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Table S1: Comparison of aneurysm epidemiology, morphology, clinical treatments, intervention criteria, simulation considerations, and types of 
clinical studies. Abbreviations: D, Diameter; KD, Kawasaki disease 
 

location  epidemiology and morphology intervention criteria and current 
treatments 

simulation considerations and types of clinical 
studies  

all 
locations  

connective tissue disorder, atherosclerosis 
1–10 

diameter, diameter-based z-score, 
or rate of increasing diameter2–4,11–

14  

subject-specific boundary conditions and 
geometry are needed15 

cerebral 
aneurysms 
(IAs) 

risk factors: hypertension, smoking, 
atherosclerosis, family history of 
subarachnoid hemorrhage, polycystic 
kidney disease, connective tissue 
disorders, and female sex1,16 
prevalence: 3.2% (95% confidence 
interval 1.9% - 5.2%1) 
morbidity/mortality: 60% mortality rate 
within the first 6 months of a 
subarachnoid hemorrhage16 
morphology: saccular ( 90%, 85% of 
which are at the Circle of Willis), 
fusiform, dissecting, and micotic17 

concern: subarachnoid 
hemorrhage1 
treatment: endovascular coiling, 
neurosurgical clipping, and 
endovascular stents1 
surgical intervention: based 
on clinical history, family history, 
location, and size (D ≥ 7 - 10 
mm)1,11,16,18; however, the most 
recent consensus guidelines do not 
define a diameter cutoff1 

 

 proper location of vessel truncation19 and 
inclusion of side arterial branches20 improves 
accuracy 

 small vessel size reduces Newtonian blood 
flow assumption21, segmentation22, and 
velocity measurement23 accuracy 

 small aneurysm size limits boundary 
condition and geometry sources (reduced 
accuracy with 4D flow MRI24; limited use 
with ultrasound)  

 rigid wall assumption can alter WSS values 
and increase flow instability25,26  

 case series surgical planning27,28, studies 
comparing rupture cases to unruptured 
controls29,30, large studies comparing 
rupture cases to control31–34, prospective 
study35 

thoracic 
aortic 
aneurysms 
(TAAs) 

risk factors: connective tissue disorder 
(e.g. Marfan syndrome), aortic valvular 
disease (bicuspid valve), hypertension, 
smoking, and infection (syphilis)2,6 
prevalence: 0.16 - 0.34%36,37 

concern: dissection, rupture2 
treatment: open aneurysm repair 
or endovascular aneurysm repair2 
surgical intervention: D ≥ 55 
mm2,40 or a growth rate of ≥ 5 

 pulsatile helical flow observed41,42 
 deformable walls can account for the 

influence of vessel wall motion on 
hemodynamics43 



 

 

location  epidemiology and morphology intervention criteria and current 
treatments 

simulation considerations and types of clinical 
studies  

morbidity/mortality: acute dissection 
27.4% and rupture is fatal for 59% before 
reaching the hospital38 
morphology: fusiform > saccular6, the 
majority occur in the root or ascending 
aorta (~60%)39 

mm/year with considerations for 
genetic syndromes or bicuspid 
valve and other factors2,6  

 dissection or thrombus may alter geometries 
44,45 

 case study45, case compared to control46, 
treatment options47–49 
 

abdominal 
aortic 
aneurysms 
(AAAs) 

risk factors: smoking, connective tissue 
disorder, atherosclerosis, hypertension, 
and male sex (but rupture is associated 
with female sex)2–4 
prevalence: 1.4%4 
morbidity/mortality: > 80% mortality 
with rupture3  
morphology: fusiform more common3 

concern: rupture3  
treatment: open aneurysm repair, 
endovascular aneurysm repair3 
surgical intervention: D ≥ 50 - 55 
mm or 10 mm/year2,3,4  

 pulsatile simulations capture transient 
formation and disappearance of vortices50–53 

 inclusion of material properties and aortic 
dynamics can mimic vessel wall behavior51, 
but rigid wall sufficiently quantifies blood 
flow dynamics54 

 can couple with growth and remodeling 
studies to assess AAAs dynamics51 

 inclusion of an intraluminal thrombus and 
major neighboring branching vessels 
improves accuracy51,55,56  

 case study57 and treatment options58–61  

peripheral 
artery 
aneurysms 
(PAAs)  

carotid, axillary, brachial, femoral, and 
popliteal arteries 
risk factors: hypertension, 
atherosclerosis9 
smoking10, trauma (femoral artery 
pseudoaneurysm), and male sex is 
associated with iliac, femoral, and 
popliteal artery aneurysms62–64 
prevalence: not well known and varies 
across locations (popliteal artery 
aneurysm are found in 1% men over 
65)12,62 

concern: thrombosis and rupture12 
treatment: open aneurysm repair, 
or endovascular aneurysm repair12 
surgical intervention: if D ≥ 20-
40 mm, and depends on location, 
reviewed in12,13 
 

 low prevalence12,62 limits data sets65 
 variation in anatomical location65 complicates 

models  
 case study in an idealized geometry66, 

comparisons between ruptured and 
unruptured aneurysm65 



 

 

location  epidemiology and morphology intervention criteria and current 
treatments 

simulation considerations and types of clinical 
studies  

morbidity/mortality: thromboembolic 
complications for popliteal artery 
aneurysm 35% (8 - 100%)9 
morphology: saccular, fusiform9 

visceral 
artery 
aneurysms 
(VAAs)  

splenic, celiac, superior and inferior 
mesenteric, renal, and hepatic arteries 
risk factor: connective tissue disorders, 
atherosclerosis, fibromuscular dysplasia, 
trauma, vasculitis, hypertension, 
pregnancy (splenic), splenic and renal 
artery aneurysm associated with female 
sex, and hepatic artery aneurysm 
associated with male sex7,8 
incidence: 1% (range 0.098% - 10.4%)8 
0.01 - 0.2%67  
morbidity/mortality: 25 - 70% mortality 
rate depending on location8,67 
morphology: saccular or fusiform 
depends on location8 

concern: rupture12 
treatment: open aneurysm 
surgical repair or endovascular 
aneurysm repair13 
surgical intervention: if D ≥ 20 
mm12,13 
  
 
  

 low prevalence8,67 limits data sets  
 variation in geometries and anatomical 

location of the aneurysm68 complicate models  
 case study69, case study for surgical 

planning70 

coronary 
artery 
aneurysms 
(CAAs) 

risk factors: Kawasaki disease (KD) and 
other vasculitides, atherosclerosis, 
trauma, connective tissue disorders, and 
male sex5 
incidence: 1.65% (range 0.3 - 5.3%)5 
morbidity/mortality: 5% of patients with 
myocardial infarct less than 40 years old 
have CAA with a history of KD71 
morphology: complex in shape, saccular, 
fusiform, or appear as a string of 
pearls72,73 

concern: thrombosis14 
treatment: antiplatelet and 
anticoagulation therapies14 
medical intervention: antiplatelet 
therapies (z-score ≥ 2) and 
antiplatelet therapies and 
anticoagulation treatment if  
D ≥ 8 mm or a z-score ≥ 1014 

 coronary arteries translate with cardiac 
motion74 

 blood flow occurs during diastole74 
 case studies and series74,75, cases compared 

to controls without aneurysm73 or without 
sequala76,77 

 
 

  



 

 

Table S2: Modeling parameters and inputs commonly used in computational modeling of aneurysms51 

common modeling parameters common inputs how commonly obtained 

arterial geometry 

3D model created from segmentation of 
medical images; common segmentation 
software51 includes MIMICS, VMTK78, 

ITK-SNAP, etc. 

magnetic resonance imaging, computed 
tomography, ultrasound, etc. 

numerical settings 

software/numerical scheme dependent; 
common solvers include SimVascular79, 
Crimson, ANSYS Fluent80,81, ANSYS 

CFX82, STAR CCM+83, OpenFOAM84, 
Oasis, FEBio85, etc. 

based on experience, from literature, derived 
during verification studies 

inlet boundary condition(s) flow waveform and profile86,87 
literature, in vivo flow measurements78, eg. 
phase contrast magnetic resonance imaging, 

catheter-based probes, ultrasound 

outlet boundary condition(s) 

pressure51,86,87 
literature, in vivo flow measurements, eg. 

catheter-based probes51 

lumped parameter models86,87  
(e.g. Windkessel)  

literature, morphometric relations (e.g. 
generalized Murray’s law), in vivo flow 

measurements, iterative tuning 

FSI material properties wall thickness51,88,89,90, elasticity51 
literature, histology from resected tissue for 

wall thickness, biomechanical tests from 
resected tissue for elasticity 

fluid properties 
Newtonian, incompressibility, density, 

viscosity91 
literature 

 

 

 

 

 

 

  



 

 

Table S3: Hemodynamic parameters commonly used in computational modeling of aneurysm92  

hemodynamic parameter 
nomenclature/equation  common 

units 
hemodynamic considerations 

wall shear stress (WSS) τ୵ሬሬሬሬሬሬሬ⃗ =μ
ப୴

ப୰
 , evaluated at the wall  

 

Dynes/cm2, 
Pa 

measure of hemodynamic stress on 
vessel wall - related to thrombosis risk 

and endothelial function; low levels 
associated with proinflammatory and 

prothrombotic and high levels associated 
with vascular disease pathogenesis93,94 

time-averaged wall shear stress 
(TAWSS) 

 𝑇𝐴𝑊𝑆𝑆 =
1

𝑡
න |𝑊𝑆𝑆| 𝑑𝑡

௧

଴

  
Dynes/cm2,  

Pa 

wall shear stress gradient (WSSG) 

𝑊𝑆𝑆𝐺

= ඨቆቤ
𝜕𝜏௪

𝜕𝑥
ቤቇ

ଶ

+ ቆቤ
𝜕𝜏௪

𝜕𝑦
ቤቇ

ଶ

+ ቆቤ
𝜕𝜏௪

𝜕𝑧
ቤቇ

ଶ

 

Dynes/cm3, 
Pa/mm 

 magnitude of spatial gradient of WSS, 
positive WSSG (i.e. accelerating flow) 

associated with cerebral aneurysm 
growth and remodeling93 

oscillatory shear index (OSI) 𝑂𝑆𝐼 = 0.5 ൭1 −
| ∫ 𝑊𝑆𝑆ሬሬሬሬሬሬሬሬሬ⃗ 𝑑𝑡|

௧

଴

∫ |𝑊𝑆𝑆ሬሬሬሬሬሬሬሬሬ⃗ |𝑑𝑡
௧

଴

൱ dimensionless 

measure of flow directionality and 
disturbed flow, associated with 

proinflammatory changes93 
minimum OSI = 0: unidirectional flow; 
maximum OSI = 0.5: equal flow in both 

directions92  

residence time (RT) measures 
quantifiable via Lagrangian or Eulerian 

methods95 

s,  
1/Pa, 

dimensionless 

measure of flow stagnation, related to 
thrombosis and wall inflammation95,96 

 
there is no globally appropriate RT 

method; approach should be selected 
based on the context of the simulation 

and quantities of interest95 
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