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SUMMARY

The diversity and heterogeneity within high-grade se-
rous ovarian cancer (HGSC), which is the most lethal
gynecologic malignancy, is not well understood.
Here, we perform comprehensive multi-platform
omics analyses, including integrated analysis, and im-
munemonitoringonprimary andmetastatic sites from
highly clinically annotated HGSC samples based on a
laparoscopic triage algorithm from patients who un-
derwent complete gross resection (R0) or received
neoadjuvant chemotherapy (NACT) with excellent or
poor response. We identify significant distinct molec-
ular abnormalities and cellular changes and immune
cell repertoire alterations between the groups,
including a higher rate of NF1 copy number loss, and
reduced chromothripsis-like patterns, higher levels
of strong-binding neoantigens, and a higher number
of infiltrated T cells in the R0 versus the NACT groups.
INTRODUCTION

Ovariancancer is a highlydiversediseasewithahigh rateofoverall

mortality (Siegel et al., 2015). High-grade serous ovarian cancer
This is an open access article under the CC BY-N
(HGSC) is the most common and aggressive type of epithelial

ovarian cancer, exhibiting high levels of tumor heterogeneity and

variable clinical outcomes (Jayson et al., 2014). Molecular abnor-

malities inHGSC include TP53mutations in virtually all tumors, so-

matic or germlineBRCAmutations in�25%(Burgess andPuhalla,

2014; Cancer Genome Atlas Research Network, 2011; Hennessy

et al., 2010; Schrader et al., 2012), and extensive copy number

changes and CCNE1 amplification (Cancer Genome Atlas

Research Network, 2011; Patch et al., 2015; Walsh et al., 2011).

The heterogeneity and apparent adaptability of theHGSCgenome

under selective pressure by chemotherapy likely explains the high

rates of drug resistance (Bowtell et al., 2015; Koti et al., 2015;

Vaughan et al., 2011). Despite prior efforts such as The Cancer

Genome Atlas (TCGA) (Cancer Genome Atlas Research Network,

2011; Weinstein et al., 2013; Labidi-Galy et al., 2017; Patch et al.,

2015) and other analyses that were predominantly focused on

samples frompatientswith HGSCwho had upfront debulking sur-

gery, an understanding of themolecular and cellular heterogeneity

of HGSC based on highly clinically annotated samples is lacking.

The extent of residual disease following upfront cytoreductive

surgery forHGSCisoneof thestrongestprognostic factors forpro-

gression-free andoverall survival (duBois et al., 2009;Winter et al.,

2008). Neoadjuvant chemotherapy (NACT) followed by interval

cytoreductive surgery has been offered as an alternative

approach, especially where full cytoreductive surgery is not

feasible (Ansquer et al., 2001). While primary complete gross
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Figure 1. Outline of the Study
(A) Flow diagram of the study for tissue procurement in patients with advanced high-grade serous ovarian cancer (HGSC). PIV, predictive index value; TRS, tumor

reduction surgery; NACT, neoadjuvant chemotherapy; R0, no residual disease; NACT-ER, excellent response to NACT; NACT-PR, poor response to NACT.

(B) The areas of collection of tumor tissues from primary and multiple metastatic sites in patients with HGSC.

(C) Multi-omics and downstream analyses were performed using DNA, RNA, proteins, and immune cells from tumor tissues. WGS, whole-genome sequencing;

T200, high-depth targeted exome sequencing platform; LC-MS/MS, liquid chromatography-tandem mass spectrometry; RPPA, reverse phase protein array.
resection (R0) is related to better clinical outcomes, it is unknown

whether that benefit is the result of aggressive surgical efforts or

biological differences inherent in disease that is amendable to

complete resection. To address this question, a consistent

approach to upfront management is needed. We implemented a

quality improvement program using a validated laparoscopic

scoring algorithm; this approach enables the collection of well-an-

notated samples prior to definitive surgery or chemotherapy (Nick

et al., 2015; Fleming et al., 2018). In the current study, to assess

molecular and cellular differences between clinically defined

groups, we carried out a highly detailed analysis of primary tumors

andmultiplemetastatic sites frompatientswithHGSCwhohadR0

resection versus those who were triaged to NACT, consisting of

intravenous paclitaxel and carboplatin, and had either excellent

or poor response. HGSC tissue samples were subjected to high-

pass whole-genome sequencing (WGS), targeted deep

sequencing (Chen et al., 2015), RNA sequencing (RNA-seq),

reverse-phase protein array (RPPA), mass spectrometry (MS)-

based proteomics and phosphoproteomics, immune profiling,

and integrated data analysis.

RESULTS

Patient Population
The study design and the demographic and clinical characteristics

for the 30 patients with HGSC are described in Figure 1 and Table

S1. Thepatient groupsevaluatedwereas follows:R0, novisible re-

sidual disease after primary surgery (n = 10); NACT-PR, poor

response to NACT (n = 10); and NACT-ER, excellent response to

NACT (n = 10).

Somatic Mutation Analysis by WGS
We performed WGS analyses with average somatic coverage of

118X (from one primary and two metastatic tissue samples per
2 Cell Reports 31, 107502, April 14, 2020
patient) and germline coverage of 38X (from patient-matched

blood samples). For 75 samples with high-purity tumors

(R75% proportion of cancer cells), an average of 13,653 so-

matic variants from each sample were identified for the entire

cohort. Within the coding regions, on average, 66 missense mu-

tations, 4 nonsense mutations, 31 silent mutations, and 15 small

InDels were found per sample. The mutation load was not statis-

tically significantly different among the three groups or between

the R0 and the combined NACT-ER/PR groups (Figure S1A).

Based on a known list of driver genes (Bamford et al., 2004; Can-

cer Genome Atlas Research Network, 2011), a driver mutation

landscape was plotted (Figures 2A and S1B). Overall, 14

ovarian-cancer-associated genes were foundmutated in our pa-

tient cohort. As expected, themost frequently mutated genewas

TP53 in both primary and metastatic sites in all three groups.

However, nonsense mutations in TP53 were exclusively identi-

fied in the NACT groups, while in R0, most TP53 mutations

were missense mutations. Specifically, among all NACT-ER

and NACT-PR cases including primary and metastatic sites,

36% and 15.4% carried nonsense mutations in TP53, respec-

tively. Among all R0 cases, 62.5% carried TP53missense muta-

tions. Also, nonsense mutations in CSMD3 and PIK3CA were

exclusively identified in both primary and metastatic sites in

the NACT-PR group. When comparing primary and metastatic

sites, the majority of the mutations (82%) in the driver genes

were consistent. Next, utilizing all somatic mutations in our

cohort, we identified two distinct mutation signatures that are

highly correlated with Signature 3 and Signature 5 reported by

the Catalogue of Somatic Mutations in Cancer (COSMIC) data-

base (Figure S1C). Interestingly, both signatures were enriched

in all three patient groups (Figure S1D). Signature 3 has been

found in breast, ovarian, and pancreatic cancers and is strongly

associated with germline and somaticBRCA1 and 2mutations in

ovarian cancers (Polak et al., 2017).



To address intra-patient tumor heterogeneity, we first

compared the repertoire of somatic mutations identified in pri-

mary and metastatic sites from each patient (Figures S2A–

S2C). Substantial heterogeneity was observed, with median per-

centages of trunk mutations of 23% in the R0 group, 31% in the

NACT-ER group, and 29% in the NACT-PR group. We next per-

formed clonal analysis for all the somatic mutations identified in

WGS to determine the extent to which genotypically distinct

clonal cell populations (referred to herein as ‘‘clones’’) exist in

the HGSC subsets (Figure S2D). The number of mutation clus-

ters and the cellular prevalence of clones were estimated for

each patient (both primary and metastatic sites). The number

of clones, the size of major clones, and the cellular prevalence

of major clones were compared among the groups. We

observed large variations within each patient group, and no sta-

tistically significant differences were found between any of the

groups. Next, we constructed phylogenetic trees of tumors for

each group (Figures S2E–S2G). We observed three possible

scenarios. One implies that a dominant clone seeds all metasta-

ses, where the primary tumor and all metastases share the same

founding driver mutations. Another scenario implies that a sub-

clone evolves and gives rise to all metastases. The third scenario

implies that a new subclone with additional driver mutations

evolves and seeds some metastases.

Copy Number and Structure Variations
Next, we examined copy number variations (CNVs) and structure

variations (SVs) across the entire genome, and no significant dif-

ferences in the number of CNV breakpoints were found among

the three groups (Figures S3A and S3B). We also examined the

frequency of CNVs in primary and metastatic sites in ovarian

cancer genes for the three groups (Figure 2B) and compared

the enriched mutations of all genes and ovarian-cancer-related

genes in the R0 compared to the NACT-ER/PR group (Figure 2C)

and the NACT-ER compared to the NACT-PR group (Fig-

ure S3C). The most frequent CNVs in the R0 group were copy

number gain/loss of CSMD3 (67%) and copy number loss of

NF1 (54%), CDK12 (50%), and CCND2 (46%) in both primary

and metastatic sites. In comparison, the most frequent CNVs

in the NACT-ER group were copy number gains/losses of

NOTCH3 (48%) and CCND2 (44%) in both primary and metasta-

tic sites, while the most frequent in the NACT-PR group were

copy gains of CCNE1 (46%) and PIK3CA (42%) in both primary

and metastatic sites. Interestingly, copy number losses of NF1

were significantly lower in the NACT-ER/PR group (18%,

p = 0.002), especially in the NACT-PR group (8%, p = 0.0004),

than in the R0 group (54%). In contrast, CNVs of AKT2 were

more frequently observed in the NACT (NACT-ER, 48%;

NACT-PR, 35%) than in the R0 (8%, p = 0.004) groups. We

further performed copy number signature analysis and

compared the similarity between reported copy number signa-

tures in HGSC (Macintyre et al., 2018) and the seven signatures

identified in our cohort (Figures S3D–S3H). Based on the signa-

ture exposure in each sample, no significant differences were

observed among the R0, NACT-ER, and NACT-PR groups.

Next, we examined differences in SVs and SV signatures re-

ported in ovarian cancers. Based on the scores of five SV signa-

tures in each patient, no significant patterns of clusters were
observed among the three groups. We identified lists of SVs in

ovarian-cancer-associated genes for the three groups, and no

recurrent SVs across patients within each group were observed.

Confirmation of WGS Findings by Deep Targeted
Sequencing
While high-pass WGS is known to be quite reliable for identifying

mutations, we also utilized high-depth targeted sequencing us-

ing the T200.2 panel to test for the consistency of sequencing

results. The average sequencing coverage was 350X, which pro-

vided sufficient power to detect somatic mutations with low

variant allele frequency (VAF). Very high correlation was obtained

for VAF betweenWGS and T200.2 sequencing (Pearson correla-

tion = 0.963, Spearman correlation = 0.964). The somatic muta-

tions in cancer-related genes identified by WGS were confirmed

by T200.2 sequencing (Figure S3I). The copy number profiles in

ovarian cancer genes identified in the T200.2 panel were also

consistent with the WGS results. Specifically, NF1 losses were

identified in 58.3% of the R0, 20% of the NACT-ER, and

11.5% of the NACT-PR groups with the T200.2 panel, consistent

with our WGS findings. We did not observe significant differ-

ences between CNVs in primary and metastatic sites, except

those in the NACT-PR group; CNVs in CDK12 were enriched in

primary compared to metastatic sites (primary, 56%; metasta-

ses, 12%; p = 0.03).

Spectrums of Genomic Structural Rearrangement
Given the role of chromothripsis in cancer development (For-

ment et al., 2012; Korbel and Campbell, 2013; Stephens et al.,

2011), we next examined for chromothripsis-like patterns

(CTLPs) and the status of telomere length (TL) across the groups.

CTLPs were predicted and identified through copy number pro-

files for all samples. Examples of non-CTLPs and identified

CTLPs are shown in Figure S4A. The number of copy number

switches and log10 likelihood ratios (log10LRs) were calculated,

and we identified CTLPs from 20 out of 75 samples. CTLPs in the

R0 group showed fewer copy number switches and lower

log10LRs, compared with the NACT-ER and NACT-PR groups

(Figures 3A and 3B). In the R0 group, most CTLPs were detected

on chromosomes 6 and 19, where CCNE1, NOTCH3, and AKT2

are located. In the NACT groups, CTLPs were enriched on chro-

mosomes 8 and 17, where TP53 and NF1 are located. In a par-

allel analysis, we also estimated the TLs for tumor and germline

samples for each patient. To exclude the factors potentially

affecting TLs other than cancer, the TL ratios of tumor versus

germline were further calculated. Overall, the TL ratios were

higher in the NACT-PR than in the NACT-ER and R0 groups,

especially in primary tumors; these differences did not reach sta-

tistical significance (Figure S4B).

Prediction of Neoantigens Using WGS Data
Given the importance of neoantigens derived from tumor-spe-

cific mutations in cancer immunity (Gubin et al., 2015; Schu-

macher and Schreiber, 2015), we next identified and compared

the numbers of neoantigens in each tumor sample by predict-

ing the major histocompatibility complex (MHC) class I peptide

binding affinity with somatic mutations from WGS analysis. Ac-

cording to predicted binding affinity, strong- and weak-binding
Cell Reports 31, 107502, April 14, 2020 3



Figure 2. Somatic Mutations and CNVs Identified in Ovarian Cancer Genes

(A) Oncoplots show the frequency of each type of somatic mutation in ovarian cancer genes for primary and metastatic samples. Each column represents one

sample.

(legend continued on next page)
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Figure 3. CTLPs and Strong-Binding Neoantigens by Patient Group

(A) CTLPs identified in nine different chromosomes in different patient groups.

(B) The scatterplot of copy number status changes and the likelihood of CTLP in different patient groups.

(C) Left: the number of strong-binding antigens detected in all tumors, including both primary and metastasis samples. Significant differences were observed

between the R0 and NACT-ER/PR groups and between the R0 and NACT-PR groups. Middle: the number of strong-binding antigens detected in primary tumors.

Significant differences were observed between the R0 and NACT-ER/PR groups and between the R0 and NACT-PR groups. Right: the number of strong-binding

antigens detected in distant metastasis tumors. A peptide was identified as a strong binder if the % rank was below 0.5% or binding affinity (IC50) was below 50.
neoantigens were identified. The median numbers of all neoan-

tigens per sample identified were 99, 81, and 66 in the R0,

NACT-ER, and NACT-PR groups, respectively (Table S2). The

neoantigen levels were significantly higher in both the R0

(p = 0.023) and NACT-ER (p = 0.033) groups than in the

NACT-PR group (Figure S4C). Furthermore, when excluding

predicted weak-binding neoantigens, the median numbers of

neoantigens identified were 16, 12, and 9 in the R0, NACT-

ER, and NACT-PR groups, respectively. The R0 group showed

a significantly higher level of strong-binding neoantigens than

the NACT groups (p = 0.02; Figure 3C). The difference was

even more significant when considering only primary tumors

(p = 0.01). Additionally, we analyzed the correlations between

the neoantigen level and other features including mutation

loads, CNV loads, CTLPs, and mismatch repair (MMR) CNVs
(B) The frequency of CNVs identified in each ovarian-cancer-related gene. Each co

copy losses.

(C) The enriched abnormalities, including somaticmutations andCNVs, in the R0 v

comparison. The y axis represents the proportion of patient samples carrying th
(Figure S4D). A strong positive correlation was observed be-

tween the level of strong-binding neoantigens and mutation

load (R = 0.68, p < 0.0001), which is consistent within all three

groups. We also observed some minor positive correlations be-

tween the neoantigen level with CNV load (R = 0.29, p = 0.013)

and MMR CNVs (R = 0.3, p = 0.001). However, these minor

positive correlations varied across patient groups.

Identification of Differentially Expressed Genes (DEGs)
by RNA-Seq
Next, we investigated gene expression differences among the

R0, NACT-ER, NACT-PR, and NACT-ER/PR groups. Unsuper-

vised hierarchical clustering was performed based on the

3000 most variable genes, and three main clusters were found

across the groups (Figure S5A). We identified 206 DEGs from
lumn represents one sample. Red represents copy gains, and black represents

ersus NACT-ER/PR groups with a significant p value of < 0.05 in the group-wise

e mutation in the corresponding genes.
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Figure 4. DEGs for the Groups, Identified by RNA-Seq, Proteomics, and Phosphoproteomics

(A) Heatmap of 67 DEGs in the R0 compared to NACT-ER and NACT-PR groups.

(B) Differential analyses of 7387 total proteins quantified and revealed 101 proteins significantly altered (adj. p < 0.05) amongNACT-ER (n = 30), NACT-PR (n = 29),

and R0 (n = 28) patients. Heatmap reflects clusters assembled by Euclidean distance and average linkage of significant protein abundance trends.

(C) Differential analyses of 12,914 total phosphosites quantified and revealed 71 phosphosites significantly altered (adj. p < 0.05) amongNACT-ER (n = 17), NACT-

PR (n = 22), and R0 (n = 27) patients. Heatmap reflects clusters assembled by Pearson correlation and average linkage of significant phosphosite abundance

trends.

(D) Principle component analyses (PCAs) of 101 proteins significantly altered (adj. p < 0.05) among NACT-ER (n = 30), NACT-PR (n = 29), and R0 (n = 28) patients.

(E) PCA of 71 phosphosites significantly altered (adj. p < 0.05) among NACT-ER (n = 17), NACT-PR (n = 22), and R0 (n = 27) patients.

(F) NF1 RNA expression pattern was consistent with the WGS findings. The boxplot shows the log2 normalized counts of NF1 RNA in the R0, NACT-ER, and

NACT-PR groups. The p values were calculated by differential analysis using DESeq2.

(G) NF1 protein abundance was significantly elevated in NACT-ER and NACT-PR tumors versus R0 tumors. The boxplot reflects log2-fold change (L2FC)

abundance of NF1 protein for the NACT-ER (n = 30), NACT-PR (n = 29), and R0 (n = 28) groups.

(H) H-scores of NF1 expression by IHC for the NACT-ER (n = 12), NACT-PR (n = 14), and R0 (n = 24) groups. Statistical significance was determined by unpaired

t test. Data are presented as the mean ± SEM.
the comparison between the R0 and NACT-ER/PR groups (Fig-

ure S5B; Table S3). Of the 206 DEGs in the R0 versus the

NACT-ER/PR groups, 67 were curated protein-coding tran-
6 Cell Reports 31, 107502, April 14, 2020
scripts (33 NM_ or 1 XM_) from NCBI RefSeq (Pruitt et al.,

2005) (Figure 4A); these included POU3F3, NKX6-1, and

PROK1, which were upregulated in the R0 compared to the



NACT-ER/PR group. Interestingly, differential expression of

noncoding RNAs (ncRNAs) miR-7-2 (significantly upregulated)

and miR-3142 (significantly downregulated) was seen in the

R0 group compared to the NACT-ER/PR group (Figure S5C).

In the NACT-ER compared to the NACT-PR group, we

observed 693 DEGs, including 263 curated protein-coding tran-

scripts, with FDR <0.1 and absolute L2FC >2 (Figure S5D; Table

S3). Consistent with our CNV data, we found that NF1 mRNA

was indeed significantly downregulated in the R0 (p = 0.03)

compared to the NACT-ER/PR group (Figure 4F), corroborating

our findings of NF1 CNV differences between the groups. Next,

we identified 54 differentially expressed ncRNAs in the NACT-

ER compared to the NACT-PR group and 14 DEGs between pri-

mary andmetastatic tumors (FDR < 0.1 and absolute L2FC> 2) in

all three groups (Table S3). Most DEGs were ncRNAs; only one

predicted protein-coding transcript, TBC1D27, was significantly

upregulated (p = 0.00002, q = 0.062) in the primary compared to

metastatic sites for all three groups.

To understand the differences in potential biological functions

and pathways among the R0, NACT-ER/PR, NACT-ER, and

NACT-PR groups, we performed WebGestalt enrichment anal-

ysis of Gene Ontology (GO) using 206 DEGs among groups.

GO terms for biological process (BP), cellular components

(CC), and molecular function (MF) were significantly enriched in

the NACT-ER/PR group versus the R0 group and in the NACT-

ER group versus the NACT-PR group (Figures S5E and S5F);

the top 10 enriched GO terms are listed in Table S3. Notably,

in comparison of GO terms between the NACT-ER/PR and R0

groups, the number of DEGs was significantly enriched in BP,

including the regulation of epithelial cell differentiation and acti-

vation of immune response. However, we did not observe signif-

icant cancer-specific-related GO terms in the comparison of the

NACT-ER and NACT-PR groups. We also employed several

web-based databases (KEGG, Kyoto Encyclopedia of Genes

and Genomes; Reactome; and PANTHER, Protein ANalysis

THrough Evolutionary Relationships) to identify enriched func-

tional and signaling pathways using DEGs among the R0,

NACT-ER, and NACT-PR groups (Table S3). Based on all

DEGs between the R0 and NACT groups, we identified an

enrichment of gene sets including cadherin signaling pathway;

we also observed an enrichment of cell adhesion molecules,

transcription misregulation in cancer, and the Notch signaling

pathway, but these lacked statistical significance. Interestingly,

we observed significant enrichment in GPCR (G protein-coupled

receptor) downstream signaling, olfactory signaling, and

signaling by GPCR in the DEGs between the NACT-ER and

NACT-PR groups by Reactome pathway analysis.

Differential Analysis of Global Proteomic and
Phosphoproteomic Data
Using a microscaled tandemmass tag (TMT)-MS-based proteo-

mic/phosphoproteomic workflow, we quantified 7290 total

proteins in 87 ovarian cancer specimens and 12,914 total phos-

phosites in 66 specimens from the 30 patients, amongwhich 101

proteins were found to be significantly altered (adjusted p < 0.05)

in the NACT-ER/PR compared to the R0 groups (Figure 4B; Ta-

ble S4), which, based on principle component analysis (PCA),

served to explain 29.9%and 5.7%of the variance between these
groups (Figure 4D). Signaling pathways supporting endocytosis,

engulfment and cell spreading, and inhibition of cell death and

RNA processing signaling were significantly altered in the

NACT-ER/PR compared to the R0 group (Figure S6A). Among

the significantly altered (p < 0.01) putative drug and drug-asso-

ciated signaling targets, we identified calcium-transporting

ATP2C1 and STAT3 to be elevated and HDAC6, MGMT, and

FDPS to be decreased in the NACT-ER/PR versus the R0

groups. Differential analysis identified 71 significantly altered

(adjusted p < 0.05) phosphosites in the NACT-ER/PR versus

the R0 groups (Figure 4C; Table S4) that, based on PCA, served

to explain 29.3% and 9% of the variance between these groups

(Figure 4E). Pathway analyses of these altered phosphosites

(p < 0.01) revealed cell death of connective tissue cell signaling

to be activated and the formation of the cytoskeleton to be in-

hibited in the NACT-ER/PR versus R0 groups (Figure S6B).

Among the significantly altered phosphosites (p < 0.05) in puta-

tive drug and drug-associated signaling targets, we identified

S129 in SF3B1, S594 in FGA, and S706 in CD44 to be signifi-

cantly elevated (p < 0.05) in the NACT-ER/PR versus R0 groups.

Notably, we validated transcript-level evidence at the protein

level thatNF1 is significantly lower in abundance in the R0 versus

NACT groups by both MS proteomics (p < 0.0005) (Figure 4G)

and immunohistochemistry (IHC) assay (p < 0.01) (Figure 4H).

In addition, significantly downregulated proteins that were iden-

tified by TMT-MS analyses (i.e., MERLIN, moesin-ezrin-radixin-

like protein; and ANNEXIN-1) were observed to have similar pat-

terns of expression with the RPPA assay in the R0 compared to

the NACT groups (Figure S5G; Table S4).

We identified 37 proteins as significantly altered (adjusted

p < 0.05) between the NACT-ER and NACT-PR groups (Fig-

ure S6C; Table S4) that, based on PCA, serve to explain

37.9% and 9.5% of the variance between these groups (Fig-

ure S6D). Pathway analyses of significantly altered proteins

(p < 0.01) revealed the activation of DNA metabolism and

cytokinesis signaling and the inhibition of apoptosis and cellular

senescence in the NACT-ER compared to the NACT-PR group

(Figure S6E; Table S4). These data also revealed CDK4 to be

significantly elevated (adjusted p < 0.05) in the NACT-ER

compared to the NACT-PR group. Fifty-nine phosphosites

were significantly altered (adjusted p < 0.05) between NACT-

ER and NACT-PR tumor specimens (Figure S6F; Table S4)

that, based on PCA, served to explain 42.1% and 7.2% of the

variance between these groups (Figure S6G). Pathway analyses

of these significantly altered phosphoproteomics data (p < 0.05)

showed that the frequency of tumor and genitourinary tumor

signaling was activated while cell migration signaling was in-

hibited in NACT-ER compared to NACT-PR patient tumors (Fig-

ure S6H; Table S4). Significant decreases in phosphorylation of

multiple tyrosine kinases—namely, Y426 and T427 on YES1,

Y394 and T395 on LCK, Y420 and T421 on FYN, Y419 and

T420 on SRC, and S4520 and S4523 on LRP1—were quantified

in the NACT-ER compared to the NACT-PR group.

Immune Analysis
We investigated whether different immune populations were

associated with clinical characteristics of the tumors by immune

profiling (Figure S7A) and observed significant differences
Cell Reports 31, 107502, April 14, 2020 7



Figure 5. HGSC Immune Infiltration Patterns

(A) Relative distribution of analyzed cell phenotypes in the tumor area across the R0, NACT-ER, and NACT-PR groups.

(B) Relative distribution of immune cell populations separated into primary and metastatic tumor sites in each group.

(C) Immune subpopulation infiltration patterns in the R0, NACT-ER, and NACT-PR groups. The percentages of immune cells were compared for all T cells,

immune cells, helper T cells, cytotoxic T cells, regulatory T cells, macrophages, and B cells. Statistical significance was determined by unpaired t test. Data are

presented as the mean ± SEM.

(D) Immune subpopulation infiltration patterns in primary and metastatic sites in tumor area only. The percentages of T cells, B cells, macrophages, and FoxP3+

cells in the tumor area were compared for each group.
among the groups in tumor area and all areas (tumor/non-tumor)

(Figures 5A, 5B, S7B, and S7C), as summarized in Table S5. We

next focused on the percentage of T cell infiltration and found a

significant increase in the number of infiltrated T cells in the

R0 (2.91%) compared to the NACT-ER/PR group (1.35%,

p = 0.0442) in tumor area (Figure 5C). We further divided T cell

populations into helper T cells (CD4+), cytotoxic T cells (CTLs;

CD8+), and regulatory T cells (Tregs; FoxP3+ or CD8+FoxP3+)

in tumor and all areas of each group. We did not find differences
8 Cell Reports 31, 107502, April 14, 2020
in helper T cells in any area among the groups. However, there

was a significant increase in the percentage of CTLs in all areas

in the R0 (2.51%) compared to the NACT-ER/PR group (1.04%,

p = 0.0438) (Figure S7D). No statistical differences were

observed in Tregs (CD8+FoxP3+) among the groups. However,

the R0 group (0.25%) had a significantly lower classic Treg

(FoxP3+) count than the NACT-ER group (0.89%, p = 0.0178)

in the tumor area at the primary site only (Figures 5D and S7E).

Additionally, we observed significantly decreased macrophage



counts (CD68+/163+ cells) in the tumor area in the R0 (4.33%)

compared to the NACT-ER/PR (7.56%, p = 0.0063) and

NACT-PR groups (9.07%, p = 0.0014) (Figure 5C); the same

pattern was also noted for all areas (tumor/non-tumor) (Fig-

ure S7D). Interestingly, macrophage counts were significantly

lower in the tumor area of the primary site of the R0 (4.26%)

compared to the NACT-ER/PR (9.21%, p = 0.024) and NACT-

PR groups (11.09%, p = 0.0191) (Figure 5D); the same pattern

was seen for all areas as well (Figure S7E). Finally, we compared

B cell populations among groups and found a trend toward

significantly higher B cell infiltration in the tumor area of the

NACT-PR (0.31%) compared to the NACT-ER group (0.04%,

p = 0.0058) (Figures 5C and 5D). Collectively, these results

demonstrate significantly increased infiltrated T cells in the R0

compared to the NACT-ER/PR group and increased macro-

phages and B cells in the NACT-ER/PR and NACT-PR groups

compared to the other groups.

Integrated Analysis of Multi-omics Data
As a cross-validation, we inferred the composition of 22 immune

cell types from the immune gene signature and the relative per-

centages of each type using RNA data (Figure 6A). Using scores

generated by CIBERSORT, we identified significantly different

abundances of M2 macrophages (p < 0.01) and monocytes

(p < 0.05) between the R0 and NACT-ER/PR groups (Figure 6B).

We also identified a significant difference in abundance of resting

CD4 memory T cells (p < 0.05) between primary and metastatic

site tumors (Figure 6C). An integrated analysis identified

MARCO, SLC2A5 and HMGA2 as co-significantly altered (p <

0.01) at the protein and transcript levels in the NACT-ER/PR

compared to the R0 group (Figure 6D). An integrated analysis

identified KRT9 as significantly elevated (p < 0.01) in the

NACT-ER compared to the NACT-PR group at both the protein

and transcript levels (Figure 6E).

DISCUSSION

This is a report of high-depth multi-omics analysis of differences

in molecular and cellular features of highly clinically annotated

HGSC samples from primary and multiple metastatic sites. Our

findings provide an understanding of the heterogeneity within

HGSCs. Specifically, we found a significantly higher loss of the

NF1 gene, RNA and protein product copies, lower numbers of

CTLPs, and a significantly higher level of strong-binding neoan-

tigens in the R0 than in the NACT groups. We found significantly

increased T cell infiltration and decreased numbers of macro-

phages in the R0 group and identified significant differences in

transcriptomes and proteomes in this group.

While molecular analyses of HGSC have been performed pre-

viously (Bowtell et al., 2015; Cancer Genome Atlas Research

Network, 2011; Patch et al., 2015; Vaughan et al., 2011), all

such studies included samples only from those who underwent

upfront debulking surgery. Moreover, the initial clinical manage-

ment of those patients was highly variable. Here, we focused on

testing primary and metastatic tumor samples from patients

managed under a systematic surgical algorithm (Fleming et al.,

2018; Nick et al., 2015). With respect to the question of whether

surgical effort resulting in R0 resection or underlying differences
in tumor biology drive different clinical outcomes, our findings

demonstrate that there are indeed substantial molecular and

cellular differences in patients who underwent R0 tumor debulk-

ing compared to those triaged to receive NACT.

The biological mechanisms that might underlie NF1’s role as a

biological marker for predicting R0 and NACT response are un-

known. Although there is no prior report on the NF1 CNV in pre-

diction of R0 versus NACT groups in cancers, evidence suggests

that NF1 plays an important role in the RAS/MAPK signaling

pathway, tumorigenesis, and chemotherapy resistance in

HGSC (Lau et al., 2000; Norris et al., 2018; Patch et al., 2015).

Consistent with a significant loss of NF1 CN and reduced CTLPs

on chromosome 17, where NF1 is located, in the R0 group, we

confirmed that theNF1mRNAandprotein levels were also signif-

icantly decreased in theR0compared to theNACT-ER/PRgroup.

Another potentially important finding was the significantly

higher level of a strong-binding neoantigen signature in the R0

compared to the NACT group. The increase in neoantigens is

associated with infiltration of tumor immune cells such as

T cells (McGrail et al., 2018; Schumacher and Schreiber, 2015).

Importantly, we observed significantly more infiltrated T cells

and fewer macrophages in the R0 compared with the NACT-

ER/PR group and increased B cells in the NACT-PR compared

to the NACT-ER group by immune assessments. Consistently,

the deconvolution analysis using bulk RNA-seq data supported

that there is a reduced macrophage cell population in the R0

compared to NACT-ER/PR group. Tumor-associated antigens

have been considered for immunotherapeutic strategies, and a

high correlation has been reported between tumor mutations

and clinical benefits of immunotherapy targeting neoantigens

in various solid tumors (Snyder et al., 2014) and in preclinical

studies (Gubin et al., 2014; Kreiter et al., 2015). Importantly, we

also identified significant differences in cancer-associated tran-

scripts including ncRNAs (Dalton et al., 2017; Li et al., 2016;

Webster et al., 2009; Zhao et al., 2017) and significant proteome

and phosphosite changes (Chihara et al., 2017; Li et al., 2018; Liu

et al., 2015; Xue et al., 2014) in cancer-related and putative drug

and drug-associated signaling targets among the groups in this

study. Interestingly, significantly downregulated phosphosites of

Src-family kinases, LCK, and YES1 were observed in the NACT-

ER compared to the NACT-PR group; these have been impli-

cated in supporting the maturation of developing T cell and

migration signaling (Kim et al., 2009; Palacios and Weiss,

2004; Salmond et al., 2009). Although further understanding of

the clinical significance and validation of these transcript and

protein alterations in ovarian cancer progression is required,

such changes could serve as markers for the prediction of

chemotherapy response in patients with HGSC.

Most patients with HGSC present with widely disseminated

disease. Our findings from the clonal phylogenetic analyses sup-

port an ability to unravel complex events of metastatic dissemi-

nation and the early genetic divergence of metastatic lineages

from the primary site in HGSC (Reiter et al., 2018). Given the

heterogeneity in response patterns to various therapies, it was

unknown towhat extent this could be explained bymolecular dif-

ferences between primary and metastatic sites. A case report

previously reported intra-patient tumor heterogeneity in immune

microenvironments in patients with HGSC (Jimenez-Sanchez
Cell Reports 31, 107502, April 14, 2020 9



Figure 6. Deconvolution Analysis of Cell Fractions Using RNA-Seq Data and the Concordance of Differentially Expressed Transcripts and

Proteins among Groups

(A) The composition of 22 immune cell subsets in each patient sample. The profiling of immune cells was inferred by deconvolution analysis of RNA-seq with the

LM22 immune cell gene signature, and the relative percentages of different cell types are shown in the stacked bar plot.

(B) Boxplots comparing the cell abundances of M2macrophages and monocytes in the R0 and NACT-ER/PR groups based on RNA-seq deconvolution analysis.

Consistent with the immune infiltrate analysis, the R0 group showed more abundant macrophages than did the NACT group.

(C) Boxplot comparing the cell abundances of CD4+ T cells in primary and metastatic sites.

(D) The 206 available transcript alterations were compared to proteins quantified and altered between NACT-ER (n = 30)/PR (n = 29) and R0 (n = 28) patients. Bar

plot reflects the L2FC protein and transcript abundance trends for 10 co-measured candidates. *Co-significantly altered at the protein and transcript levels in

NACT-ER/PR (p < 0.01) versus R0 groups.

(E) The 263 available transcript alterations were compared to proteins quantified and altered between NACT-ER (n = 29) and NACT-PR (n = 30) patients. Bar plot

reflects the L2FC protein and transcript abundance trends for the KRT9 gene. *Co-significantly altered protein (p < 0.01) between NACT-ER and NACT-PR

patients.
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et al., 2017). Interestingly, we found no significant genomic var-

iations between primary and metastatic sites, implying that the

biological processes underlying complex genomic instability,

including CNV and SV, likely occur at an early point in the disease

progression. Interestingly, nonsense mutations of CSMD3 and

PIK3CA, frequently detected in HGSC (Cancer Genome Atlas

Research Network, 2011) and in other types of ovarian cancers

(Kuo et al., 2009), were detected exclusively in the NACT-PR

and not the NACT-ER or R0 groups. However, neither of these

gene mutations has been investigated in HGSC in the context

of chemotherapy response and clinical outcome.

Overall, more accurate predictors could lead to precise surgi-

cal therapy strategies; if verified, our discoveries in this study—

molecular, protein, and immune signatures between various

HGSC subgroups—may enhance the prediction of R0 resection

and have prognostic and therapeutic implications for patients

with HGSC.
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Anti-Neurofibromin-1 (NF1) Abcam Cat# 128054, RRID:AB_11141828
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Leica Bond Polymer Refine Detection kit Leica Biosystems Cat#DS9800

Quant-iT PicoGreen dsDNA reagent Invitrogen Cat# P7581

SMART trypsin Thermo Fisher Scientific Cat# 60109

TMT-11-plex Isobaric Label Reagent Set Thermo Fisher Scientific Cat# A34807

AcclaimTM PepMapTM 100 C18 Thermo Fisher Scientific Cat# 164567

AcclaimTM PepMapTM RSLC C18 Thermo Fisher Scientific Cat# 164540

Critical Commercial Assays

QIAamp DNA Mini Kit QIAGEN Cat# 51304

QIAamp DNA Blood Mini Kit QIAGEN Cat# 51104

TruSeq DNA PCR-Free Library Prep Kit Illumina Cat# 20015963

High Sensitivity dsDNA Kit Advanced Analytical Technologies, Inc. Cat# DNF-468-0500

KAPA SYBR FAST Library Quantification Kit KAPA Biosystems Cat# KK4824

HiSeq X HD Paired-End Cluster Generation Kit v2 Illumina Cat# GD-410-1001

HiSeq X HD SBS Kit (300 cycles) Illumina Cat# FC-410-1003

Agencourt AMPure PCR purification kit Agencourt Bioscience Corporation Cat# A63880

KAPA qPCR Quantification Kit KAPA Biosystems Cat# KK4600

whole-exome biotin-labeled probes (v3) Roche NimbleGen Cat# 06465684001

Ovation RNA-Seq System V2 kit NuGEN Cat# 7102

Pierce BCA Protein Assay Kit Thermo Fisher Scientific Cat# 23225

High-Select TiO2 Phosphopeptide Enrichment Kit Thermo Fisher Scientific Cat# A32992

Deposited Data

WGS data This paper EGA: EGAD00001005240

Deep targeted sequencing data This paper EGA: EGAD00001005239

RNA sequencing data This paper EGA: EGAD00001005238

LC-MS/MS data This paper PRIDE: PXD014980

Software and Algorithms

BWA software package Li and Durbin, 2009 N/A

Picard tools Broad Institute http://broadinstitute.github.io/picard/

GATK toolkit McKenna et al., 2010 N/A

MuTect method Cibulskis et al., 2013 N/A

Sequenza package Favero et al., 2015 N/A

PyClone model Roth et al., 2014 N/A

PHYLIP program Retief, 2000 N/A

HMMcopy Ha et al., 2012 N/A

Circular binary segmentation Olshen et al., 2004 N/A

CNsignatures algorithm Macintyre et al., 2018 N/A

LUMPY Layer et al., 2014 N/A

BRASS Cancer IT https://github.com/cancerit/BRASS

BreakDancer Fan et al., 2014 N/A
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

CTLPScanner server Yang et al., 2016 N/A

COSMIC database Bamford et al., 2004 N/A

TelSeq software Ding et al., 2014 N/A

NetMHCcons server Karosiene et al., 2012 N/A

Spliced Transcripts Alignment to a Reference

(STAR) algorithm

Dobin et al., 2013 N/A

FastQC and Qualimap tool Okonechnikov et al., 2016 N/A

Web-based gene set analysis toolkit (WebGestalt) Wang et al., 2013; Zhang et al., 2005 N/A

KEGG Kyoto Encyclopedia of Genes and

Genomes

https://www.kegg.jp/

Reactome Reactome https://reactome.org

PANTHER Panther Geneontology http://www.pantherdb.org/

MicroVigene software VigeneTech N/A

R package Super-Curve (version 1.01) MDACC https://bioinformatics.mdanderson.org/

public-software/archive/oompa/

GeneMANIA server Warde-Farley et al., 2010 N/A

Non-redundant human proteome database Swiss-Prot https://www.uniprot.org/

Proteome Discoverer Thermo Fisher Scientific N/A

Mascot Matrix Science N/A

PAMR (Prediction Analysis for Microarrays)

R package

Lazar et al., 2016 N/A

Mann-Whitney U rank sum testing MedCalc (version 19.0.3).

LIMMA package (version 3.8) Ritchie et al., 2015 N/A

ClustVis web tool Metsalu and Vilo, 2015 N/A

BWA and Picard DePristo et al., 2011 N/A

In-house R package Takahashi et al., 2018 N/A

CIBERSORT tool Stanford University https://cibersort.stanford.edu

DESeq2 Love et al., 2014 N/A

GraphPad Prism GraphPad Software N/A
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be addressed by the Lead Contact, Anil K.

Sood (asood@mdanderson.org). No reagents were generated in this study.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Patients
This study was approved by the Institutional Review Board of The University of Texas MD Anderson Cancer Center, and all samples

were collected after obtaining written informed consent from patients. Patients with suspected advanced primary ovarian cancer un-

derwent a laparoscopic assessment to determine a metastatic disease burden score (modified Fagotti score) (Fagotti et al., 2008;

Fleming et al., 2018) and acquire tissues (Figure 1A). We obtained fresh frozen tumor specimens from theMD Anderson Gynecologic

Tumor Bank for 30 patients diagnosed with HGSC who had available a primary site specimen, two metastatic site specimens and

matched blood samples obtained upon laparoscopic assessment. Following laparoscopic assessment, patients with predictive in-

dex value < 8 underwent primary tumor reduction surgery, and patients with predictive index valueR 8 underwent NACT followed by

interval cytoreduction surgery. We selected 10 patients with no visible residual disease after primary surgery (R0), 10 with poor

response to NACT with carboplatin and paclitaxel (NACT-PR) and 10 with excellent response to NACT (NACT-ER) (Figure 1B). Pa-

tients’ demographic and clinical characteristics are described in Table S1. Response to NACT was considered poor if patients had

stable or progressive disease after 3-4 cycles upon radiology evaluation and/or suboptimal interval cytoreduction after NACT ac-

cording to the Response Evaluation Criteria in Solid Tumors (RECIST 1.1). Response to NACT was considered excellent if there

was a complete response or only microscopic disease left at the time of interval surgery and/or pathology from interval surgery. Tu-

mor biopsies and matched blood samples from the 30 patients were subjected to analyses (Figure 1C).
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METHOD DETAILS

Whole-genome sequencing
Genomic DNA from 90 frozen tumor tissues from 30 patients (one primary site and two metastatic sites per patient) and matched

blood samples as germline controls were prepared by the Biospecimen Extraction Resource of MDAnderson Cancer Center. In brief,

genomic DNA was extracted from frozen tissues and blood using the QIAamp DNA Mini Kit and QIAamp DNA Blood Mini Kit (-

QIAGEN), respectively, following the manufacturer’s instructions. Extracted genomic DNA was accurately quantified using Quant-

iT PicoGreen dsDNA reagent and kit with a Qubit 3.0 Fluorometer (Invitrogen). DNA libraries were prepared using a TruSeq DNA

PCR-Free Library Prep Kit (Illumina) following the manufacturer’s instructions. Briefly, genomic DNA was diluted to 20 ng/mL using

Resuspension Buffer (RSB, Illumina), and 55 mL was transferred to microTUBES (Covaris). The normalized genomic DNA was then

sheared on an LE220 focused-ultrasonication system (Covaris) to achieve a target peak of 450 bp with average power of 81.0W (So-

noLab settings: duty factor, 18.0%; peak incident power, 45.0 W; 200 cycles per burst; treatment duration, 60 s; water bath temper-

ature, 5�C - 8.5�C). The quality of the final DNA libraries was assessed with a High Sensitivity dsDNA Kit (Advanced Analytical Tech-

nologies, Inc.). Per the manufacturer’s protocol, the library peak size was in the range of 550 to 620 bp. The DNA libraries were

quantified by real-time quantitative PCR, using the KAPA SYBR FAST Library Quantification Kit (KAPA Biosystems) optimized for

the LightCycler 480 instrument (Roche). DNA libraries were then normalized to 2 nM and clustered on the Illumina cBot 2 at 200

pM using a HiSeq X v2 flow cell and the HiSeq X HD Paired-End Cluster Generation Kit v2. Paired-end sequencing was performed

with the HiSeq X HD SBS Kit (300 cycles) on the Illumina HiSeq X.

Tumor purity and WGS data analysis
Samples with low tumor purity (< 75% proportion of cancer cells) were excluded from the estimation of tumor sample purity by WGS

results after purity filtering. Therefore, 75 tumor samples with a high level of purity from 28 patients (9 R0 group patients, 9 NACT-ER

and all 10 NACT-PR) were incorporated into the downstream analysis of WGS data. Pair-end sequencing reads in ‘‘fastq’’ format

were generated from BCL raw data using Illumina CASAVA (Consensus Assessment of Sequence and Variation) software. The reads

were aligned to the hg19 human reference genome using the BWA software package (Li and Durbin, 2009) followed by removal of the

duplicate reads using Picard tools (http://broadinstitute.github.io/picard/), and local realignments were performed using the GATK

toolkit (McKenna et al., 2010). The BAM files were then used for downstream analysis.

Somatic mutation detection
TheMuTectmethod (Cibulskis et al., 2013) was used to identify somatic point mutations, and the Pindel tool (Ye et al., 2009) was used

to identify somatic insertions and deletions. A series of post-calling filtering algorithms were applied for somatic mutations: (a) total

read count in tumor sample R 20, (b) total read count in germline sample R 10, (c) VAF (variant allele frequency) R 0.05 in tumor

sample and % 0.02 in matched normal sample and (d) population frequency threshold of 1% for filtering out common variants in

the databases dbSNP129 (Sachidanandam et al., 2001), 1000 Genomes Project (Abecasis et al., 2012), Exome Aggregation Con-

sortium (Lek et al., 2016) and ESP6500 (Fu et al., 2013).

Clonal population estimation in tumors
The Sequenza package (Favero et al., 2015) was used to estimate tumor cellularity and ploidy and to calculate an allele-specific copy

number profile for each sample. The PyClonemodel (Roth et al., 2014) was used to identify and quantify clonal populations in tumors.

Mutant-allele tumor heterogeneity (MATH) scores were calculated as a measurement of intratumor genetic heterogeneity (Maya-

konda et al., 2018; Mroz et al., 2015). To construct phylogenetic trees, functional mutations were converted into binary format,

with 1 being mutated and 0 otherwise. Ancestors were germline DNA, assuming no somatic mutations, while germline mutations

inBRCA1/2were included. Phylogenetic trees were constructed using themultistate discrete-charactersWagner parsimonymethod

using the PHYLIP program (Retief, 2000). The trees were redrawnwith relative trunk and branch lengths proportional to the number of

mutations for visualization purposes.

Copy number variation and structure variation detection
CNVs were identified using HMMcopy (Ha et al., 2012). The copy number log2 ratios of tumor versus matched normal samples were

calculated and then subjected to segmentation using circular binary segmentation (Olshen et al., 2004). A cutoff of log2 ratio < �0.4

was applied to identify copy losses, and log2 ratioR 0.4 was applied for copy gains. Copy number signatures were identified based

on the components described in the CNsignatures algorithm (Macintyre et al., 2018). SVs were called by three methods: LUMPY

(Layer et al., 2014), BRASS (https://github.com/cancerit/BRASS) and BreakDancer (Fan et al., 2014). The SVs that appeared in

normal samples were filtered out. To reduce false-positive rates, only SVs identified by at least two methods were kept. SV

signatures for ovarian cancers were calculated, as described previously (Hillman et al., 2018). Chromothripsis-like patterns were

identified by the CTLPScanner server (Yang et al., 2016) with the filtering of: (a) number of copy number switches R 20 and (b)

log10 likelihood ratio % 8.
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High-depth targeted sequencing analysis
We performed high-depth targeted sequencing (T200.2 panel) as previously described (Chen et al., 2015), and genomic DNA from

each sample was prepared as described above for WGS. Briefly, the aliquots of genomic DNA were re-quantified by PicoGreen (In-

vitrogen) and quality was assessed using a 2200 TapeStation system (Agilent). Then genomic DNAwas sheared by sonication using a

Covaris E220 instrument with the following conditions: pPeak incident power, 175 W; duty cycle, 20%; intensity, 5; cycles per burst,

200; and 120 s. To ensure the proper fragment size, samples were checked on TapeStation using the High Sensitivity DNA Kit (Agi-

lent). The sheared DNA proceeded to library prep using a KAPA Hyper Prep Kit following the ‘‘with beads’’ manufacturer protocol.

PCR primers were removed by using 1.8x volume of Agencourt AMPure PCR purification kit (Agencourt Bioscience Corporation).

At the end of the library prep, samples were analyzed on TapeStation to verify correct fragment size and to ensure the absence of

extra bands. Samples were quantified using a KAPA qPCR Quantification Kit (KAPA Biosystems). Equimolar amounts of DNA

were pooled for capture (2-6 samples per pool). Equimolar amounts of DNA were pooled for capture (8-16 samples per pool). Global

copy number selected areas were also captured. We selected for capture 323 genes that are clinically relevant in cancer on the basis

of mutational data and the COSMIC database (Bamford et al., 2004) and TCGA. Global copy number selected areas were also

captured. We designed biotin-labeled probes with Roche NimbleGen for capturing target regions (all exons in those 323 genes

plus copy number regions) and followed the manufacturer’s protocol for the capture step. The captured libraries were sequenced

in 100-bp paired-end mode using a HiSeq 2000 system (Illumina) on a TruSeq v3 paired-end flow cell, according to the manufac-

turer’s instructions, at a cluster density of 700-1000K clusters/mm2. Sequencing was performed on a HiSeq 2000 for 23 100 paired

end reads with a 7 nt read for indexes using Cycle Sequencing v3 reagents (Illumina). The resulting BCL files containing the sequence

data were converted into ‘‘.fastq.gz’’ files and individual libraries within the samples were de-multiplexed using CASAVA 1.8.2 with no

mismatches. All regions were covered by > 20 reads.

Telomere length estimation and comparison among groups
TL was estimated with TelSeq software (Ding et al., 2014) for both tumor and normal samples for each patient. To exclude the factors

that affect telomere length other than cancer, the TL ratio was further calculated as log2 (TL_tumor/TL_normal). TL ratios were

compared among the R0, NACT-ER and NACT-PR groups using the Wilcoxon signed-rank test.

Neoantigen prediction in tumors
Neoantigens were predicted based on somatic mutations, including both SNVs and InDels. The binding affinity was predicted by the

NetMHCcons server (Karosiene et al., 2012). For any neoantigens, the binding affinities were predicted for all MHC types. For each

MHC type, binding affinities were predicted on both wild-type andmutant sequences. The peptide was identified as a strong binder if

the %Rank (rank of the predicted affinity compared to a set of 400.000 random natural peptides) was below 0.5% or the binding af-

finity (IC50) was below 50. The peptide was identified as a weak binder if the%Rank was between 0.5% and 2%or the binding affinity

(IC50) was between 50 and 500. Here, we only included the neoantigens that showed weak and strong binding in the mutant but not

the original wild-type sequence. The numbers of weak- and strong-binding neoantigens were compared between patient groups.

The Wilcoxon rank sum test was used to determine whether there were statistically significant differences between groups.

RNA sequencing analysis
RNA sequencing (RNA-seq) was performed in the MD Anderson Cancer Genomics Core Laboratory as previously described (Liu

et al., 2009). Total RNA from 89 frozen tissues from 30 patients was prepared, and the capture step was performed using whole-

exome biotin-labeled probes from Roche NimbleGen (Exome V3) and following the manufacturer’s protocol; the remaining sample

did not have an adequate amount of tissue. Total RNA was quantified by PicoGreen (Invitrogen), and quality was assessed using a

2200 TapeStation system (Agilent). RNA from each sample (10-100 ng) was converted to double-stranded cDNA using an Ovation

RNA-Seq System V2 kit (NuGEN). The cDNA library was prepared as described above for high depth sequencing, and we used

whole-exome biotin-labeled probes from Roche NimblegGn (Exome v3.0) and followed the manufacturer’s protocol for the capture

step. Sequencing proceeded as described above for the high depth sequencing analysis.

Sequencing proceeded as described above for the high-depth sequencing analysis. Raw RNA-sequencing data of 89 samples

were converted to fastq files and aligned to the reference genome (hg19) using the Spliced Transcripts Alignment to a Reference

(STAR) algorithm (Dobin et al., 2013), and the reads quality was evaluated with FastQC and Qualimap tool (Okonechnikov et al.,

2016). RNA-seq data were excluded for the 15 out of 89 samples with low tumor purity as estimated by WGS; the remaining 74 sam-

ples were subjected to downstream analysis. The R package DESeq2 was used for data processing, normalization and differential

expression analysis following standard procedures (Love et al., 2014). Each gene-level htseq-count table contained the read counts

of 57,798 genes with gene_ids. The gene counts were normalized using the scaling factor method in DESeq2. If the number of over-

lapping reads of any given gene was less than 1 per million total mapped reads for all samples, this gene was excluded from further

analysis. In this way, 25,841 (44.7%) genes were removed. An unsupervised hierarchical clustering analysis was performed using the

Pearson correlation coefficient as the distance metrics and the Ward’s linkage rule using the 3000 genes with the largest standard

deviations (SD). DESeq2 was used to identify the differentially expressed genes (DEGs) and calculate the FDR, and a cutoff of ab-

solute log2-fold change (L2FC) > 2 and FDR < 0.1 were used to define the DEGs. Functional analyses and pathway analyses

were further performed using a Web-based gene set analysis toolkit (WebGestalt) (Wang et al., 2013; Zhang et al., 2005) with the
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DEGs lists obtained from DESeq2 for gene ontology (GO) analysis. Pseudogenes and noncoding RNAs were excluded from the an-

alyses. Functional annotations were based on the GO database, including the biological process, cellular component and molecular

function. Pathway analyses were based onmultiple databases: KEGG (https://www.kegg.jp/), Reactome (https://reactome.org/) and

PANTHER (http://www.pantherdb.org/). The overrepresentation enrichment analysis was used to evaluate the enrichment of func-

tional groups and pathways.

Reverse phase protein array (RPPA) analysis
To collect protein expression data, a Reverse Phase Protein Array (RPPA) assay was performed at the MD Anderson Functional Pro-

teomics Reverse Phase Protein Array (RPPA Core, as described previously (Cheung et al., 2011; Li et al., 2017; Liang et al., 2012;

Wang et al., 2017) using 81 frozen tumor tissues from patients; the remaining 9 samples did not have an adequate amount of tissue.

We also examined the phosphorylation status of proteins using antibodies specific to particular proteins or phosphorylated forms of

proteins because the majority of antibodies used in RPPA analyses are preselected for signaling pathways that are well known to be

involved in tumor development. The samples were probed with 297 antibodies in total. The signal intensities on the RPPA arrays were

quantitated using MicroVigene software (VigeneTech) and processed using the R package Super-Curve (version 1.01; https://

bioinformatics.mdanderson.org/public-software/archive/oompa/), which generated the relative log2 expression value for each

protein.

Protein levels for each sample were determined by interpolating each dilution curve produced from the densities of the 5-dilution

sample spots using SuperCurve software. All relative protein levels were normalized for protein loading, transformed to linear values

and log2-transformed. The 14 samples with low tumor purity were excluded from further downstream analyses. Amixed-effect model

was fit to each normalized protein level with response group and tissue type as main-effect covariates and patients as the random

effect covariate. We used t tests to test against the null hypothesis of no difference in protein expression between any two groups.

The Benjamini-Hochberg method was used to control the FDR. Next, protein network analysis was performed on 16 differentially

expressed proteins using the GeneMANIA server (Warde-Farley et al., 2010). The nodes in the resulting network represent the pro-

teins, and the edges represent the protein-protein interactions. Four types of direct interactions were selected to build the network:

physical interactions, co-localization, pathway and genetic interactions. The network edges were weighted by the corresponding

data source with the adaptive network weighting method by GeneMANIA.

Specimen preparation for proteomics
Laser microdissection was used to harvest whole tissue representations (cancer and stroma combined) of each specimen, which

were digested with trypsin using pressure cycling technology (PCT, Pressure Biosciences, Inc.) from 87 frozen tissues from 30 pa-

tients. Briefly, tissue specimens were sectioned (8 mm) by microtome onto polyethylene naphthalate membrane slides and hematox-

ylin-eosin stained. Laser microdissection was utilized to harvest whole tissue representations of each specimen (cancer and stroma

combined) prior to proteomic sample preparation, with a minimum selected total area goal of 65,000,000 mm2 from 8 mm thick sec-

tions, avoiding areas of necrosis and blood. The laser-microdissected harvests were collected directly into microcentrifuge tubes

containing 50 mL liquid chromatography (LC)/mass spectrometry (MS)-grade water for proteomic analysis. Tissue specimens

were stored in a �80�C freezer until sample preparation. Tissue harvests were transferred to a Pressure Cycling Technology

(PCT, Pressure BioSciences, Inc) microtube containing 20 mL of 100 mM triethylammonium bicarbonate (TEAB), 10% acetonitrile.

The samples were incubated at 99�C for 30 min followed by 50�C for 10 min. Tissues were digested by adding SMART trypsin (Ther-

moFisher Scientific Inc) at a ratio of 1 mg per 30,000,000 mm2 tissue by employing PCT, where each sample was cycled 60 times be-

tween 45,000 psi for 50 s and atmospheric pressure for 10 s at a constant temperature of 50�C. Each protein digest was transferred to

a clean 0.5 mL microcentrifuge tube, vacuum dried, and re-suspended in 50 mL 100 mM TEAB. Final digest recoveries were deter-

mined by colorimetric assay (Pierce BCA Protein Assay Kit). Peptide (50 mg) from each sample was labeled with a unique isobaric

tandem mass tag (TMT) label according to the manufacturer’s instructions (TMT-11-plex Isobaric Label Reagent Set, ThermoFisher

Scientific). A reference sample, generated by pooling equivalent amounts of peptide digests from each of the patient samples in the

cohort, was labeled with TMT ‘‘Channel’’ 126 and included in each TMT-11-multiplex (e.g., reference standard Channel 126 + 10

unique samples occupying Channels 127N-131). Each TMT-11 multiplex set of clinical samples was constructed in a randomized

fashion. After quenching, each TMT-11 multiplex set of samples was combined and vacuum dried to approximately 80 mL.

Basic reversed-phase liquid chromatographic (bRPLC) fractionation
Each TMT-11 multiplex set of samples was loaded onto a C-18 trap column in 10 mMNH4HCO3 (pH 8.0) and fractionated by bRPLC

into 96 fractions through development of a linear gradient of acetonitrile (0.69% acetonitrile/min). Thirty-six concentrated fractions

were generated by pooling the samples in a serpentine manner. Ten percent (volume) of each fraction was removed for liquid chro-

matography-tandem mass spectrometry (LC-MS/MS). The remaining 90% (volume) of the 36 fractions was pooled into 12 fractions

for serial phosphopeptide TiO2 enrichment followed by iron immobilizedmetal ion affinity chromatography (Fe-IMAC). Briefly, peptide

fractions were vacuum dried, re-suspended in TiO2 binding/equilibration buffer and bound to TiO2 affinity spin tips (High-Select TiO2

Phosphopeptide Enrichment Kit, Thermo Fisher Scientific), and sample flow-through and washes were reserved for subsequent

enrichment by Fe-NTA (nitrilotriacetic acid) affinity chromatography (High-Select Fe-NTA Phosphopeptide Enrichment Kit). As a

quality control analyses, we investigated the enrichment of phosphotyrosine-containing peptides resulting from this dual enrichment
Cell Reports 31, 107502, April 14, 2020 e5

https://www.kegg.jp/
https://reactome.org/
http://www.pantherdb.org/
https://bioinformatics.mdanderson.org/public-software/archive/oompa/
https://bioinformatics.mdanderson.org/public-software/archive/oompa/


strategy and found that we recover these at a very similar relative level (1.3%) as to similar dual enrichment strategies employed pre-

viously, such as from the Mann lab where they observed 1.8% phosphotyrosyl-containing peptides (Olsen et al., 2006). Notably, tis-

sue samples organized in TMT sample plexes 11 through 14 exhibited low overall peptide yields and were thus analyzed using fewer

concatenated peptide digest fractions, i.e., 12 fractions for plexes 11 through 13 and 24 fractions for plex 14 relative to the 36 total

fractions analyzed for global proteomics across sample plexes 1 through 10. As sample yields were belowSOP expectations for sam-

ple plex 11 through 14, phosphopeptide analyses for the samples were omitted from data analyses downstream.

LC-MS/MS proteomics
The TMT-11 sample multiplex bRPLC fractions (36 total fractions for global proteomics and 12 fractions for phosphopeptides serially

enriched by TiO2 and Fe-IMAC) were analyzed by LC-MS/MS employing a nanoflow LC system (EASY-nLC 1200, Thermo Fisher Sci-

entific) coupled online with an Orbitrap Fusion Lumos Tribrid mass spectrometer (Thermo Fisher Scientific). In brief, each sample

(5 mL) was loaded on a nanoflow high-performance LC system outfitted with a reversed-phase trap column (AcclaimTM PepMapTM

100 C18, 2 cm length, nanoViper Trap column, Thermo Fisher Scientific) and a heated (50�C) reversed-phase analytical column (Ac-

claimTM PepMapTM RSLC C18, 2 mm, 100 Å, 75 mm3 500 mm, nanoViper, Thermo Fisher Scientific) connected online with an Orbi-

trap mass spectrometer. Peptides were eluted by developing a linear gradient of 2% mobile phase B (95% acetonitrile with 0.1%

formic acid) to 32% mobile phase B within 120 min at a constant flow rate of 250 nL/min. High-resolution (R = 60,000 at m/z 200)

broadband (m/z 400-1600) mass spectra (MS) were acquired, from which the top 12 most intense molecular ions in each MS

scan were selected for high-energy collisional dissociation (HCD, normalized collision energy of 38%) acquisition in the Orbitrap

at high resolution (R = 50,000 atm/z 200). Monoisotopic precursor selection mode was set to ‘‘Peptide,’’ andMS1 peptide molecular

ions selected for HCD were restricted to z = +2, +3 and +4. The radio frequency (RF) lens was set to 30%, and both MS1 and MS2

spectra were collected in profilemode. Dynamic exclusion (t = 20 s at amass tolerance = 10 ppm)was enabled tominimize redundant

selection of peptide molecular ions for HCD.

Quantitative Proteomic Data Processing Pipeline for Global and phosphoproteome analyses
Peptide identifications were generated by searching the .raw data files with a publicly available, non-redundant human proteome

database (Swiss-Prot, Homo sapiens [https://www.uniprot.org/, downloaded 12/01/2017]) appended with porcine trypsin (Uniprot:

P00761) and iRT peptide (Escher et al., 2012) sequences using Mascot (Matrix Science) and Proteome Discoverer (Thermo Fisher

Scientific) software. The .raw data files corresponding to each LC-MS/MS injection per TMT-11 multiplex were searched using

the following parameters: precursor mass tolerance of 10 ppm, fragment ion tolerance of 0.05 Da, a maximum of two tryptic mis-

cleavages, static modification for TMT reporter ion tags (229.1629 Da) on N-termini and lysyl residues, and dynamic modifications

for oxidation (15.9949 Da) on methionine residues, as well as phosphorylation (79.9663 Da) on seryl, threonyl or tyrosyl residues for

phosphoproteome analyses. The resulting peptide spectral matches (PSMs) were filtered using an FDR < 1.0% (q-value < 0.01), as

determined by the Percolator (Käll et al., 2007) module of Proteome Discoverer. Phosphoproteome search results were further

analyzed by the ptmRS node (Taus et al., 2011) within Proteome Discoverer as a confidence measure for the post-translational mod-

ifications identified. TMT reporter ion intensities were extracted using ProteomeDiscoverer at amass tolerance of 20 ppm, and PSMs

lacking a TMT reporter ion signal in TMT channel m/z 126 (TMT-126, the pooled study reference combined from all patient sample

digests), PSMs lacking TMT reporter ion intensity in all TMT channels, or PSMs exhibiting an isolation interference of R 50% were

excluded from downstream analyses. Log2-transformed TMT reporter ion ratios corresponding to individual patient tissue samples

were calculated for each PSM against the pooled reference standard (TMT-126 channel). Log2-transformed PSM abundance distri-

butions were normalized by calculating the mode-centered z-score transformation adapted from previous study (Mertins et al.,

2016), for each channel in the TMT-11 multiplex as follows: normalized PSM (Log2Ratio) = [PSM (Log2Ratio) – ModeCenter PSM

(Log2Ratio) / s PSM (Log2Ratio). Briefly, this method normalizes log-transformed PSM abundances for each patient sample channel

by calculating the mode log ratio as well as the standard deviation for the entire distribution of PSMs quantified in a patient sample

channel. The log ratio intensity of each PSMquantified for a given patient channel is then normalized by subtracting themode log ratio

and then dividing by the standard deviation of all PSMs quantified for a given PSM per patient channel. For global protein-level abun-

dance, the abundances of proteins identified by a unique PSM (i.e., in which a PSMmaps uniquely to a single protein accession) were

determined by calculating the median log2-transformed abundance ratios of all such PSMs. The abundances of PSMs mapping to

multiple proteins (i.e., ‘‘multi-mapper’’ PSMs) were compared to mapped unique protein abundances using a mean-squared-error

approach to assign them to unique proteins based on comparative abundance analyses. Briefly, mean squared log2-transformed

abundance ratios (Allison et al., 2019; Tarney et al., 2019) were calculated for multi-mapper PSMs with intensity data observed in

R 50% of all TMT channels for a given TMT sample plex; redundant and multiply charged versions of a given PSM were considered

unique biochemical events. Multi-mapper PSMswere assigned to the corresponding unique protein accessions exhibiting the small-

est difference in relative abundance levels comparatively. Multi-mapper PSMs mapping to protein accessions not identified by any

unique PSMs were excluded from downstream analyses. This strategy leverages quantitative data collected for unique peptides (in

this case 95.2% of total PSMs identified against the non-redundant SwissProt human proteome database that we searched our data

against) to identify parent proteins of co-measured non-unique peptides (in this case representing 4.8% of total PSMs identified).

Protein-level abundance was calculated from normalized, median log2-transformed TMT reporter ion ratio abundances from a min-

imum of two PSMs corresponding to a single protein accession. The performance of a subset of six patient samples labeled as in-
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dependent technical replicate channels was assessed by direct comparison of proteins co-quantified between replicate samples; all

patient samples exhibited Spearman Rho > 0.85 ± 0.03 except replicates for patient sample PR-R0-4-1 (R = 0.52) which was thus

removed from consideration in downstream analyses. Normalized log2-transformed protein-level abundances for each TMT-11

multiplex were merged, and protein-level abundances for proteins not quantified in all patient samples, but inR 50%, were imputed

using a k-nearest neighbor (k-NN) strategy adapted from previous publication (Mertins et al., 2016) using the pamr (Prediction Anal-

ysis forMicroarrays) R package (Lazar et al., 2016). The abundances of phosphorylated (phospho)-PSMswere assembled at the level

of discrete phosphosites that map to a unique protein using a tiered strategy aimed at defining high- and low-confidence phospho-

PSMs. First, TMT reporter ion intensities were processed for phospho-PSMs as described above to calculate normalized, log2-trans-

formed abundance ratios of phospho-PSMs for a given patient sample. Phospho-PSMs that mapped to unique proteins were as-

signed to those protein identifiers. Multi-mapper phospho-PSMs were assigned to all proteins that were co-identified in companion

global proteome data. Multi-mapper phospho-PSMs that did not map to a unique protein in global proteomic data were assigned to

the first protein accession that a given phospho-PSM was assigned to by database search. The number and amino acid positions of

phosphosites that were identified in the database search for a given phospho-PSM were compared with phosphosite positions pre-

dicted by the ptmRS algorithm. A high-confidence phospho-PSM was determined when all phosphosites identified by database

search also exhibited > 50% probability of being the ‘‘best’’ predicted phosphosite for a given phospho-PSM. A low-confidence

phospho-PSM was determined when any phosphosite identified by database search was not predicted as a phosphosite or ex-

hibited < 50% probability of being predicted as the ‘‘best’’ phosphosite. Low-confidence phospho-PSM candidates were further

prioritized using a tiered strategy in which unique phosphosite variants identified for the same phospho-PSM event were selected

based on the highest ptmRS probability score that exhibited the lowest search engine rank in the TMT-11 patient sample plex

with the greatest number of total PSMs. Normalized log2-transformed protein-specific phosphosite abundances were determined

by calculating the median abundance of phospho-PSMs exhibiting the same phosphosite as well as methionine oxidation state.

Phosphosites quantified redundantly as both low- and high-confidence versions were further filtered to prioritize only high-confi-

dence phosphosites for downstream analyses. For phosphosites co-identified in companion global proteomic data, median log2-

transformed, protein-specific phosphosite abundances were also normalized to the total protein abundance quantified in global pro-

teome analyses.

Differential analyses of global and phosphosite data
Differential analyses of neurofibromin (NF1) global protein abundance were performed using Mann-Whitney U rank sum testing in

MedCalc (version 19.0.3). Phosphosite data were filtered prior to differential analyses so that phosphosites were measured in R

50% of the comparator cohort, i.e., NACT-ER versus NACT-PR and NACT-ER/PR versus R0 patients. Differential analyses of global

and phosphosite TMT-11 data matrixes were performed for patient samples of interest using the LIMMA package (version 3.8)

(Ritchie et al., 2015) in R (version 3.5.2). Phosphosite data were pre-filtered for protein and phosphosite alterations passing LIMMA

adjusted p value < 0.05; these alterations were prioritized for downstream analyses. Significant protein and phosphosite alterations

were visualized in heatmaps and by principle component analysis (PCA) using default settings in the ClustVis web tool (Metsalu and

Vilo, 2015). To investigate the impact of imputation on significantly altered protein features used for principle component analyses,

we reviewed proteins significantly altered between NACT-ER/PR versus R0 patients (n = 104) and find that 53 of these alterations

were imputed in as few as two and as many as forty-five cases across our patient cohort (n = 87). We performed PCA analyses of

the 51 non-imputed protein alterations among this list and compared variances for this limited feature set for the first two principle

components (PC1 = 33.9% and PC2 = 6.8%) relative to variance observed for the 104 total protein alterations (Figure 4D, PC1 =

29.6% and PC2 = 5.4%), between NACT-ER/PR versus R0 patients. We find these variances to not be significantly different

(MWU p = 0.667). Functional inference analyses were performed for significantly altered proteins and phosphosites (significance

defined as LIMMA p value < 0.01 and exhibiting a log2 fold-change cut-off ± 1.5 proteins) using Ingenuity Pathway Analysis. Signif-

icantly enriched diseases and biofunctions predicted to be activated or inhibited were prioritized for further analyses. This strategy

was intended to expand the feature set to investigate overarching signaling and pathway alterations between these patient cohorts.

Data analysis of targeted sequencing
A customized pipeline was applied to analyze the high-depth targeted sequencing results, which was adopted from tools that are

applied to cancer genome sequencing projects such as TCGA but implemented with further optimization for deep clinical

sequencing, as we previously described (Chen et al., 2015). Briefly, we aligned the reads to human reference assembly hg19 using

BWA and Picard (DePristo et al., 2011). We then used theMuTect and Pindels algorithms against a pooled common normal reference

to call high-confidence mutations. The same public databases as described in WGS analysis were used to further remove the germ-

line polymorphismwith a population frequency cutoff of 0.5%. Copy number alterations were identified using an in-house R package

as previously described (Takahashi et al., 2018). A cutoff of log2 ratio%�0.4 was applied to identify copy losses and log2 ratioR 0.4

was applied for copy gains.

Immunohistochemical analysis
50 paraffin sections from the R0 (n = 24) and NACT-ER/PR (n = 26) groups were used for the validation of NF1 protein expression by

immunohistochemistry assay (IHC), and IHC was performed in the MD Anderson Research Histology Core Laboratory. Briefly, the
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slides were incubated with a primary antibody Neurofibromin 1 (1:150, Abcam) for 8 minutes, and then detected using Leica Bond

Polymer Refine Detection Kit according to manufacturer’s instuctions (Leica Biosystems). The quantification of NF1 protein expres-

sion by IHC in the FFPE sections, each slide was independently evaluated and scored by three independent investigators including a

board-certified pathologist on blinded samples according to expression level scoring matrix (Figure S8), and NF1 expression score

(H-score, range 0-300) was determined by multiplying the percentage of positive cells.

Immune-profiling analysis
Opal multiplex staining was performed for immune infiltrate analysis. In brief, Opal multiplex allowed for the simultaneous evaluation

of seven markers (CD4, CD8, CD20, FoxP3, cytokeratin, CD68/163 and DAPI) in a single tissue section. Multispectral imaging was

applied to the seven-marker stained samples. An average of five representative images per tissue sample was obtained. After image

capture, spectral unmixing was performed to separate raw images into individual fluorophores. The spectrally unmixed images were

then analyzed to identify different cellular phenotypes, which allowed for the evaluation of the regulatory T cell population identified by

CD8+FoxP3+ positivity (Figure S7A). All other cells not defined by our phenotyping categories (blood vessels, nerves) were grouped

into an ‘‘other’’ category. Finally, tumor epithelial versus non-tumor areas of each specimen were distinguished using a tissue seg-

mentation algorithm. After cell phenotyping, comparisons were drawn between abundance and distribution of immune infiltrates for

the R0 (n = 25, 10 primary and 15 metastatic sites), NACT-ER/PR (n = 28), NACT-ER (n = 14, 5 primary and 9 metastatic sites) and

NACT-PR (n = 14, 5 primary and 9 metastatic sites) groups.

Inference of immune cell populations
We estimated the immune contextures of 74 samples using the CIBERSORT tool (https://cibersort.stanford.edu). We used its original

algorithm to infer the fractions of 22 immune cells relative to the total immune-cell population. In addition, we also applied its absolute

mode to calculate a score that quantitatively measured the overall abundance of each cell type. A mixed-effect model was fit to a

score with response group and tissue type as main-effect covariates and patients as the random effect covariate.

QUANTIFICATION AND STATISTICAL ANALYSIS

The analysis of tumor samples with matched normal samples allowed for the detection of somatic genomic events contributing to the

observed differential response to treatment between groups, and the analysis of multiple sampling per patient enabled us to assess

clonal and adaptive evolution in different response groups. To evaluate the statistical significance, Student t test is used if the data fits

normal distribution. Otherwise, Wilcoxon rank-sum test is used to test the differences between groups. BHmethod is used to control

the false discovery rate. In transcriptomic analysis, the differential expression was evaluated using a negative binomial generalized

linearmodel as described in DESeq2 (Love et al., 2014), and logarithmic fold change and adjusted p valueswere used for differentially

expressed gene assessment. In the proteomic analysis, the differential expression was evaluated by the linear model described in

LIMMA (Ritchie et al., 2015). The statistical significance of differences (p < 0.05) on infiltrated immune cells between groups was

determined using the Student t test (GraphPad Prism).

DATA AND CODE AVAILABILITY

Sequence data from the WGS, deep targeted sequencing and RNA sequencing in this study have been deposited in the European

Genome-phenome Archive (EGA, https://www.ebi.ac.uk/ega/home) under accession numbers EGAD00001005240,

EGAD00001005239 and EGAD00001005238, respectively. The LC-MS/MS data have been deposited to the PRoteomics IDEntifica-

tions (PRIDE, https://www.ebi.ac.uk/pride) database under the accession number PRIDE: PXD014980.
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Figure S1. Somatic mutations by WGS, Related to Figure 2, Related to Figure 2. (A) Boxplot 

showing numbers of non-synonymous mutations. The average numbers were 81 in the R0, 78 

in the NACT-ER and 67 in the NACT-PR groups. The p-value table shows all the comparisons 

between groups. (B) Boxplots showing the distribution of variant allele frequencies (VAFs) of 

somatic mutations identified in the R0 (top left), NACT-ER (top right) and NACT-PR (bottom) 

groups. (C) Mutation signatures identified from all somatic mutations. Two signatures, 3 and 5, 

from the 30 validated signatures in the COSMIC database were identified as enriched in our 

cohort. (D) The contribution of each sample to the two mutation signatures: Signature_3 like and 

Signature_5 like.  
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Figure S2. Intra-patient heterogeneity, clonal analysis and phylogenetic trees of cancer 

progression of patients in the R0, NACT-ER and NACT-PR groups, Related to Figure 2. (A-

C) Venn diagrams of all the somatic mutations identified in primary and distant metastatic sites 

by patient in the R0 (A), NACT-ER (B) and NACT-PR (C) groups. (D) Boxplots showing clonal 

analysis, (Left) the number of clones, (Middle) the proportion of mutations belonging to major 

clones and (Right) the cellular prevalence of major clones. (E-G) Phylogenetic tree of the 

samples constructed with non-silent mutations. The branch lengths are in proportion to the 

number of non-silent mutations, including SNVs and Indels. GL: Germline. Ovarian cancer-

related mutations are marked on the tree in the R0 (E), NACT-ER (F) and NACT-PR (G) groups.  
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Figure S3. Copy number profiles, the load of copy number variations, copy number 

signatures and structure variations in all patient groups, Related to Figure 2. (A) Copy 

number profiles across the entire genome. Top: Copy number variations of all samples. Red 

indicates copy gains, and blue indicates copy losses. Samples from the same patients are next 

to each other. Bottom: Circle plots of the frequencies of copy gains/losses on each chromosome, 

and the yellow lines indicate inter-chromosomal translocations. (B) Boxplot showing the number 

of copy number breakpoints calculated. The median numbers of breakpoints per sample were 

485 in the R0 group, 429 in the NACT-ER group and 363 in the NACT-PR group. (C) Shown are 

the enriched abnormalities, including somatic mutations and CNVs, with a significant p-value 

<0.05 in the comparison between NACT-ER (n=25) and NACT-PR (n=26) groups. The y-axis 

represents the proportion of patient samples carrying the mutation in the corresponding genes, 

the numbers labeled in the graph indicate the number of mutated samples/total number of 

samples in the corresponding genes. The red dot box in the x-axis represents ovarian cancer-

related genes. (D) Seven copy number signatures are identified in our patient cohort. (E) 

Heatmap of the signature scores based on the identified copy number signatures for each patient. 

(F) the similarity ranging from 0 to 1 between the copy number signatures previously reported in 

high-grade serous ovarian cancer (Sig1 to Sig7) and the ones identified in our patient cohort 

(Sig1_new to Sig7_new). (G) Signature scores are calculated based on structure variations 

identified in each patient. The heatmap represents the cluster of signature scores across all 

patients. (H) Structure variations are identified in ovarian cancer associated genes. Three 

algorithms were used to detect structure variations, including brass (bs), breakdancer (bd) and 

lumpy (lp). (I) Left, scatterplot of VAFs of shared somatic mutations detected by WGS and T200 

sequencing. Pearson correlation r=0.963, and Spearman correlation r=0.964. Right, histogram 

showing the log2 ratio of VAF in WGS and VAF in T200 sequencing. 
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Figure S4. Chromothripsis-like patterns (CTLPs), telomere length (TL) ratios and the 

number of strong and weak binding antigens in patient groups, Related to Figure 3. (A) 

Examples of non-CLP (top) and CLP (bottom). In sample ER-8-M2, CTLPs were detected on 

chr6 and chr19. (B) The distribution of TL ratios (tumor/normal) in all samples (left), primary 

tumors (middle) and distant metastasis tumors (right). (C) Boxplots showing the number of 

antigens in all samples (left), primary tumors (middle) and distant metastasis tumors (right). 

These neoantigens show weak and strong binding in mutant, but not in original wild-type 

sequences. (D) The correlations between the neoantigen level and other features including 

mutation loads, CNV loads, CTLPs, and mismatch repair (MMR) CNVs. 
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Figure S5. Differentially expressed genes (DEGs) identified by RNA-seq and RPPA in R0, 

NACT-ER and NACT-PR groups, Related to Figure 4. (A) Heatmap depicting the 3000 most 

variable genes based on RNA-seq. Rows indicate normalized gene expression level, and 

columns indicate samples. (B) Heatmap of The R0 group had significant 6 DEGs between the 

R0 and NACT-ER/PR groups, identified by RNA-seq. (C) Heatmap of differentially expressed 

ncRNA genes in the R0 versus NACT-ER and -PR groups, identified by RNA-seq. (D) Heatmap 

of 693 DEGs in the NACT-ER versus NACT-PR groups. (E-F) Significantly enriched GO terms 

BP, CC and MF in the R0 versus NACT-ER/PR groups (E), and NACT-ER versus NACT-PR 

groups (F). The x-axis represents the number of DEGs for each GO term category, and the y-

axis represents the GO term category including BP, CC and MF. (G) Heatmap of 16 differentially 

expressed proteins between the R0 and the NACT-ER and -PR groups, identified by RPPA; a 

non-supervised clustering analysis was performed based on 297 protein expression levels from 

67 tumor samples with a high level of tumor purity from across patient groups: 24 for the R0 

group, 21 for the NACT-ER group and 22 for the NACT-PR group. Sixteen proteins were 

identified to be differentially expressed between the R0 and NACT-ER and -PR groups with an 

FDR < 0.15, and AMPK and SMAD3, were differentially upregulated in the NACT-ER compared 

to the NACT-PR group (FDR < 0.15) (data not shown). 
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Figure S6. Differentially expressed genes (DEGs) identified by proteomics and principle 

component and pathway analyses of protein alterations in groups, Related to Figure 4. 

(A) Top pathways predicted to be activated (z-score >1) or inhibited (z-score <-1) inferred from 

506 significant protein alterations between NACT-ER (n=30)/ PR (n=29) and R0 (n=28) patients. 

(B) Top pathways predicted to be activated (z-score >1) or inhibited (z-score <-1) inferred from 

173 significant phosphosite alterations between NACT-ER (n=17)/ PR (n=22) and R0 (n=27) 

patients. (C) Differential analyses revealed 37 proteins significantly altered (adj. p-value <0.05) 

between NACT-ER (n=30) and NACT-PR (n=29) patients. Heatmap reflects clusters assembled 



12 

 

by Euclidean distance and average linkage of significant protein abundance trends. (D) Principle 

component analyses revealed 37 proteins significantly altered (adj. p<0.05) between NACT-ER 

(n=30) and NACT-PR (n=29) patients. (E) Top pathways predicted to be activated (z-score >1) 

or inhibited (z-score <-1) inferred from 386 significant protein alterations (p<0.01) between 

NACT-ER (n=30) and NACT-PR (n=29) patients. (F) Differential analyses revealed 59 

phosphosites significantly altered (adj. p<0.05) between NACT-ER (n=17) and NACT-PR (n=22) 

patients. Heatmap reflects clusters assembled by Pearson correlation and average linkage of 

significant phosphosite abundance trends. (G) Principle component analyses of 59 phosphosites 

significantly altered (adj. p<0.01) between NACT-ER (n=17) and NACT-PR (n=22) patients. (H) 

Top pathways predicted to be activated (z-score >1) or inhibited (z-score <-1) inferred from 164 

phosphosite alterations (adj. p<0.05; Table S4) between NACT-ER (n=17) and NACT-PR (n=22) 

patients. 
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Figure S7. HGSC immune infiltration patterns in all areas (tumor/non-tumor), Related to 

Figure 4. (A) Opal 7-color multiplex analysis. Representative multiplex images displaying the 

same multispectral imaging after spectral unmixing, including nuclear marker DAPI 

(pseudocolored blue), CD8 (membrane, Opal color code 540, pseudocolored cyan), CD4 

(membrane, 650, pseudocolored green), FoxP3 (membrane, 570, pseudocolored yellow), 
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CD68/163 (membrane, 620, pseudocolored orange), cytokeratin (membrane, 690, 

pseudocolored red), CD20 (membrane, 520, pseudocolored white) and autofluorescence 

(pseudocolored black; not pictured). (scale bar = 40 µm). (B) Relative distribution of analyzed 

cell phenotypes in HGSC across the R0, NACT-ER and NACT-PR groups. (C) Relative 

distribution of immune cell populations separated into primary and metastatic sites in each group. 

(D) Immune subpopulation infiltration patterns in the R0, NACT-ER and NACT-PR groups. The 

percentage of immune cells were compared for all T cells, immune cells, helper T cells, cytotoxic 

T cells, regulatory T cells, macrophages and B cells. Statistical significance was determined by 

unpaired t-test. Data are presented as the mean ± SEM. (E) Immune subpopulation infiltration 

patterns in primary and metastatic sites. The percentages of T cells, B cells, macrophages, and 

FoxP3+ cells in all areas (tumor and non-tumor) were compared for each group. 
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Figure S8. The representative cases of NF1 IHC scores, Related Figure 4. NF1 expression 

in tumors was scored 0 (negative, A), 1 (weak, B), 2 (mild expression, C), and 3 (strong 

expression, D) based on the intensity of NF1 IHC staining across the R0, NACT-ER and NACT-

PR groups (scale bar = 40 µm).   
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