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SUPPLEMENTAL MATERIAL

Single biallelic locus. Letting allele A (denoted as state 1 below) have a fractional selective

advantage s over allele a (denoted as state 0), and the mutation rates from the former to the latter

and vice versa be u10 and u01, respectively, the full stationary distribution of allele frequencies

for this two-allele system has already been derived (1, 2). Letting x be the frequency of the

deleterious allele a, U01 = 2Neu01, U10 = 2Neu10, and S = 2Nes, the continuous distribution is

given by

φ(x) = CxU10−1(1− x)U01−1e−Sx (S1a)

with normalization constant

C =
Γ(U01 + U10)

Γ(U01) · Γ(U10) · 1F1(U10; (U01 + U10);−S)
, (S1b)

where Γ denotes the gamma function, and 1F1 is the confluent hypergeometric function, defined

respectively as Equations 6.1.2 and 13.1.2 in Abramowitz and Stegun (3). Equation (S1a) can

be viewed as the long-term probability of a single lineage residing at frequency x or equivalently

as the fraction of independent populations residing at frequency x at any particular time. In-

tegrating Equation (S1a) over the full range of x yields the long-term mean frequency of the

deleterious allele

p0 =
µ10 · 1F1[(U10 + 1); (U01 + U10 + 1);−S]
(µ01 + µ10) · 1F1[U10; (U01 + U10);−S]

, (S2)

with that of the beneficial allele being p1 = 1 − p0 (1, 4). With a haploid, single-locus model,

p1 is equivalent to the long-term probability that a single randomly sampled individual has the

highest-fitness genotype.

Although Equation (S1a) yields an essentially perfect fit with data from simulations of a

standard Wright-Fisher model with reversible mutation, drift, and selection (Figure 2, Main

Text), it is cumbersome mathematically and visual inspection does not lead to a transparent

interpretation. (The C++ code for this and all other simulations is available from the author

upon request). Thus, it is common in population genetics to use one of two alternative approxi-

mations. One extreme view is that drift is weak enough relative to mutation and selection that

the population can be treated as effectively infinite in size. Under this deterministic model, a

stable equilibrium allele frequency generally arises, and there is no divergence among popula-

tions provided the underlying evolutionary forces remain constant. The single point equilibrium
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frequency for the deleterious allele a is

p̃0 =
[u01 + u10 + s(1− u01)]−

√
[u01 + u10 + s(1− u01)]2 − 4su10

2s
. (S3a)

Because both the selection coefficient and the mutation rates are < 1, the latter generally by

orders of magnitude, the previous expression reduces to

p̃0 '
u10

u01 + u10 + s
. (S3b)

A second approach relies on models that assume finite populations experiencing low enough

rates of mutation and high enough strength of selection that polymorphisms are almost never

present, with fixation of alternative monomorphic states being the norm. Under this view, over a

long enough time period, there is a steady-state flux between alternative fixed states. Letting p∗0

and p∗1 be the equilibrium frequencies such that the net rates of flux are equal in both directions,

the final solution satisfies

p∗0 · (Nu01) · f01 = p∗1 · (Nu10) · f10, (S4)

where the terms in parentheses denote the rates of origin of mutations from their respective

source populations, and f01 and f10 denote the probabilities of fixation of newly arisen beneficial

and deleterious alleles. From standard diffusion theory (5, 6),

f01 =
1− e−2(Ne/N)s

1− e−2Nes
, (S5)

with f10 defined in the same way with the sign of s changed. Using the identity f01/f10 = eS ,

which holds in the limit of large N (the more general result being eS[1−(1/N)]), where S = 2Nes,

and letting β = u01/u10 be the ratio of mutation rates, the expected frequency of the beneficial

allele is

p∗1 '
βeS

1 + βeS
. (S6)

Computer simulations. For all conditions modeled, computer simulations were performed

using a “Wright-Fisher” framework. Custom software written in C++ to carry out the special-

ized goals of the work is available from the author upon request. The validity of the code was

evaluated by comparing outputs under a range of conditions for which analytical results were

available, e.g., the cases of neutrality and small-population size limits where the results of the
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sequential model (described in the text) apply. As all analyses involved nonrecombining genomes

and mutations with constant and additive fitness effects, individuals were simply characterized

by their numbers of −/+ alleles. The basic simulation procedure involved a repetitive cycle of

three per-generation steps to iteratively generate the frequency distribution of individuals with

the full range of possible mutation numbers (0 to L, with L genomic sites):

1) Starting with the genotype frequencies from the end of the preceding generation, mutation

was imposed by deterministically transforming the frequencies of each class into three categories

– the retained nonmutants, and those in the two adjacent classes. Given the low mutation rates

employed, double mutants were ignored.

2) Selection was then imposed on the post-mutational distribution by multiplying the latter

frequencies by the class-specific fitnesses scaled by the post-mutation mean population fitness.

These fitnesses were defined by the various fitness functions described in the text, and the use

of relative fitnesses ensures that the frequency distribution sums to 1.0 after selection.

3) The post-selection frequencies were then treated as expected values in the random drift

process, whereby new frequencies were stochastically generated by random multinomial sampling

to produce a new pool ofN haploid individuals. At this point, all nonzero classes have frequencies

that are integer multipliers of 1/N . These frequencies then constituted the next generation to

be re-entered into step 1.

The primary goal of the simulations was to determine the long-term mean and variance

of the number of − alleles per individual in the population, given the mutation function, the

selection function, and the absolute population size (N). To achieve this, a single, long string

of generations was performed, with statistics generally being compiled every 0.1N generations;

under neutrality, fixation of a new mutation occurs in 2N generations on average, so this in-

terval reduces the computational time spent on nonindependent data. For each simulation, the

starting distribution was based on the analytical predictions of the sequential model or on the

expectations of the deterministic single-locus model, both described in the text. For each run,

prior to compiling simulation statistics, a burn-in period of 1000N generations was imposed, i.e.,

long enough for 500 fixations per site under neutrality. Recordings of the frequency distribution

and its mean and variance were then recorded for 108 to 109 time points, with the requirement

that the cumulative mean and variance of the distribution for the number of mutations per in-

dividual stabilized to the point of < 0.01% change per recording. In no case did the final result
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depend on the starting distribution or the interval between data recording, consistent with the

overall runs being long enough to achieve equilibrium.

As illustrated in the main text, for any pair of mutation and selection functions, simulations

were performed for population sizes ranging from 1.3 × 104 to 2.0 × 108 individuals. Owing to

the length of the individual runs (up to several days), for some of the very largest population

sizes, it was necessary to scale down the population size N in a way that kept Ns and Nu

constant, i.e., by simultaneously reducing N by a factor of x and increasing u and s by the

same factor. This keeps the power of selection and mutation relative to drift constant, and

based on diffusion theory is expected to yield the same results in shorter time periods, as was

verified in simulations prior to adapting this strategy. In addition, as the number of loci imposed

ranged up to L = 106, whereas at equilibrium the population typically occupied only a small

range of the possible classes, the upper and lower bounds of the distributions were tracked each

generation so that all zero classes except those adjacent to the lowest and highest occupied

classes could be ignored. Although these bounds stochastically vary across generations, such

treatment dramatically speeds up the simulations by minimizing the time spent on nonexistent

classes.

Large numbers of loci. Attempts were made to derive an analytical expression for the

equilibrium genotype distribution under the joint influence of selection, mutation, and random

genetic drift in the case of large numbers of loci (L), and although the outcome was not fully

satisfactory, some relationships that emerged may be useful to future investigators. As a starting

point, one might draw insight from the limiting case of an infinite population size, infinite sites,

and an absence of beneficial mutations, where it is known that the population settles into a

selection-mutation balance for the distribution of numbers of individuals with different numbers

of deleterious alleles. In this case, the equilibrium distribution is Poisson in form, defined by the

parameter Ud/s, where Ud (assumed to be independent of the number of pre-existing mutations

under the infinite-sites model) is the genome-wide rate of deleterious mutation (7); the expected

fraction of individuals in the best class (zero deleterious mutations) is then e−Ud/s.

There are, however, several problems with extending the Haigh model (7) here. First, with

finite numbers of sites, Ud is not independent of an individual’s genetic background, as the rate of

deleterious mutation of an individual, u10(L−m), depends on its genotypic state. As the number
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of + sites increases, the genome-wide deleterious mutation rate increases, whereas the mutation

rate to further beneficial alleles declines. Second, unless the population size is unrealistically

high, the expected number of individuals in the best class will be orders of magnitude below 1,

and the relationship between the mean frequency of + alleles/site and the position of the nose

of the distribution is unclear. Third, the Haigh model does not allow for the recovery of lost

classes by back-mutation. It has been argued that with a more complete model, the steady-state

distribution likely resembles a shifted Poisson distribution (8), with parameter Ud/(s+u01), but

this again assumes an infinite-sites / infinite population-size model.

Because selection operates on genetic variation, a key component driving the scaling pat-

terns in Figure 5 must be the expected standing level of within-population genetic variance for

the trait, σ2
m. In principle, the long-term average value of this variance can be approximated by

use of a modified version of a recursion equation that treats m as a quantitative trait,

σ2
m(t+ 1) ' (1− s) ·

{
λσ2

m(t) + u10µm(t)− u01[L− µm(t)]
}
, (S7)

where λ = 1− (1/Ne) is the fraction of genetic variation retained after a generation of drift, and

the last two terms are the rates of change of variance in the number of + sites by mutation (9;

their Equation 1b). Solution of this expression leads to the equilibrium expectation

σ̃2
m =

(1− s)[u10µ̃m − u01(L− µ̃m)]
1− λ(1− s)

. (S8a)

Jain and John (10) analyzed a model similar to that employed here, but assumed an infinite

number of sites and infinite population size. Modifying their genome-wide mutation rates to

allow for finite numbers of sites leads to

σ̃2
m '

u10µ̃m − u01(L− µ̃m)
s

, (S8b)

which is consistent with Equation (S8a) for Ne = ∞ and small s. The same expression can

be derived from another infinite-sites model (11; their p. 1313) after suitable modification to a

finite-sites scenario.

There are two unfortunate concerns with Equations (S8a,b). First, they are functions of the

equilibrium mean number of + alleles, µ̃m, which is the unknown that we are trying to determine.

Second, for Nes� 1 (the realm of effective neutrality), one would expect the variance to become

saturated at large Ne, as all sites harbor a heterozygosity equivalent to that expected for an
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infinite-sized population. However, as Nes → 0, σ̃2
m → 2NeLu01/(1 + β), growing without

bounds with increasing Ne in Equation (S8a), whereas the actual neutral variance is

σ̃2
m =

2Neu01L

1 + β +Neu10(1 + 6β + β2)
. (S9)

where β = u01/u10. Equation (S9), which was confirmed by computer simulations with s = 0,

has a limit of 2Lβ/(1 + 6β + β2) at large Ne (which reduces to L/4 for β = 1.0).

Despite these caveats, when the observed equilibrium genotypic means from simulations

are substituted, Equations (S8a,b) predict within-population variances that are in essentially

perfect accord with simulated data, across the full range of evaluated N , s, and L (Figure S1a).

Moreover, the simpler version, Equation (S8b) yields results almost identical to (S8a), demon-

strating that most of the information on drift and selection resides in µ̃m. These observations

show that the overall approach is internally consistent, but do not solve the problem of obtaining

µ̃m from first principles.

A parallel approach is to consider the dynamics of the mean µ̃m conditional on σ̃2
m. Again

using a quantitative-genetic approach and an infinite-sites model, Lynch et al. (9; their Equation

1a) suggested that, in the absence of back-mutations, the rate of decline of the expected mean

phenotype is Ud(1−s)−sλσ̃2
m, which converts to u10µ̃m(1−s)−sλσ̃2

m under a finite-sites model

at equilibrium. Noting that the recovery rate is ' u01(L − µ̃m) and equating these two rates

leads to the solution

µ̃m =
u01L+ sλσ̃2

m

u01 + u10(1− s)
. (S10)

When the average variances from simulations, σ̃2
m, are substituted into this formula, the sim-

ulated long-term means are predicted to a high degree of accuracy, again showing the internal

consistency of this approach (Figure S1b).

Because Equation (S8b) yields accurate predictions of the variance given an estimate of

the mean, and Equation (S10) gives an accurate estimate of the mean given an estimate of

the variance, one would expect that their joint solution would yield an accurate estimate of

µ̃m based on the mutation rates, s, and N , but this proves not to be the case. It is unclear

why the combination of two very well-performing expressions yields an unsatisfactory result,

but ignored higher-order moments may be involved. Previous work on a model very similar to

the one presented here (11-13), with reversible mutation in a finite-sites / finite-population size

framework and an exponential fitness function, yields various approximations that do not seem
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to yield results relevant to the problem herein. For example, Woodcock and Higgs (12) provide

an analytical approximation for the equilibrium frequency of + alleles, but the final result

relies on the assumption of a binomial distribution of genotypic classes and yields an expression

that is independent of L, neither of which is consistent with simulation results. Moreover, a

modification of their derivations to allow for a Poisson distribution was unhelpful, probably

because the distribution is more complex (11). Expressions for the location of the most-fit

genotype have been arrived at by using a matching criterion for the rates of loss and gain of

the nose of the distribution (11, 13), but these too have been found to map poorly to the mean

phenotype for the parameter space used herein, as at large N a near optimal phenotype is nearly

always present at low frequency even though the mean is much lower.

Gaussian directional selection. The exponential fitness function used in the bulk of the

main text is one of many possible forms of directional selection. A commonly used alternative is

the half-Gaussian function, which can be implemented by letting fitness be maximized when all

alleles are +, with the strength of selection governed by ω, so that Wm is defined as in Equation

(2) with the optimum θ = 0. From Lynch (14), with large numbers of sites, the equilibrium

mean number of deleterious alleles (d = L−m) per individual is

µ̃d '
L(1− η)

1 + (σ̃2
m/σ

2
S)
, (S11)

where σ̃2
m is defined in Equation (S9), and σ2

S = (ω2 + σ2
z)/(2Ne), where σ2

z is the average

within-population phenotypic variance of the trait. For the combination of mutation rates and

population sizes used here, Nu � 1, and from Equation (S9) the neutral level of variation can

be approximated by σ̃2
m = 2NLu01/(1 + β). Letting σ2

z = σ̃2
m then leads to an expression for

the average equilibrium frequency of deleterious alleles,

p̃− =
1

1 + β +
β

[ω2(1 + β)/(2NeL)] + u01

. (S12)

As with the exponential fitness function (in the main text), the structure of this expression

suggests that the key determinants of the equilibrium mean frequency are the scaled selection

intensity Ne/ω2, the mutation bias β, and the number of sites in the linkage block L.

If an analytical solution of the response of the mean phenotype to the change in absolute

population size N is to be obtained, the central remaining issue is again how Ne scales with these
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factors. The scaling behavior cannot be the same as that for the exponential fitness function,

as the gradient of selection under the Gaussian function shifts with the distance of the mean

phenotype from the optimum. As can be seen in Figure S4, this results in less sharp inflections in

the S-shaped response curves of the mean phenotype (µb = L− µd) to population-size increase.

As with the exponential fitness function, insight can be gained by solving Equation (S12)

for the Ne consistent with the estimates of p̃− obtained by computer simulation. Charlesworth

(15) examined the Gaussian model mostly in the context of stabilizing selection, apparently

with L ≤ 1000 and quite strong selection, but a closed-form expression that he obtained for p̃−

(his Equation A3.a) does not closely track the results from simulations in the current study and

yields p̃− = 0 in the absence of mutation bias. As can be seen in Figure S5, as a first-order

approximation, the depression of Ne relative to N scales negatively as a power-law function of

the ratio N/ω2, i.e., with form

Ne/N = a(N/ω2)b, (S13)

with Ne/N ' 1 below a critical threshold value. In all cases, the fitted regressions account for

> 99% of the variance in observed values, with the slopes of the logarithmic regressions always

falling between −0.25 and −0.56.

The coefficients for this expression depend on the number of loci, the level of mutation

bias, and the strength of selection in a somewhat complex way. By inspection, for the range of

parameter space explored in the analyses (β = 0.01 to 1.0, L = 103 to 105, and ω = 7000 to

41, 000), the normalizing factor is found to be

a '
(

ω

667βL

)0.75

· L−0.00005ω, (S14a)

whereas the exponent is approximated by

b ' −0.08(βω)0.14 · ω0.01 log10(L). (S14b)

As with the exponential fitness function, with high intensities of selection relative to drift (large

N/ω2), Ne can be depressed by a factor as high as 1000, and the overall effect increases with

increasing β and L. There are weak additional effects associated with the interaction of the

strength of selection and the number of loci. It is desirable in future work to derive expressions

such as these analytically.



33

Literature Cited

1. M. Kimura, T. Maruyama, J. F. Crow, The mutation load in small populations. Genetics

48, 1303-1312 (1963).

2. S. Wright, Evolution and the Genetics of Populations. Vol. 2. The Theory of Gene Frequen-

cies. (Univ. Chicago Press, 1969).

3. M. Abramowitz, I. A. Stegun (eds.), Handbook of Mathematical Functions. (Dover Publ.,

Inc., 1964).

4. B. Charlesworth, K. Jain, Purifying selection, drift, and reversible mutation with arbitrarily

high mutation rates. Genetics 198, 1587-1602 (2014).
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Figure S1. a) Observed within-population variances vs. predicted variances using Equation

(S8b) after substituting the observed means from simulations. b) Observed phenotypic means

vs. values predicted with Equation (S10) after substituting the observed within-population vari-

ances.

Figure S2. Comparison of long-term mean phenotypes (relative to the maximum value, L)

observed with those predicted by the scaling relationships in Equations (1) and (11). Note

that under the additive model used herein, the mean frequency of + alleles is equivalent to the

fractional distance of the mean phenotype between 0 and L.

Figure S3. Ratio of effective and actual population sizes, as predicted by Equation (11) (solid

lines) and determined by the means of the frequencies of + alleles from computer simulations

applied to Equation (10), given for a range of segment lengths (numbers of linked sites, L) and

mutation biases (β = u01/u10, with s = 10−5 throughout.

Figure S4. Equilibrium mean frequency of the + alleles (equivalent to the mean phenotype

µ̃m, scaled to the maximum possible value, L) as a function of the absolute population size, with

the number of loci L = 105 in all cases. Results, obtained by computer simulation, are given

for three different levels of mutation bias and three strengths of selection for the half-Gaussian

model, and compared to those for a shallower exponential fitness function. Mutation rates are

defined by the empirical scaling relationship noted in the text.

Figure S5. Scaling of the effective population size relative to the expectation with no selective

interference (Ne/N) with respect to the ratio of the strength of selection relative to drift (N/ω2)

for the case of a half-Gaussian directional selection function. Results were obtained as long-

term averages from Wright-Fisher computer simulations, by substituting long-term mean allele

frequencies into Equation (24) and solving for Ne; the straight lines are linear least-squares

regressions for the downhill slopes of the data.
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Figure S2

Absolute Population Size (N)
104 105 106 107 108

Fr
ac

tio
n 

of
 +

 A
lle

le
s

10-2

10-1

100

 = 1.0, L = 104

 = 0.1, L = 104

 = 0.01, L = 104

 = 1.0, L = 105

 = 0.1, L = 105

 = 0.01, L = 105

 = 1.0, L = 106

 = 0.1, L = 106

 = 0.01, L = 106



Ns

10-1 100 101 102 103 104

N
e 

/ N

10-3

10-2

10-1

100

L = 106

L = 105

L = 104

L = 103

L = 102

L = 10

 = 1.0

10-1 100 101 102 103 104
10-3

10-2

10-1

100

 = 0.1

10-1 100 101 102 103 104
10-3

10-2

10-1

100

 = 0.01

N
e 

/ N

Ns

s = 10-5

Figure S3



Figure S4
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Figure S5
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