.32E-07 | 1.22E-05    | 0.524642314 | Absolute |
|                           |          |             | -           |          |
| Glutamine                 | 1.93E-06 | 8.87E-05    | 0.607704314 | Absolute |
| Citric acid               | 6.12E-06 | 0.000164247 | 0.586430691 | Absolute |
| 4-Hydroxyproline          | 1.49E-05 | 0.000164247 | 0.527091672 | Absolute |
| trans-4-Hydroxy-L-proline | 1.59E-05 | 0.000164247 | 0.526079094 | Absolute |
| Cystathionine             | 1.00E-05 | 0.000164247 | 0.351659058 | Absolute |
|                           |          |             | -           |          |
| L-Asparagine              | 1.61E-05 | 0.000164247 | 0.388721353 | Absolute |
|                           |          |             | -           |          |
| Glycylglycine             | 1.61E-05 | 0.000164247 | 0.388721353 | Absolute |
| Oxalic acid               | 1.51E-05 | 0.000164247 | -0.47123236 | Absolute |
| 5-Aminolevulinate         | 1.85E-05 | 0.000170312 | 0.523920154 | Absolute |
|                           |          |             | -           |          |
| L-2-Aminoadipate          | 2.30E-05 | 0.000192261 | 0.447839981 | Absolute |
|                           |          |             | -           |          |
| D-Ribose                  | 3.25E-05 | 0.00019939  | 0.727401163 | Absolute |
|                           |          |             | -           |          |
| D-Xylose                  | 3.25E-05 | 0.00019939  | 0.727401163 | Absolute |
|                           |          |             | -           |          |
| D-Fructose                | 3.18E-05 | 0.00019939  | 0.767959474 | Absolute |
|                           |          |             | -           |          |
| (R)-Lactate               | 3.19E-05 | 0.00019939  | 0.774077624 | Absolute |
|                           |          |             | -           |          |
| Aspartic acid             | 4.24E-05 | 0.000243685 | 0.385552536 | Absolute |
| 3-Phosho-D-glycerate      | 4.53E-05 | 0.000245002 | 0.482504025 | Absolute |
|                           |          |             | -           |          |
| 2-oxobutanoate            | 5.28E-05 | 0.00026967  | 0.785205959 | Absolute |

|                               |            |             | -                |          |
|-------------------------------|------------|-------------|------------------|----------|
| myo-Inositol                  | 6.30E-05   | 0.000304823 | 0.818377372      | Absolute |
| Succinate semialdehyde        | 7.01E-05   | 0.000322611 | -0.78868289      | Absolute |
| (R)-2-Hydroxyglutarate        | 9.84E-05   | 0.000413145 | 0.333953643      | Absolute |
|                               |            |             | -                |          |
| N2-Acetyl-L-lysine            | 9.88E-05   | 0.000413145 | 1.132906293      | Absolute |
| Succinic acid                 | 0.0001043  | 0.000417093 | 0.506152229      | Absolute |
|                               |            |             | -                |          |
| D-Glucose                     | 0.0001163  | 0.000445913 | 0.847995972      | Absolute |
| 2-Ketoglutaric acid           | 0.0003023  | 0.001069512 | 0.585100303      | Absolute |
| Methylmalonate                | 0.0002976  | 0.001069512 | 0.510621202      | Absolute |
| Acetoacetate                  | 0.0003189  | 0.0010865   | 0.521594149      | Absolute |
|                               |            |             | -                |          |
| D-Glucuronate                 | 0.0005034  | 0.001596855 | 0.330989736      | Absolute |
|                               |            |             | -                |          |
| D-Galacturonate               | 0.0005034  | 0.001596855 | 0.330989736      | Absolute |
|                               |            |             | -                |          |
| Thiamin                       | 0.0008007  | 0.00245549  | 0.770038699      | Absolute |
|                               |            |             | -                |          |
| Arginine                      | 0.001096   | 0.003252568 | 0.558114321      | Absolute |
| Ribitol                       | 0.0014502  | 0.004042845 | 0.330140832      | Absolute |
|                               | 0.004.0000 | 0.005050700 | -                |          |
| X-D-Galactono-1-4-lactone-    | 0.0019808  | 0.005359799 | 0.409347552      | Absolute |
| Fumaric acid                  | 0.0031647  | 0.008122226 | 0.425029275      | Absolute |
| Custino                       | 0 0021702  | 0.009122226 | -                | Abcoluto |
| Cystine                       | 0.0051785  | 0.008122220 | 0.820901918      | Absolute |
| Deoxvinosine monophosphate    | 0.0035506  | 0.008828582 | -<br>0.310533314 | Absolute |
| Orotidine                     | 0.003765   | 0.009115318 | 0.255350639      | Absolute |
| D-Fructose-6-phosphate        | 0.0040313  | 0.009509659 | 0.257580698      | Absolute |
| Malic acid                    | 0.0048468  | 0.011048939 | 0.47075813       | Absolute |
| L-Alanine                     | 0.0049772  | 0.011048939 | 0.236019278      | Absolute |
| Uridine diphosphate-N-acetyl- |            |             |                  |          |
| D-glucosamine                 | 0.0050441  | 0.011048939 | 0.212823099      | Absolute |
| Adenosine-5'-triphosphate     | 0.0063666  | 0.013621667 | 0.26062801       | Absolute |
|                               |            |             | -                |          |
| L-Threonine                   | 0.0077217  | 0.016145394 | 0.252537882      | Absolute |
|                               |            |             | -                |          |
| Homoserine                    | 0.0079236  | 0.016199384 | 0.251633673      | Absolute |

| Nicotinamide adenine         |           |             |             |          |
|------------------------------|-----------|-------------|-------------|----------|
| dinucleotide- reduced (NADH) | 0.0096662 | 0.019332382 | 0.356589657 | Absolute |
|                              |           |             | -           |          |
| Serine                       | 0.0114596 | 0.02243154  | 0.306785283 | Absolute |
|                              |           |             | -           |          |
| Glutamic acid                | 0.012018  | 0.023034515 | 0.169676121 | Absolute |
| Uridine diphosphate          | 0.0126088 | 0.023349968 | 0.571412567 | Absolute |
| Phosphoenolpyruvic acid      | 0.0126902 | 0.023349968 | 0.223702917 | Absolute |
|                              |           |             | -           |          |
| L-Valine                     | 0.0154158 | 0.02780894  | 0.368588803 | Absolute |
|                              |           |             | -           |          |
| L-Tyrosine                   | 0.0164475 | 0.029099389 | 0.290497601 | Absolute |
| Glutathione                  | 0.016802  | 0.029165807 | 0.438737885 | Absolute |
|                              |           |             | -           |          |
| Betaine                      | 0.0176997 | 0.030154962 | 0.355622103 | Absolute |
|                              |           |             | -           |          |
| Pyruvate                     | 0.0197157 | 0.032979039 | 0.731569295 | Absolute |
|                              |           |             | -           |          |
| Lysine                       | 0.021583  | 0.035457726 | 0.372573214 | Absolute |
|                              |           |             | -           |          |
| Mannitol                     | 0.0248276 | 0.040072586 | 0.311368405 | Absolute |
|                              |           |             | -           |          |
| Taurine                      | 0.0288944 | 0.045832447 | 0.225013689 | Absolute |
| Guanosine diphosphate-       |           |             |             |          |
| mannose                      | 0.0319557 | 0.049829214 | 0.293422161 | Absolute |
| D-Sorbitol                   | 0.0467135 | 0.070453141 | 0.673218477 | Absolute |

Supplementary Table 2. GC-MS analysis showing metabolites that differed significantly between GCTM-2<sub>high</sub>CD9<sub>high</sub>EPCAM<sub>high</sub> subpopulation and remaining sorted cells (general population). Table lists metabolites that are significantly changed in cell extracts of GCTM-2<sub>high</sub>CD9<sub>high</sub>EPCAM<sub>high</sub> and general populations (in order of significance). Blue rows show metabolites that were higher in HHH population while orange rows show metabolites that were higher in general population. A two-sided Student's t-test was performed with alpha = 0.05. This was followed by correcting for multiple comparisons using the Benjamini–Hochberg method for controlling false discovery rate with a false discovery threshold of 0.05.

| Metabolite                    | p-value  | вн       | Log2 fold | ID type  |
|-------------------------------|----------|----------|-----------|----------|
|                               |          | Adjusted | change    |          |
|                               |          | p-value  |           |          |
| L-Ornithine                   | 0.000517 | 0.005339 | 1.849315  | Absolute |
| Citric acid                   | 0.000248 | 0.005339 | 0.859864  | Absolute |
| Glyceric acid                 | 0.000439 | 0.005339 | -0.47783  | Absolute |
| D-Maltose-Peak1               | 0.000607 | 0.005339 | -0.4996   | Absolute |
| D-Turanose-Peak2              | 0.000314 | 0.005339 | -0.73448  | Absolute |
| D-Glucosamine                 | 0.000294 | 0.005339 | -0.8207   | Absolute |
| D-Glucose-Peak2               | 0.000636 | 0.005339 | -0.82803  | Absolute |
| Mannitol                      | 0.000594 | 0.005339 | -0.86019  | Absolute |
| D-Talose-Peak2                | 0.000592 | 0.005339 | -0.86062  | Absolute |
| L-Serine                      | 0.000459 | 0.005339 | -1.77365  | Absolute |
| D-Maltose-Peak2               | 0.00183  | 0.013972 | -0.45887  | Absolute |
| Pyridoxal                     | 0.002407 | 0.016078 | -0.62319  | Absolute |
| D-Gluconic-Acid-Delta-Lactone | 0.002488 | 0.016078 | -0.68587  | Absolute |
| Succinic acid                 | 0.002957 | 0.017741 | 0.478017  | Absolute |
| D-Glucose-Peak1               | 0.003551 | 0.019883 | -0.62562  | Absolute |
| Phosphoenolpyruvic acid       | 0.005606 | 0.023978 | 0.380612  | Absolute |
| D-Talose-Peak1                | 0.005468 | 0.023978 | -0.60396  | Absolute |
| D-Turanose-Peak1              | 0.005709 | 0.023978 | -0.62604  | Absolute |
| Adenine                       | 0.004782 | 0.023978 | -0.639    | Absolute |
| Uridine                       | 0.005198 | 0.023978 | -1.08842  | Absolute |
| L-Asparagine                  | 0.0067   | 0.025582 | 1.113448  | Absolute |
| Fumaric acid                  | 0.006432 | 0.025582 | 0.467122  | Absolute |
| Malic acid                    | 0.008822 | 0.03222  | 0.476851  | Absolute |
| Octadecanoic acid             | 0.00961  | 0.033634 | -0.50692  | Absolute |
| L-Tyrosine                    | 0.011051 | 0.035584 | 1.622878  | Absolute |

| Lysine                                                                                        | 0.012264                                                             | 0.035584                                                             | 1.560901                                                            | Absolute                                                             |
|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|
| DL-Homoserine                                                                                 | 0.012285                                                             | 0.035584                                                             | 1.435386                                                            | Absolute                                                             |
| L-Leucine                                                                                     | 0.01061                                                              | 0.035584                                                             | -0.30289                                                            | Absolute                                                             |
| 1-6-Anhydro-Beta-D-Glucose                                                                    |                                                                      |                                                                      |                                                                     |                                                                      |
| (Levoglucosan)                                                                                | 0.011904                                                             | 0.035584                                                             | -0.59403                                                            | Absolute                                                             |
| Oxalic acid                                                                                   | 0.015423                                                             | 0.043091                                                             | -0.38435                                                            | Absolute                                                             |
| Hexadecanoic acid                                                                             | 0.015903                                                             | 0.043091                                                             | -0.49781                                                            | Absolute                                                             |
|                                                                                               |                                                                      |                                                                      |                                                                     |                                                                      |
| Benzoic acid                                                                                  | 0.022223                                                             | 0.058336                                                             | -0.46482                                                            | Absolute                                                             |
| Benzoic acid<br>Trehalose                                                                     | 0.022223<br>0.025241                                                 | 0.058336<br>0.062361                                                 | -0.46482<br>-0.28773                                                | Absolute<br>Absolute                                                 |
| Benzoic acid<br>Trehalose<br>L-Threonine                                                      | 0.022223<br>0.025241<br>0.024974                                     | 0.058336<br>0.062361<br>0.062361                                     | -0.46482<br>-0.28773<br>-0.83173                                    | Absolute<br>Absolute<br>Absolute                                     |
| Benzoic acid<br>Trehalose<br>L-Threonine<br>D-Glucose 6-phosphate                             | 0.022223<br>0.025241<br>0.024974<br>0.026682                         | 0.058336<br>0.062361<br>0.062361<br>0.064036                         | -0.46482<br>-0.28773<br>-0.83173<br>-0.4393                         | Absolute<br>Absolute<br>Absolute<br>Absolute                         |
| Benzoic acid<br>Trehalose<br>L-Threonine<br>D-Glucose 6-phosphate<br>L-Valine                 | 0.022223<br>0.025241<br>0.024974<br>0.026682<br>0.028355             | 0.058336<br>0.062361<br>0.062361<br>0.064036<br>0.066162             | -0.46482<br>-0.28773<br>-0.83173<br>-0.4393<br>-0.26637             | Absolute<br>Absolute<br>Absolute<br>Absolute<br>Absolute             |
| Benzoic acid<br>Trehalose<br>L-Threonine<br>D-Glucose 6-phosphate<br>L-Valine<br>L-Tryptophan | 0.022223<br>0.025241<br>0.024974<br>0.026682<br>0.028355<br>0.032925 | 0.058336<br>0.062361<br>0.062361<br>0.064036<br>0.066162<br>0.074749 | -0.46482<br>-0.28773<br>-0.83173<br>-0.4393<br>-0.26637<br>-0.52234 | Absolute<br>Absolute<br>Absolute<br>Absolute<br>Absolute<br>Absolute |

Supplementary Table 3. Pathway analysis of differentially expressed genes in GCTM-2highCD9highEPCAMhigh subpopulation and unsorted cells (general population) identified by RNA-seq.

| GO Analysis with Panther.db (Slim)                          |                                |                             |                                  |                                         |                             |
|-------------------------------------------------------------|--------------------------------|-----------------------------|----------------------------------|-----------------------------------------|-----------------------------|
| Biological Process                                          | Homo sapiens - REFLIST (21042) | Client Text Box Input (548) | Client Text Box Input (expected) | Client Text Box Input (fold Enrichment) | Client Text Box Input (FDR) |
| protein folding (GO:0006457)                                | 94                             | 14                          | 2.45                             | 5.72                                    | 1.87E-05                    |
| translation (GO:0006412)                                    | 198                            | 27                          | 5.16                             | 5.24                                    | 5.90E-09                    |
| rRNA metabolic process (GO:0016072)                         | 113                            | 15                          | 2 94                             | 51                                      | 2 03E-05                    |
| oxidative phosphorylation (CO:0006119)                      | 47                             | 10                          | 1.22                             | 4.0                                     | 1.47E-02                    |
| mitechandrian arganization (CO:0007005)                     | 47                             | 11                          | 1.22                             | 4.5                                     | 9.275.04                    |
| nilochondhon organization (GO.0007005)                      | 92                             | 11                          | 2.4                              | 4.59                                    | 0.3/E-04                    |
| chromosome segregation (GO:0007059)                         | 96                             | 9                           | 2.5                              | 3.0                                     | 1.20E-02                    |
| generation of precursor metabolites and energy (GO:000609   | J 171                          | 15                          | 4.45                             | 3.37                                    | 1.09E-03                    |
| respiratory electron transport chain (GO:0022904)           | 107                            | 9                           | 2.79                             | 3.23                                    | 1.81E-02                    |
| protein targeting (GO:0006605)                              | 171                            | 14                          | 4.45                             | 3.14                                    | 2.99E-03                    |
| nuclear transport (GO:0051169)                              | 123                            | 9                           | 3.2                              | 2.81                                    | 3.50E-02                    |
| cellular component biogenesis (GO:0044085)                  | 776                            | 55                          | 20.21                            | 2.72                                    | 7.55E-09                    |
| RNA splicing via transesterification reactions (GO:0000375) | ) 156                          | 11                          | 4 06                             | 2 71                                    | 2 08E-02                    |
| mRNA splicing, via spliceosome (GO:0000398)                 | , 178                          | 12                          | 4 64                             | 2 59                                    | 2.002 02<br>2.07E-02        |
| mPNA processing (CO:0006397)                                | 244                            | 16                          | 6.35                             | 2.50                                    | 9.53E-03                    |
| regulation of coll availa (CO:000037)                       | 196                            | 10                          | 0.00                             | 2.02                                    | 9.00L-00                    |
|                                                             | 100                            | 12                          | 4.04                             | 2.40                                    | 2.00E-02                    |
| mitosis (GO:0007067)                                        | 231                            | 14                          | 6.02                             | 2.33                                    | 3.20E-02                    |
| protein complex assembly (GO:0006461)                       | 244                            | 14                          | 6.35                             | 2.2                                     | 4.01E-02                    |
| protein complex biogenesis (GO:0070271)                     | 245                            | 14                          | 6.38                             | 2.19                                    | 4.02E-02                    |
| cell cycle (GO:0007049)                                     | 723                            | 39                          | 18.83                            | 2.07                                    | 7.45E-04                    |
| organelle organization (GO:0006996)                         | 1212                           | 62                          | 31.56                            | 1.96                                    | 2.01E-05                    |
| cellular component organization or biogenesis (GO:0071840   | 2099                           | 104                         | 54.66                            | 1.9                                     | 2.70E-08                    |
| biosynthetic process (GO:0009058)                           | , 1745                         | 86                          | 45 45                            | 1 89                                    | 8.06E-07                    |
| protein localization (CO:0008104)                           | 532                            | 26                          | 13.85                            | 1.80                                    | 2 12E-02                    |
| intracellular protoin trapsport (CO:0006896)                | 502                            | 20                          | 19.03                            | 1.00                                    | 1 24E 02                    |
|                                                             | 094                            | 33                          | 10.07                            | 1.03                                    | 1.24E-02                    |
| protein transport (GO:0015031)                              | /36                            | 34                          | 19.17                            | 1.77                                    | 1.50E-02                    |
| RNA metabolic process (GO:0016070)                          | 1570                           | 72                          | 40.89                            | 1.76                                    | 9.99E-05                    |
| cellular component organization (GO:0016043)                | 1964                           | 87                          | 51.15                            | 1.7                                     | 3.83E-05                    |
| nucleobase-containing compound metabolic process (GO:00     | C 2797                         | 122                         | 72.84                            | 1.67                                    | 7.77E-07                    |
| protein metabolic process (GO:0019538)                      | 1583                           | 69                          | 41.23                            | 1.67                                    | 6.73E-04                    |
| nitrogen compound metabolic process (GO:0006807)            | 2524                           | 104                         | 65.73                            | 1.58                                    | 6.06E-05                    |
| catabolic process (GO:0009056)                              | 1176                           | 48                          | 30.63                            | 1 57                                    | 1 75E-02                    |
| phosphate-containing compound metabolic process (CO:00      | 1595                           | 63                          | 41 54                            | 1 52                                    | 1 17E-02                    |
| primary metabolic process (CO:0044229)                      | 4753                           | 197                         | 102 70                           | 1.52                                    | 6 20E 02                    |
|                                                             | 4755                           | 107                         | 123.70                           | 1.01                                    | 0.032-00                    |
| metabolic process (GO.0006152)                              | 5070                           | 227                         | 155.00                           | 1.40                                    | 2.972-09                    |
| cellular process (GO:0009987)                               | 8247                           | 273                         | 214.78                           | 1.27                                    | 1.81E-05                    |
| Unclassified (UNCLASSIFIED)                                 | 10206                          | 220                         | 265.8                            | 0.83                                    | 1.26E-03                    |
| biological regulation (GO:0065007)                          | 2985                           | 54                          | 77.74                            | 0.69                                    | 2.06E-02                    |
| cell communication (GO:0007154)                             | 2686                           | 46                          | 69.95                            | 0.66                                    | 1.25E-02                    |
| response to stimulus (GO:0050896)                           | 2677                           | 44                          | 69.72                            | 0.63                                    | 6.63E-03                    |
| single-multicellular organism process (GO:0044707)          | 1665                           | 24                          | 43.36                            | 0.55                                    | 1.21E-02                    |
| multicellular organismal process (GO:0032501)               | 1684                           | 24                          | 43.86                            | 0.55                                    | 1 10E-02                    |
| cell surface recentor signaling pathway (CO:0007166)        | 1206                           |                             | 31 /1                            | 0.38                                    | 1 23E-03                    |
| custom process (CO:0002008)                                 | 1020                           | 12                          | 26.56                            | 0.30                                    | 2.52E-03                    |
| system process (GO.0000000)                                 | 1020                           | 10                          | 20.00                            | 0.30                                    | 3.52E-03                    |
| neurological system process (GO:0050877)                    | 924                            | 9                           | 24.06                            | 0.37                                    | 8.05E-03                    |
| immune system process (GO:0002376)                          | 669                            | 3                           | 17.42                            | 0.17                                    | 7.25E-04                    |
| immune response (GO:0006955)                                | 383                            | 0                           | 9.97                             | < 0.01                                  | 1.20E-03                    |
| sensory perception of smell (GO:0007608)                    | 240                            | 0                           | 6.25                             | < 0.01                                  | 2.06E-02                    |
| sensory perception of chemical stimulus (GO:0007606)        | 282                            | 0                           | 7.34                             | < 0.01                                  | 1.19E-02                    |
| Cellular Component                                          | Homo sapiens - REFLIST (21042) | Client Text Box Input (548) | Client Text Box Input (expected) | Client Text Box Input (fold Enrichment) | Client Text Box Input (FDR) |
| ribosome (GO:0005840)                                       | 160                            | 48                          | 4.17                             | 11.52                                   | 7.25E-31                    |
| proton-transporting ATP synthase complex (GO:0045259)       | 19                             | 4                           | 0.49                             | 8.08                                    | 8.81E-03                    |
| ribonucleoprotein complex (GO:0030529)                      | 427                            | 77                          | 11 12                            | 6.92                                    | 5.69E-36                    |
| avtesol (CO:0005920)                                        | 511                            | 66                          | 12.21                            | 4.06                                    | 6 59E 24                    |
| mitoshandrial inner membrane (CO:0005742)                   | 109                            | 00                          | 10.01                            | 4.90                                    | 0.00E-24<br>2.67E 02        |
|                                                             | 100                            | 10                          | 2.01                             | 3.50                                    | 3.07E-03                    |
| nucleoius (GO:0005730)                                      | 117                            | 9                           | 3.05                             | 2.95                                    | 1.65E-02                    |
| mitochondrion (GO:0005739)                                  | 392                            | 29                          | 10.21                            | 2.84                                    | 7.74E-06                    |
| macromolecular complex (GO:0032991)                         | 2156                           | 158                         | 56.15                            | 2.81                                    | 4.62E-31                    |
| microtubule (GO:0005874)                                    | 137                            | 9                           | 3.57                             | 2.52                                    | 3.77E-02                    |
| nuclear outer membrane-endoplasmic reticulum membrane       | n 234                          | 15                          | 6.09                             | 2.46                                    | 6.93E-03                    |
| endoplasmic reticulum (GO:0005783)                          | 412                            | 24                          | 10 73                            | 2.10                                    | 2 32F-03                    |
| cvtoplasm (GO:0005737)                                      | 3171                           | 190                         | 82 58                            | 2.24                                    | 1 68E-23                    |
| organelle (CO:00/3226)                                      | 2010                           | 100                         | 101 02.00                        | 2.10                                    | 2 005 20                    |
| intracellular (CO:0005622)                                  | 3910                           | 197                         | 101.83                           | 1.93                                    | 2.995-20                    |
| IIII aceilular (GO:0005022)                                 | 5262                           | 261                         | 137.04                           | 1.9                                     | 4.85E-28                    |

| cell part (GO:0044464)                                       | 5531                           | 265                         | 144.04                           | 1.84                                    | 2.01E-26                    |
|--------------------------------------------------------------|--------------------------------|-----------------------------|----------------------------------|-----------------------------------------|-----------------------------|
| protein complex (GO:0043234)                                 | 1796                           | 86                          | 46.77                            | 1.84                                    | 5.42E-07                    |
| nucleus (GO:0005634)                                         | 1943                           | 81                          | 50.6                             | 1.6                                     | 2.11E-04                    |
| Unclassified (UNCLASSIFIED)                                  | 13830                          | 267                         | 360.18                           | 0.74                                    | 6.73E-15                    |
| plasma membrane (GO:0005886)                                 | 1515                           | 23                          | 39.46                            | 0.58                                    | 1.71E-02                    |
| extracellular region (GO:0005576)                            | 673                            | 4                           | 17.53                            | 0.23                                    | 1.25E-03                    |
| extracellular space (GO:0005615)                             | 530                            | 3                           | 13.8                             | 0.22                                    | 0.00451                     |
| Molecular Function                                           | Homo sapiens - REFLIST (21042) | Client Text Box Input (548) | Client Text Box Input (expected) | Client Text Box Input (fold Enrichment) | Client Text Box Input (FDR) |
| structural constituent of ribosome (GO:0003735)              | 126                            | 38                          | 3.28                             | 11.58                                   | 1.75E-23                    |
| proton-transporting ATP synthase activity, rotational mechan | 17                             | 4                           | 0.44                             | 9.03                                    | 2.57E-02                    |
| hydrogen ion transmembrane transporter activity (GO:00150    | 72                             | 9                           | 1.88                             | 4.8                                     | 4.50E-03                    |
| translation regulator activity (GO:0045182)                  | 80                             | 10                          | 2.08                             | 4.8                                     | 2.60E-03                    |
| kinase regulator activity (GO:0019207)                       | 70                             | 8                           | 1.82                             | 4.39                                    | 1.41E-02                    |
| structural molecule activity (GO:0005198)                    | 506                            | 51                          | 13.18                            | 3.87                                    | 2.20E-13                    |
| mRNA binding (GO:0003729)                                    | 142                            | 13                          | 3.7                              | 3.52                                    | 4.05E-03                    |
| isomerase activity (GO:0016853)                              | 103                            | 9                           | 2.68                             | 3.36                                    | 2.85E-02                    |
| RNA binding (GO:0003723)                                     | 385                            | 33                          | 10.03                            | 3.29                                    | 4.71E-07                    |
| nucleic acid binding (GO:0003676)                            | 1625                           | 64                          | 42.32                            | 1.51                                    | 1.95E-02                    |
| catalytic activity (GO:0003824)                              | 4217                           | 151                         | 109.82                           | 1.37                                    | 1.01E-03                    |
| binding (GO:0005488)                                         | 4911                           | 164                         | 127.9                            | 1.28                                    | 9.72E-03                    |
| Unclassified (UNCLASSIFIED)                                  | 11852                          | 236                         | 308.66                           | 0.76                                    | 5.55E-08                    |
|                                                              |                                |                             |                                  |                                         |                             |

| ICM                                            | ICM<br>PRE EPI                                                                                           | ICM<br>PRE EPI           | PRE EPI<br>POST EPI-E                                                                | PRE EPI<br>POST EPI                                                                                                                   | PRE EPI<br>POST EPI                                                                                                                          | POST EPI                                                                                                             | POS EPI-L<br>GAST                                               | GAST                                                | GAST                                                                                               |
|------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------|
| AQP3<br>CLDN4<br>ESRRB<br>IL6R<br>TBX3<br>XIST | ANPEP<br>ANXA1<br>CD53<br>FGFR3<br>GDF15<br>KHDC1L<br>KLF4<br>KLF5<br>OOEP<br>S100P<br>TFAP2C<br>TFCP2L1 | DNMT3L<br>PRDM14<br>SOX2 | DMRTB1<br>DNMT3L<br>HIST1H1C<br>KHDC3L<br>LGALS1<br>NLRP2<br>SPP1<br>TUBB6<br>ZYG11A | F2RL1<br>FAM19A4<br>GABRB3<br>GDF3<br>ITGA7<br>MYLIP<br>NPY1R<br>PLP1<br>RNASET2<br>SFRP2<br>SGK1<br>SLAIN1<br>SOX2<br>USP44<br>VAT1L | ANXA1<br>EVX1<br>FEZ1<br>FGF4<br>GABRB3<br>GBX2<br>GDF3<br>KHDC3L<br>KRT19<br>LEFTY1<br>NODAL<br>SALL2<br>TCF7L1<br>WNT5B<br>ZIC2<br>ZSCAN10 | ARHGEF19<br>BMP4<br>CAV1<br>CCND1<br>CCND2<br>FGF2<br>FST<br>GPC4<br>HAS3<br>HESX1<br>KDR<br>SFRP1<br>SFRP2<br>SOX11 | BMP4<br>CHD7<br>HMGA2<br>ITM2A<br>SFRP1<br>TPM1<br>WWC3<br>ZIC2 | EOMES<br>FN1<br>GATA4<br>ID2<br>MIXL1<br>PITX2<br>T | CER1<br>EPHA4<br>FGF17<br>FOXA2<br>GATA6<br>GSC<br>HHEX<br>KLF5<br>LHX1<br>OTX2<br>PDGFRA<br>SOX17 |

Supplementary Table 4. Stage-specific differentially expressed genes. Genes were selected on the basis of specificity to particular stages of development, or to particular stage transitions. ICM, inner cell mass; ICM/PRE EPI, inner cell mass/pre-implantation epiblast; PRE-EPI/POST EPI-E, pre-implantation epiblast/early post-implantation epiblast; PRE EPI/POST EPI; pre-implantation and post-implantation epiblast; POST EPI, post-implantation epiblast; POST EPI-L/GAST, late post-implantation epiblast and gastrulation; GAST, gastrulation.

|     |        |       | SINGLE CELLS |      |      |      | AGGREGATES |     |     |
|-----|--------|-------|--------------|------|------|------|------------|-----|-----|
|     |        | # OF  | 2000         | 1000 | 200  | #OF  | 1000       | 500 | 100 |
|     |        | CELLS |              |      |      | AGGs |            |     |     |
|     |        |       |              |      |      |      |            |     |     |
| нн  |        |       |              |      |      |      |            |     |     |
|     | EXPT 1 |       | 165          | 16   | 0    |      | 344        | 50  | 0   |
|     | EXPT 2 |       | 161          | 28   | 0    |      | 309        | 82  | 0   |
|     | EXPT 3 |       | 76           | 16   | 0.25 |      | 137        | 55  | 6.5 |
|     |        |       |              |      |      |      |            |     |     |
| MID |        |       |              |      |      |      |            |     |     |
|     | EXPT1  |       | 35           | 4    | 0    |      | 84         | 3   | 0   |
|     | EXPT2  |       | 72           | 1    | 0    |      | 63         | 4   | 0   |
|     | EXPT3  |       | 33           | 4.2  | 0.5  |      | 46         | 16  | 1   |

Supplementary Table 5. Biological replicate data for assay in Figure 1e showing colony formation of single cell and cell aggregates from GCTM-2<sub>high</sub>CD9<sub>high</sub> and GCTM-2<sub>mid</sub>CD9<sub>mid</sub> subpopulations. Table shows number of microcolonies formed after 4 days of culture by single cells (200, 1000, or 2000) or aggregates (100, 500, or 1000) of GCTM-2<sub>high</sub>CD9<sub>high</sub> (HS, HA) and GCTM-2<sub>mid</sub>CD9<sub>mid</sub> (MS, MA) subpopulations in 3 separate experiments. Values represent the mean from eight wells from each experiment.

Supplementary Table 6. Biological replicate data for cell cycle studies using Fucci reporter system shown in Supplementary Figure 1. Table shows proportion of cells in G1 for cultures grown in E8 defined medium without feeder cell support (four biological replicates), in serum replacement on mouse embryo fibroblasts (four biological replicates, or MTeSR defined medium without feeder cell support (six biological replicates).

#### FUCCI E8

|         | % in G1 Low |      | HH  | ННН  |  |
|---------|-------------|------|-----|------|--|
|         | 30012015    | 14.0 | 8.1 | 10.1 |  |
|         | 02022015    | 8.6  | 3.3 | 3.3  |  |
|         | 12022015    | 13.1 | 2.8 | 2.5  |  |
|         | 31032015    | 13.4 | 9.9 | 11.8 |  |
| Average |             | 12.3 | 6.0 | 6.9  |  |
| SD      |             | 2.5  | 3.5 | 4.7  |  |
| SEM     |             | 1.2  | 1.8 | 2.4  |  |

### 

|         | % in G1  | Low  | HH   | HHH  |  |
|---------|----------|------|------|------|--|
|         | 30012015 | 57.2 | 24.6 | 18.0 |  |
|         | 02022015 | 64.8 | 19.5 | 24.1 |  |
|         | 16062015 | 69.0 | 4.3  | 3.4  |  |
|         | 25062015 | 47.8 | 4.8  | 10.5 |  |
| Average |          | 59.7 | 13.3 | 14.0 |  |
| SD      |          | 9.3  | 10.3 | 9.0  |  |
| SEM     |          | 4.6  | 5.2  | 4.5  |  |

#### FUCCI MTeSR

|         | % in G1  | Low  | HH  | ННН  |
|---------|----------|------|-----|------|
|         | 12005015 | 7.2  | 5.5 | 8.0  |
|         | 19052015 | 13.6 | 9.0 | 12.3 |
|         | 16062015 | 6.7  | 1.2 | 1.7  |
|         | 25062015 | 9.2  | 1.0 | 1.0  |
|         | 1072015  | 25.0 | 2.0 | 2.0  |
|         | 9072015  | 6.3  | 0.4 | 0.6  |
| Average |          | 11.3 | 3.2 | 4.3  |
| SD      |          | 7.2  | 3.4 | 4.8  |
| SEM     |          | 2.9  | 1.4 | 2.0  |

|         | 9072015 | 6.3  | 0.4 | 0.6 |
|---------|---------|------|-----|-----|
| Average |         | 11.3 | 3.2 | 4.3 |
| SD      |         | 7.2  | 3.4 | 4.8 |
| SEM     |         | 2.9  | 1.4 | 2.0 |
|         |         |      |     |     |