
iScience, Volume 23
Supplemental Information
Non-linear Deep Neural Network for Rapid

and Accurate Prediction of Phenotypic

Responses to Kinase Inhibitors

Siddharth Vijay and Taranjit S. Gujral

Non-linear Deep Neural Network for Rapid and Accurate Prediction of

Phenotypic Responses to Kinase Inhibitors

Siddharth Vijay1, and Taranjit S. Gujral1,2*

1. Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA. U.S.A.

2. Department of Pharmacology, University of Washington, Seattle, WA. U.S.A.

*Lead contact. Correspondence: tgujral@fredhutch.org

Running title: Artificial neural networks predict response to kinase inhibitors in cancer cells

Keywords: kinase inhibitor/ deep learning/ neural networks/cell migration/

SUPPLEMENTAL DATA

mailto:tgujral@fredhutch.org

TRANSPARENT METHODS

Model development & optimization of network hyperparameters

The development and implementation of KiDNN was accomplished using the python Keras

framework with a TensorFlow backend (Chollet, 2018). Leave-One-Out-Cross-Validation (LOOCV) was

the primary network evaluation method used in this investigation. In LOOCV, each time [n-1] drugs are

used to train the network to predict the excluded inhibitor’s effect on cell migration. The process is repeated

a total of [n] times leaving out and predicting the effect on migration for every inhibitor. The average mean

squared error (MSE) of all [n] inhibitors was used to cross-evaluate various networks. Since large errors in

predicted and observed migration are undesirable as they can cause false positives and negatives, MSE was

the primary error function used to optimize the network.

For KiDNN to reach peak predictive performance for a specific cell-line, the optimal network

architecture and hyperparameters need to be chosen. The complete set of hyperparameters and

their definitions are shown below. Epochs; the number of iterations KiDNN is supplied the entire training

dataset. Typically, the network needs to be input the entire dataset multiple times to effectively fit the

network to the data(Jayachandiran). Batch Size; the number of samples (rows/individual observations of

the dataset) input through KiDNN before updating weights(Chollet, 2018). Initializer; the distribution in

the start of the training process from which starting weights are assigned. Activation function; function

applied to the weighted sum of inputs and biases to produce output (Dongare et al., 2012). Optimizer;

the algorithm that helps the network converge to the optimal set of weights. Hidden layers; the quantity

of layers (consisting of several nodes) in-between the output and input layer. Multiple hidden layers can

ensure that the network can capture complex, non-linear dependence between input and output (Zupan,

1994). Nodes per hidden layer; the number of individual units (nodes) per every hidden layer.

Dropout rate; the percentage of individual nodes in a layer that is temporarily removed from the

network along with its connections. Dropout is a common method of preventing model overfitting

(increased performance in training set, but poor performance in test sets) and nodes from co-adapting too

much (Srivastava et al., 2014). A complete

list of all the specific values/names of the 8 hyperparameters are shown in Table S1. After optimization,

the single top combination of the 8 hyperparameters is selected to build KiDNN. Besides these

hyperparameters, the input and output layer remain set as there are 300 nodes in the input layer

corresponding to the 300 kinases’ inhibition measured in the activity profile and 1 output node for the

predicted cell migration.

A common method of optimization used in numerous studies is Grid Search(Pontes et al., 2016),

where all the various combinations of hyperparameter values are individually used to build several networks

and the top combination is selected based on lowest MSE. Here, an exhaustive Grid Search optimizing all

8 hyperparameters at once wasn’t a viable method because of the pure volume of required computations as

more than 1,728,000 various networks would need to be evaluated. Consequently, a progressive, phase-by-

phase Grid Search approach (evaluated with LOOCV MSE) was used where Grid Search was performed

on 2 to 3 hyperparameters at once, rather than all 8. This significantly reduces the computation time to

optimize KiDNN as only ~470 networks were evaluated. Since this method would prevent combinations of

the top hyperparameter values across phases from being evaluated, a final phase 5 was performed, where

the top 2 combinations of hyperparameter values were combined across multiple phases to select one final

combination used to build the final KiDNN model. This multi-phase Grid Search is particularly effective

because values of hyperparameters that perform poorly in terms of predictive performance are disregarded

in future phases of the Grid Search, while also significantly reducing computational time to optimize

KiDNN. Additionally, between phases, the top selected hyperparameters optimized in the previous phase

were used in the successive phases by updating a baseline network. The initiation of the optimization

process began with a completely unoptimized baseline network with default hyperparameters. The baseline

neural network consisted of 300 input nodes for each kinase’s activity, 2 hidden layers with 100 nodes per

layer, and one output layer. The Adam optimizer, Rectified Linear Unit (ReLU) activation and Normal

weight initialization distribution were used. Using the default baseline network, the network was optimized

in 5 different phases to develop the final, fully-optimized KiDNN.

In phase 1, the range of overfitting was identified, where the model starts to fit the training data too

much to the point where its ability to predict response of the test set was compromised. The baseline model

was trained on response to 26 (~ 80%) randomly selected inhibitors in the training set and tested on the

remaining 6 inhibitors (~20%) for 400 epochs. The fluctuation of MSE between predicted and observed

migration of the 6 excluded inhibitors and the 26 inhibitors of the training set was measured as a function

of the number of epochs. Using this data, a range of epochs is selected where MSE reaches a global

minimum, before overfitting of the data starts to occur.

Using the range of epochs and batches sizes (listed in Table S1), Grid Search was performed to

deduce the optimal combinations of epochs and batch size in phase 2. The top 5 combinations based on

lowest LOOCV MSE are then re-run 5 additional times to ensure that the low MSE isn’t due to chance by

using average LOOCV MSE rather than single-iteration MSE. From the 5 additional runs, the 2 top

combinations are identified based on average LOOCV MSE and are later used in Phase 5. In phase 3, the

activation function, optimizers and weight initializers are optimized, while in phase 4, the number of hidden

layers, nodes per hidden layer and Dropout rate were optimized. In both phase 3 and phase 4, the same

process as executed in phase 2 was repeated.

As stated previously, the optimization process is progressive, where the top hyperparameters in one

phase are used for the next. For example, the top combination of epochs and batch size selected in phase 2

were used to update the baseline network in phase 3, and the top combination of activation functions,

optimizers and weight initializations in phase 3 were used to update the baseline network in phase 4. In the

final phase 5, the top 2 sets of hyperparameter values across phases 2 through 4 are combined to create 8

(23) separate networks with various combinations of each set of hyperparameters from each phase using

Grid Search. The 8 networks are run a total of 5 times and the network with the lowest average LOOCV

MSE is selected as the final network architecture used to build KiDNN. The efficacy of the final KiDNN

model was further evaluated using the LOOCV MSE of the predicted and observed values and the mean

standard deviation between 10 iterations of predictions to ensure a low-bias and high-precision neural

network.

Supervised Deep Learning Approach

KiDNN was developed with Deep Neural Networks (DNNs), a non-linear, multi-layer feed-

forward network. DNNs mimic the human brain, with processing nodes analogous to neurons in our brain

and collections of neurons representing complete, multi-layered neural networks (Zupan, 1994). In KiDNN,

these nodes are connected by weighted links, with all nodes, except those composing the input layer,

receiving weighted sums of the output from the nodes in the previous layer and transmitting their output to

nodes in successive layers until the final output layer (e.g. measured phenotypes such as cell migration) is

reached (Dongare et al., 2012). The output transmitted to the successive nodes from a prior node is

computed using the following three steps. First, the weighted sum of the output of nodes in the previous

layer is computed, then biases are added, and lastly, an activation function is applied to the output limiting

the output between a finite range (-1 to 1 or 0 to 1 in this study) (Dongare et al., 2012). This computation

is repeated until the final layer is reached with the final predicted migration outputted. The computation

performed in an individual node is shown below:

𝑜𝑜𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 𝑓𝑓 � �𝑥𝑥𝑖𝑖 𝑤𝑤𝑖𝑖 +
𝑛𝑛

𝑖𝑖=1

 𝑏𝑏�

input: (𝑥𝑥1 𝑡𝑡𝑡𝑡 𝑥𝑥𝑛𝑛) weights: (𝑤𝑤1 𝑡𝑡𝑡𝑡 𝑤𝑤𝑛𝑛) bias: (𝑏𝑏) activation function (𝑓𝑓)

Ultimately, KiDNN is trained on activity profiles by repeatedly computing errors of millions of

combinations of weights, feeding it back to the network, and adjusting its weights accordingly until the

optimal set of weights and biases between individual nodes are found where the error function between

predicted and observed migration is minimal. Keeping these optimal weights and biases constant, remaining

untested inhibitors’ activity profiles can be inputted through KiDNN and the predicted migration can be

computed.

Applying KiDNN to naïve datasets (Hs578t & FOCUS)

After selecting the optimal architecture and hyperparameters to develop KiDNN for Hs578t, the

network was applied to completely unseen inhibitors to predict migration. The network was trained on the

32 inhibitors’ activity profile and their resulting migration to predict migration in the 178 other inhibitors.

The same method of optimization used to optimize KiDNN for Hs578t was used to optimize KiDNN for a

new cell line (FOCUS). After the optimal hyperparameters were found, KiDNN was trained on the 32

inhibitors’ activity profile and their resulting migration to predict migration in the 178 other inhibitors for

FOCUS.

Cell lines

Hs578t was obtained from American Type Culture Collection. Hepatocellular carcinoma cell line

(FOCUS) was obtained from J. Wands (Brown University). Both cell lines were grown at 37°C under 5%

CO2, 95% ambient atmosphere and maintained in Dulbecco’s minimum essential medium (DMEM)

supplemented with 10% FBS (Sigma).

Kinetic cell migration assay

To study the effect of kinase inhibitors on migration of Hs578t or FOCUS cells a wound-healing

assay was employed as described previously (Gujral et al., 2014b). The details on the structure and

preparation of this dataset has been disclosed previously (Gujral et al., 2014b). Briefly, cells were plated

on 96-well plates (Essen Image Lock, Essen Instruments), and a wound was scratched with wound scratcher

(Essen Instruments). Inhibitors at different doses were added immediately after wound scratching, wound

confluence was monitored with Incucyte Live-Cell Imaging System and software (Essen Instruments).

Wound closure was observed every 2 hours for 24-72 hours by comparing the mean relative wound density

of at least three biological replicates in each experiment.

Figure S1. Kinase target profiles of the most effective KiDNN-predicted inhibitors, Related to

Figure 4. A heatmap of showing kinase targets profiles of the most effective and the least effective

KiDNN predicted inhibitors.

Table S1. List of Parameters Optimized, Related to Figure 2. Epochs were selected from the training and validation loss plot (Fig.

2B) by choosing 3 values above and 3 below the 125 epochs at which overfitting was observed. Batch size is an integer. Various

types of kernel initializers, optimizer and activation functions were evaluated.

Epochs
Batch
Size

Weight Initializer Optimizer Activation
Hidden Layers

(HL)
Nodes per HL Dropout Rate

50 1 Uniform RMSprop Sigmoid 1 10 0

75 2 Truncated
Normal Adagrad TanH 2 25 0.05

100 4 Normal Adamax ReLU 3 50 0.1

125 8 Lecun Uniform Adadelta ELU 100 0.2

150 16 Glorot Normal Adam SELU 150 0.5

175 32 He Normal Nadam 200

200 Glorot Uniform 250

 Variance Scaling 300

 He Uniform
 Orthogonal

ReLU; rectified linear unit, ELU; exponential linear unit, SELU; scaled exponential linear unit, TanH; hyperbolic tangent
RMSprop; root mean square propagation, Adagrad; adaptive gradient, Adam; Adaptive moment estimation, Nadam; Nesterov-
accelerated adaptive moment estimation

Table S2. Network Evaluation of Top Batch Size and Epoch Combinations, Related to Figure 2. The top 2 combinations are
shaded. The one that was used for subsequent optimization is indicated in bold.

Batch Size Epoch Average MSE

8 50 106.41

8 125 111.92

16 50 101.47

32 75 100.48

32 125 103.00

Table S3. Network Evaluation of Top Weight Initializers, Optimizers and Activation
Function Combinations, Related to Figure 2. The top 2 combinations are shaded. The
one that was used for subsequent optimization is indicated in bold.

Weight Initializer Optimizer Activation Mean MSE

Uniform Adagrad ReLU 99.4

Truncated Normal Adagrad ReLU 94.6

Truncated Normal Adagrad ELU 92.9

Lecun Uniform Adamax ELU 107.3

Variance Scaling Nadam ReLU 101.7

ReLU; rectified linear unit, ELU; exponential linear unit, Adagrad; adaptive gradient, Adam;
Adaptive moment estimation, Nadam; Nesterov-accelerated adaptive moment estimation

Table S4. Network Evaluation of Top Hidden Layer Quantity, Nodes and Dropout
Rate Combinations, Related to Figure 2. The top 2 combinations are shaded. The one
that was used for subsequent optimization is indicated in bold.

Hidden Layers
(HL) Nodes per HL Dropout Rate Average MSE

2 200 0 89.9

2 300 0 85.7

2 200 0.05 91.4

3 250 0 94.0

3 50 0.05 92.8

Table S5. Predicted migration of Hs578t cells in response to top 20 most effective kinase
inhibitors selected by KiDNN, Related to Figure 4

Rank Kinase Inhibitor Predicted
Migration

1 Staurosporine 12.3

2 K-252a 28.1

3 SB 218078 35.9

4 Cdk1/2 Inhibitor III 37.5

5 PKR Inhibitor 46.8

6 JAK3 Inhibitor VI 48.1

7 SU11652 48.6

8 Go 6976 49.9

9 Indirubin Derivative E804 50.2

10 Staurosporine, N-benzoyl- 51.4

11 Bosutinib 52.7

12 Sunitinib 54.2

13 Syk Inhibitor 56.3

14 GSK3 inhibitor IX 57.0

15 JAK Inhibitor I 57.5

16 Dasatinib 57.5

17 AMPK Inhibitor, Compound C 57.8

18 Dovitinib 58.2

19 Aurora Kinase/Cdk Inhibitor 61.8

20 Indirubin-3’-monoxime 61.8

Table S6. Predicted migration of FOCUS cells in response to top 20 most effective kinase
inhibitors selected by KiDNN-FOCUS, Related to Figure 5

Rank Kinase Inhibitor Predicted
Migration

1 Staurosporine 5.0

2 Dasatinib 14.2

3 Dovitinib 33.8

4 Bosutinib 34.5

5 Staurosporine, N-benzoyl- 38.8

6 LCK inhibitor 38.8

7 GSK3 inhibitor IX 41.6

8 SB 218078 43.1

9 SU11652 48.5

10 Indirubin Derivative E804 48.6

11 PDGFR RTK inhibitor 52.0

12 K-252a 53.4

13 PDK1/Akt/Flt Dual Pathway
Inhibitor 55.5

14 GSK-3 Inhibitor X 55.9

15 Syk Inhibitor 56.4

16 Sunitinib 57.6

17 Flt-3 Inhibitor II 58.0

18 TWS119 59.2

19 Tozasertib 61.3

20 GSK-3 Inhibitor XIII 61.4

Table S7. Predicted and measured migration of Hs578t cells in response to all 40 kinase
inhibitors, Related to Figure 4.

Kinase Inhibitor Measured
Migration

KiDNN
Predictions

KiR
Predictions

Bosutinib 39.9 52.7 42.5

Casein Kinase I Inhibitor D44 70 70.0 70.0

Cdk1/2 Inhibitor III 36.2 37.5 35.5

Dasatinib 21.2 57.5 28.7

EGFR ErbB-2 Erbb-4 70 70.0 68.7

Erlotinib 70 70.0 70.0

Go 6983 70 67.8 67.2

Gefitinib 70 70.0 66.5

GSK3 inhibitor IX 49 57.0 51.7

GSK-3b Inhibitor I 70 70.0 70.0

H-89 70 70.0 68.3

Imatinib 70 70.0 70.0

JNK Inhibitor II 70 68.1 66.9

K-252a 27.5 28.1 27.6

Lapatinib 70 70.0 70.0

LCK inhibitor 70 68.5 68.3

LY294002 70 70.0 70.0

Masitinib 70 70.0 68.4

Met Kinase Inhibitor 68.6 65.3 67.5

Nilotinib 70 68.2 67.8

PDGFR RTK inhibitor 69 67.7 67.6

Rapamycin 70 70.0 68.5

ROCK Inhibitor 70 70.0 68.9

SB 218078 29.4 35.9 30.0

SB220025 56.9 70.0 57.6

Sorafenib 65.4 70.0 68.4

Src Kinase Inhibitor I 70 70.0 69.0

Staurosporine 0.98 12.3 6.0

Sunitinib 54.3 54.2 52.9

Tofacitinib 70 70.0 70.0

TWS119 68.3 62.2 61.2

Vandetanib 66.6 65.3 62.4

Aminopurvalanol A 70 68.6 61.8

Staurosporine, N-benzoyl 56.3 51.4 45.5

AMPK Inhibitor Compound C 65.8 57.8 56.6

PDK1/Akt/Flt Dual Pathway
Inhibitor 70 63.6 65.0

SU11652 44.4 48.6 50.8

JAK Inhibitor I 70 57.5 46.8

PD 98059 70 70.0 70.0

Dovitinib 55.7 58.2 54.9

Mean Squared Error 38.91 109.39

Mean Absolute Error 4.99 7.95

Table S8. Predicted and measured migration of FOCUS cells in response to all 39 kinase
inhibitors, Related to Figure 5.

Kinase Inhibitor Measured
Migration

KiDNN
Prediction

KiR
Prediction

Staurosporine 4.5 5.0 20.1

Dasatinib 11.6 14.2 25.2

Bosutinib 33.4 34.5 39.7

LCK inhibitor 36.5 38.8 42.0

GSK3 inhibitor IX 40.9 41.6 49.5

SB 218078 42.0 43.1 45.0

PDGFR RTK inhibitor 47.7 52.0 49.7

K-252a 52.4 53.4 43.2

Sunitinib 56.2 57.6 57.0

Sorafenib 58.1 64.7 65.6

TWS119 58.3 59.2 47.3

Vandetanib 64.2 65.9 58.6

EGFR ErbB-2 Erbb-4 67.3 67.1 70.0

Nilotinib 67.5 65.7 60.5

Go 6983 68.0 68.9 68.5

Src Kinase Inhibitor I 68.5 66.7 60.8

Gefitinib 68.9 70.0 67.2

SB220025 69.7 69.9 69.6

Casein Kinase I Inhibitor D44 70.0 70.0 70.0

Cdk1/2 Inhibitor III 70.0 70.0 61.9

Erlotinib 70.0 70.0 70.0

GSK-3b Inhibitor I 70.0 70.0 70.0

H-89 70.0 68.8 70.0

Imatinib 70.0 70.0 68.9

JNK Inhibitor II 70.0 70.0 69.3

Lapatinib 70.0 70.0 70.0

LY294002 70.0 70.0 70.0

Masitinib 70.0 65.6 62.9

Met Kinase Inhibitor 70.0 70.0 65.4

Rapamycin 70.0 70.0 68.5

ROCK Inhibitor 70.0 70.0 70.0

Tofacitinib 70.0 70.0 70.0

Aminopurvalanol A 66.78 64.18 60.34

AMPK Compound C 64.82 57.12 54.46

Cdk2 Inhibitor IV, NU6140 70 66.31 52.71

Dovitinib 32.34 51.26 33.6

GSK-3 Inhibitor XIII 59.5 59.93 53.69

Staurosporine, N-benzoyl- 37.94 55.32 30.87

SU11652 47.04 49.41 20.72

Mean Squared Error 106.48 175.12

Data S1. KiDNN code, Related to Figures 1, 2 and 3.

Predicting Effect of Untested Kinase Inhibitors on Hs578t Cell Migration

Importing the libraries
import numpy as np
import pandas as pd

#Importing migration and activity profile data
response_data = pd.read_csv('hs578t_migration.csv')
drug_list = response_data.iloc[:, 0].values
alldrugs = pd.read_csv('allDrugs_migration.csv', encoding='latin1')
alldrugs = alldrugs.set_index('compound')
dataset = alldrugs.loc[drug_list]
response = response_data['Hs578t'].values
dataset["migration"] = response

Slicing the dataset
X = dataset.iloc[:, 0:300].values
y = dataset.iloc[:, 300].values

Importing the Keras libraries and packages
import keras
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Dropout

Initializing the ANN
classifier = Sequential()

Adding the input layer and the first hidden layer
classifier.add(Dense(units = 200, kernel_initializer = 'TruncatedNormal', activation = 'elu',
input_dim = 300))

Adding the second hidden layer
classifier.add(Dense(units = 200, kernel_initializer = 'TruncatedNormal', activation = 'elu'))

Adding the output layer
classifier.add(Dense(units = 1, kernel_initializer = 'TruncatedNormal'))

Compiling the ANN
classifier.compile(loss = 'mean_squared_error', optimizer='adagrad')

Fitting the ANN to the Training set
classifier.fit(X, y, batch_size = 32, epochs = 75)

Predicting effect on cell migration for all 178 kinase inhibitors
X_predict = alldrugs
prediction_index = X_predict.index.tolist()
X_predict = X_predict.iloc[:, 0:300].values
y_pred = classifier.predict(X_predict)

Training & Validation Loss – Hs578t

Importing the libraries
import numpy as np
import pandas as pd
import keras
from keras.models import Sequential
from keras.layers import Dense
import matplotlib.pyplot as plt

Importing migration and activity profile data
response_data2 = pd.read_csv('hs578t_migration.csv')
drug_list2 = response_data2.iloc[:, 0].values
alldrugs2 = pd.read_csv('allDrugs_migration.csv', encoding='latin1')
alldrugs2 = alldrugs2.set_index('compound')
dataset2 = alldrugs2.loc[drug_list2]
response2 = response_data2['Hs578t'].values
dataset2["migration"] = response2

Importing the dataset
X2 = dataset2.iloc[:, 0:300].values
y2 = dataset2.iloc[:, 300].values

#building model function
def build_classifier():
 classifier = Sequential()
 classifier.add(Dense(units = 100, kernel_initializer = 'normal', activation = 'relu', input_dim =
300))
 classifier.add(Dense(units = 100, kernel_initializer = 'normal', activation = 'relu'))
 classifier.add(Dense(units = 1, kernel_initializer = 'normal'))
 classifier.compile(loss = 'mean_squared_error', optimizer= 'adam', metrics=['mse'])
 return classifier
classifier = build_classifier()
history = classifier.fit(X2, y2, validation_split= .2, epochs=500, batch_size=1, verbose=0)
hist = pd.DataFrame(history.history)
print(history.history.keys())

#plotting training and validation MSE as a function of epochs

def plot_history(history):
 hist = pd.DataFrame(history.history)
 hist['epoch'] = history.epoch

 plt.figure()
 plt.xlabel('Epoch')
 plt.ylabel('Mean Squared Error')
 plt.plot(hist['epoch'], hist['mean_squared_error'],
 label='Train Error')
 plt.plot(hist['epoch'], hist['val_mean_squared_error'],
 label = 'Validation Error')
 z = np.polyfit(hist['epoch'].values, hist['val_mean_squared_error'].values, 5)
 f = np.poly1d(z)
 x_new = np.linspace(hist['epoch'].values[0], hist['epoch'].values[-1], 50)
 y_new = f(x_new)
 plt.plot(x_new, y_new, label = 'Polynomial Fit')
 plt.title("Training & Validation MSE")
 plt.ylim([0,200])
 plt.xlim([0,450])
 plt.legend()

 plt.savefig("Training & Validation MSE.svg")
 plt.show()

plot_history(history)

exporting data
best_fit_df = pd.DataFrame({"xnew": x_new, "ynew": y_new})
best_fit_df.to_excel("best_fit_line.xlsx", sheet_name='1')
hist.to_excel("Train & Val Loss.xlsx", sheet_name='1')

Epoch & Batch Size Optimization – Hs578t

Importing the libraries
import numpy as np
import pandas as pd
import keras
from keras.models import Sequential
from keras.layers import Dense
from keras import initializers
from keras.layers import Dropout
from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_absolute_error
from scipy.stats.stats import pearsonr

#Importing migration and activity profile data
response_data2 = pd.read_csv('hs578t_migration.csv')
drug_list2 = response_data2.iloc[:, 0].values
alldrugs2 = pd.read_csv('alldrugs_migration.csv', encoding='latin1')
alldrugs2 = alldrugs2.set_index('compound')
dataset2 = alldrugs2.loc[drug_list2]
response2 = response_data2['Hs578t'].values
dataset2["migration"] = response2

Slicing the dataset
X2 = dataset2.iloc[:, 0:300].values
y2 = dataset2.iloc[:, 300].values

def cross_val(hl_units, init, opt, batch_size, epochs, act, dropout):
 y_pred_all = []
 y_test_all = []
 for num in range(len(X2)):
 y_test = y2[num]
 X_test = X2[num, :]
 X_test = np.array([X_test])
 X_test.T
 X_train = np.delete(X2, (num), axis=0)
 y_train = np.delete(y2, (num), axis=0)
 classifier = Sequential()
 classifier.add(Dense(units = hl_units, kernel_initializer = init, input_dim = 300, activation =
act))
 classifier.add(Dense(units = hl_units, kernel_initializer = init, activation = act))
 classifier.add(Dense(units = 1, kernel_initializer = init))
 classifier.compile(loss = 'mean_squared_error', optimizer = opt)
 classifier.fit(X_train, y_train, batch_size = batch_size, epochs = epochs)
 y_pred = classifier.predict(X_test)
 y_pred_all.append(y_pred[0][0])
 y_test_all.append(y_test)

 return (mean_squared_error(y_pred_all, y_test_all), mean_absolute_error(y_pred_all,
y_test_all), pearsonr(y_pred_all, y_test_all)[0])

ep = [50,75,100,125,150,175,200]
bs = [1,2,4,8,16,32]

scores = []

#Performing Grid Search
for epoch in ep:

 for batch_size in bs:
 scores.append(cross_val(100, 'normal', 'adam', batch_size, epoch, 'relu', 0.0))

Weight Initialization, Optimizer, Activation Function Optimization – Hs578t

Importing the libraries
import numpy as np
import pandas as pd
import keras
from keras.models import Sequential
from keras.layers import Dense
from keras import initializers
from keras.layers import Dropout
from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_absolute_error
from scipy.stats.stats import pearsonr

#Importing migration and activity profile data
response_data2 = pd.read_csv('hs578t_migration.csv')
drug_list2 = response_data2.iloc[:, 0].values
alldrugs2 = pd.read_csv('alldrugs_migration.csv', encoding='latin1')
alldrugs2 = alldrugs2.set_index('compound')
dataset2 = alldrugs2.loc[drug_list2]
response2 = response_data2['Hs578t'].values
dataset2["migration"] = response2

Slicing the dataset
X2 = dataset2.iloc[:, 0:300].values
y2 = dataset2.iloc[:, 300].values

def cross_val(hl_units, init, opt, batch_size, epochs, act, dropout):
 y_pred_all = []
 y_test_all = []
 for num in range(len(X2)):
 y_test = y2[num]
 X_test = X2[num, :]
 X_test = np.array([X_test])
 X_test.T
 X_train = np.delete(X2, (num), axis=0)
 y_train = np.delete(y2, (num), axis=0)
 classifier = Sequential()
 classifier.add(Dense(units = hl_units, kernel_initializer = init, input_dim = 300, activation =
act))
 classifier.add(Dense(units = hl_units, kernel_initializer = init, activation = act))

 classifier.add(Dense(units = 1, kernel_initializer = init))
 classifier.compile(loss = 'mean_squared_error', optimizer = opt)
 classifier.fit(X_train, y_train, batch_size = batch_size, epochs = epochs)
 y_pred = classifier.predict(X_test)
 y_pred_all.append(y_pred[0][0])
 y_test_all.append(y_test)

 return (mean_squared_error(y_pred_all, y_test_all), mean_absolute_error(y_pred_all,
y_test_all), pearsonr(y_pred_all, y_test_all)[0])

initializer = ['uniform', 'TruncatedNormal', 'normal', 'lecun_uniform', 'glorot_normal',
'he_normal', 'glorot_uniform', 'VarianceScaling', 'orthogonal', 'he_uniform']
optimizer = ['rmsprop','adagrad', 'adamax', 'adadelta', 'adam', 'nadam']
activation = ['sigmoid', 'tanh', 'relu', 'elu', 'selu']

scores = []

#Performing Grid Search
for init in initializer:
 for opt in optimizer:
 for act in activation:
 scores.append(cross_val(100, init, opt, 32, 75, act, 0.0))

Hidden layer, Nodes per Hidden Layer and Dropout Rate Optimization – Hs578t

Importing the libraries
import numpy as np
import pandas as pd
import keras
from keras.models import Sequential
from keras.layers import Dense
from keras import initializers
from keras.layers import Dropout
from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_absolute_error
from scipy.stats.stats import pearsonr

#Importing migration and activity profile data
response_data2 = pd.read_csv('hs578t_migration.csv')
drug_list2 = response_data2.iloc[:, 0].values
alldrugs2 = pd.read_csv('alldrugs_migration.csv', encoding='latin1')
alldrugs2 = alldrugs2.set_index('compound')
dataset2 = alldrugs2.loc[drug_list2]
response2 = response_data2['Hs578t'].values

dataset2["migration"] = response2

Slicing the dataset
X2 = dataset2.iloc[:, 0:300].values
y2 = dataset2.iloc[:, 300].values

#LOOCV function for 1 hidden layer
def cross_val1(hl_units, init, opt, batch_size, epochs, act, dropout):
 y_pred_all = []
 y_test_all = []
 for num in range(len(X2)):
 y_test = y2[num]
 X_test = X2[num, :]
 X_test = np.array([X_test])
 X_test.T
 X_train = np.delete(X2, (num), axis=0)
 y_train = np.delete(y2, (num), axis=0)
 classifier = Sequential()
 classifier.add(Dense(units = hl_units, kernel_initializer = init, input_dim = 300, activation =
act))
 classifier.add(Dropout(dropout))
 classifier.add(Dense(units = 1, kernel_initializer = init))
 classifier.compile(loss = 'mean_squared_error', optimizer = opt)
 classifier.fit(X_train, y_train, batch_size = batch_size, epochs = epochs)
 y_pred = classifier.predict(X_test)
 y_pred_all.append(y_pred[0][0])
 y_test_all.append(y_test)

 return (mean_squared_error(y_pred_all, y_test_all), mean_absolute_error(y_pred_all,
y_test_all), pearsonr(y_pred_all, y_test_all)[0])

#LOOCV function for 2 hidden layers
def cross_val2(hl_units, init, opt, batch_size, epochs, act, dropout):
 y_pred_all = []
 y_test_all = []
 for num in range(len(X2)):
 y_test = y2[num]
 X_test = X2[num, :]
 X_test = np.array([X_test])
 X_test.T
 X_train = np.delete(X2, (num), axis=0)
 y_train = np.delete(y2, (num), axis=0)
 classifier = Sequential()
 classifier.add(Dense(units = hl_units, kernel_initializer = init, input_dim = 300, activation =
act))
 classifier.add(Dropout(dropout))

 classifier.add(Dense(units = hl_units, kernel_initializer = init, input_dim = 300, activation =
act))
 classifier.add(Dropout(dropout))
 classifier.add(Dense(units = 1, kernel_initializer = init))
 classifier.compile(loss = 'mean_squared_error', optimizer = opt)
 classifier.fit(X_train, y_train, batch_size = batch_size, epochs = epochs)
 y_pred = classifier.predict(X_test)
 y_pred_all.append(y_pred[0][0])
 y_test_all.append(y_test)

 return (mean_squared_error(y_pred_all, y_test_all), mean_absolute_error(y_pred_all,
y_test_all), pearsonr(y_pred_all, y_test_all)[0])

#LOOCV function for 3 hidden layers
def cross_val3(hl_units, init, opt, batch_size, epochs, act, dropout):
 y_pred_all = []
 y_test_all = []
 for num in range(len(X2)):
 y_test = y2[num]
 X_test = X2[num, :]
 X_test = np.array([X_test])
 X_test.T
 X_train = np.delete(X2, (num), axis=0)
 y_train = np.delete(y2, (num), axis=0)
 classifier = Sequential()
 classifier.add(Dense(units = hl_units, kernel_initializer = init, input_dim = 300, activation =
act))
 classifier.add(Dropout(dropout))
 classifier.add(Dense(units = hl_units, kernel_initializer = init, input_dim = 300, activation =
act))
 classifier.add(Dropout(dropout))
 classifier.add(Dense(units = hl_units, kernel_initializer = init, input_dim = 300, activation =
act))
 classifier.add(Dropout(dropout))
 classifier.add(Dense(units = 1, kernel_initializer = init))
 classifier.compile(loss = 'mean_squared_error', optimizer = opt)
 classifier.fit(X_train, y_train, batch_size = batch_size, epochs = epochs)
 y_pred = classifier.predict(X_test)
 y_pred_all.append(y_pred[0][0])
 y_test_all.append(y_test)

 return (mean_squared_error(y_pred_all, y_test_all), mean_absolute_error(y_pred_all,
y_test_all), pearsonr(y_pred_all, y_test_all)[0])

#List of possible values

nodes_per_hidden_layer = [10,25,50,100,150,200,250,300]
dropout_rate = [0,0.05,0.1,0.2,0.5]

scores = []

#Performing Grid Search
for nodes in nodes_per_hidden_layer:
 for dr in dropout_rate:
 scores.append(cross_val1(nodes, ‘TruncatedNormal’, ‘adagrad’, 32, 75, ‘elu’, dr))

for nodes in nodes_per_hidden_layer:
 for dr in dropout_rate:
 scores.append(cross_val2(nodes, ‘TruncatedNormal’, ‘adagrad’, 32, 75, ‘elu’, dr))

for nodes in nodes_per_hidden_layer:
 for dr in dropout_rate:
 scores.append(cross_val3(nodes, ‘TruncatedNormal’, ‘adagrad’, 32, 75, ‘elu’, dr))

Predicting Effect of Untested Kinase Inhibitors on FOCUS Cell Migration

Importing the libraries
import numpy as np
import pandas as pd

#Importing migration and activity profile data
response_data = pd.read_csv('focus_migration.csv')
drug_list = response_data.iloc[:, 0].values
alldrugs = pd.read_csv('allDrugs_migration.csv', encoding='latin1')
alldrugs = alldrugs.set_index('compound')
dataset = alldrugs.loc[drug_list]
response = response_data['FOCUS'].values
dataset["migration"] = response

Slicing the dataset
X = dataset.iloc[:, 0:300].values
y = dataset.iloc[:, 300].values

Importing the Keras libraries and packages
import keras
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Dropout

Initializing the ANN
classifier = Sequential()

Adding the input layer and the first hidden layer
classifier.add(Dense(units = 200, kernel_initializer = 'TruncatedNormal', activation = 'elu',
input_dim = 300))

Adding the second hidden layer
classifier.add(Dense(units = 200, kernel_initializer = 'TruncatedNormal', activation = 'elu'))

Adding the output layer
classifier.add(Dense(units = 1, kernel_initializer = 'TruncatedNormal'))

Compiling the ANN
classifier.compile(loss = 'mean_squared_error', optimizer='adagrad')

Fitting the ANN to the Training set
classifier.fit(X, y, batch_size = 32, epochs = 75)

Predicting effect on cell migration for all 178 kinase inhibitors
X_predict = alldrugs
prediction_index = X_predict.index.tolist()
X_predict = X_predict.iloc[:, 0:300].values
y_pred = classifier.predict(X_predict)

Training & Validation Loss – FOCUS

Importing the libraries
import numpy as np
import pandas as pd
import keras
from keras.models import Sequential
from keras.layers import Dense
import matplotlib.pyplot as plt

Importing migration and activity profile data
response_data2 = pd.read_csv('focus_migration.csv')
drug_list2 = response_data2.iloc[:, 0].values
alldrugs2 = pd.read_csv('allDrugs_migration.csv', encoding='latin1')
alldrugs2 = alldrugs2.set_index('compound')
dataset2 = alldrugs2.loc[drug_list2]
response2 = response_data2['FOCUS'].values
dataset2["migration"] = response2

Importing the dataset
X2 = dataset2.iloc[:, 0:300].values
y2 = dataset2.iloc[:, 300].values

#building model function
def build_classifier():
 classifier = Sequential()
 classifier.add(Dense(units = 100, kernel_initializer = 'normal', activation = 'relu', input_dim =
300))
 classifier.add(Dense(units = 100, kernel_initializer = 'normal', activation = 'relu'))
 classifier.add(Dense(units = 1, kernel_initializer = 'normal'))
 classifier.compile(loss = 'mean_squared_error', optimizer= 'adam', metrics=['mse'])
 return classifier
classifier = build_classifier()
history = classifier.fit(X2, y2, validation_split= .2, epochs=500, batch_size=1, verbose=0)
hist = pd.DataFrame(history.history)
print(history.history.keys())

#plotting training and validation MSE as a function of epochs
def plot_history(history):
 hist = pd.DataFrame(history.history)
 hist['epoch'] = history.epoch

 plt.figure()
 plt.xlabel('Epoch')
 plt.ylabel('Mean Squared Error')
 plt.plot(hist['epoch'], hist['mean_squared_error'],
 label='Train Error')
 plt.plot(hist['epoch'], hist['val_mean_squared_error'],
 label = 'Validation Error')
 z = np.polyfit(hist['epoch'].values, hist['val_mean_squared_error'].values, 5)
 f = np.poly1d(z)
 x_new = np.linspace(hist['epoch'].values[0], hist['epoch'].values[-1], 50)
 y_new = f(x_new)
 plt.plot(x_new, y_new, label = 'Polynomial Fit')
 plt.title("Training & Validation MSE")
 plt.ylim([0,200])
 plt.xlim([0,450])
 plt.legend()

 plt.savefig("Training & Validation MSE.svg")
 plt.show()

plot_history(history)

exporting data
best_fit_df = pd.DataFrame({"xnew": x_new, "ynew": y_new})
best_fit_df.to_excel("best_fit_line.xlsx", sheet_name='1')
hist.to_excel("Train & Val Loss.xlsx", sheet_name='1')

Epoch & Batch Size Optimization – FOCUS

Importing the libraries
import numpy as np
import pandas as pd
import keras
from keras.models import Sequential
from keras.layers import Dense
from keras import initializers
from keras.layers import Dropout
from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_absolute_error
from scipy.stats.stats import pearsonr

#Importing migration and activity profile data
response_data2 = pd.read_csv('focus_migration.csv')
drug_list2 = response_data2.iloc[:, 0].values
alldrugs2 = pd.read_csv('alldrugs_migration.csv', encoding='latin1')
alldrugs2 = alldrugs2.set_index('compound')
dataset2 = alldrugs2.loc[drug_list2]
response2 = response_data2['FOCUS'].values
dataset2["migration"] = response2

Slicing the dataset
X2 = dataset2.iloc[:, 0:300].values
y2 = dataset2.iloc[:, 300].values

def cross_val(hl_units, init, opt, batch_size, epochs, act, dropout):
 y_pred_all = []
 y_test_all = []
 for num in range(len(X2)):
 y_test = y2[num]
 X_test = X2[num, :]
 X_test = np.array([X_test])
 X_test.T
 X_train = np.delete(X2, (num), axis=0)
 y_train = np.delete(y2, (num), axis=0)
 classifier = Sequential()
 classifier.add(Dense(units = hl_units, kernel_initializer = init, input_dim = 300, activation =
act))

 classifier.add(Dense(units = hl_units, kernel_initializer = init, activation = act))
 classifier.add(Dense(units = 1, kernel_initializer = init))
 classifier.compile(loss = 'mean_squared_error', optimizer = opt)
 classifier.fit(X_train, y_train, batch_size = batch_size, epochs = epochs)
 y_pred = classifier.predict(X_test)
 y_pred_all.append(y_pred[0][0])
 y_test_all.append(y_test)

 return (mean_squared_error(y_pred_all, y_test_all), mean_absolute_error(y_pred_all,
y_test_all), pearsonr(y_pred_all, y_test_all)[0])

ep = [50,75,100,125,150,175,200]
bs = [1,2,4,8,16,32]

scores = []

#Performing Grid Search
for epoch in ep:
 for batch_size in bs:
 scores.append(cross_val(100, 'normal', 'adam', batch_size, epoch, 'relu', 0.0))

Weight Initialization, Optimizer, Activation Function Optimization – FOCUS

Importing the libraries
import numpy as np
import pandas as pd
import keras
from keras.models import Sequential
from keras.layers import Dense
from keras import initializers
from keras.layers import Dropout
from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_absolute_error
from scipy.stats.stats import pearsonr

#Importing migration and activity profile data
response_data2 = pd.read_csv('focus_migration.csv')
drug_list2 = response_data2.iloc[:, 0].values
alldrugs2 = pd.read_csv('alldrugs_migration.csv', encoding='latin1')
alldrugs2 = alldrugs2.set_index('compound')
dataset2 = alldrugs2.loc[drug_list2]
response2 = response_data2['FOCUS'].values
dataset2["migration"] = response2

Slicing the dataset
X2 = dataset2.iloc[:, 0:300].values
y2 = dataset2.iloc[:, 300].values

def cross_val(hl_units, init, opt, batch_size, epochs, act, dropout):
 y_pred_all = []
 y_test_all = []
 for num in range(len(X2)):
 y_test = y2[num]
 X_test = X2[num, :]
 X_test = np.array([X_test])
 X_test.T
 X_train = np.delete(X2, (num), axis=0)
 y_train = np.delete(y2, (num), axis=0)
 classifier = Sequential()
 classifier.add(Dense(units = hl_units, kernel_initializer = init, input_dim = 300, activation =
act))
 classifier.add(Dense(units = hl_units, kernel_initializer = init, activation = act))
 classifier.add(Dense(units = 1, kernel_initializer = init))
 classifier.compile(loss = 'mean_squared_error', optimizer = opt)
 classifier.fit(X_train, y_train, batch_size = batch_size, epochs = epochs)
 y_pred = classifier.predict(X_test)
 y_pred_all.append(y_pred[0][0])
 y_test_all.append(y_test)

 return (mean_squared_error(y_pred_all, y_test_all), mean_absolute_error(y_pred_all,
y_test_all), pearsonr(y_pred_all, y_test_all)[0])

initializer = ['uniform', 'TruncatedNormal', 'normal', 'lecun_uniform', 'glorot_normal',
'he_normal', 'glorot_uniform', 'VarianceScaling', 'orthogonal', 'he_uniform']
optimizer = ['rmsprop','adagrad', 'adamax', 'adadelta', 'adam', 'nadam']
activation = ['sigmoid', 'tanh', 'relu', 'elu', 'selu']

scores = []

#Performing Grid Search
for init in initializer:
 for opt in optimizer:
 for act in activation:
 scores.append(cross_val(100, init, opt, 2, 120, act, 0.0))

Hidden layer, Nodes per Hidden Layer and Dropout Rate Optimization – FOCUS

Importing the libraries
import numpy as np
import pandas as pd
import keras
from keras.models import Sequential
from keras.layers import Dense
from keras import initializers
from keras.layers import Dropout
from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_absolute_error
from scipy.stats.stats import pearsonr

#Importing migration and activity profile data
response_data2 = pd.read_csv('focus_migration.csv')
drug_list2 = response_data2.iloc[:, 0].values
alldrugs2 = pd.read_csv('alldrugs_migration.csv', encoding='latin1')
alldrugs2 = alldrugs2.set_index('compound')
dataset2 = alldrugs2.loc[drug_list2]
response2 = response_data2['FOCUS'].values
dataset2["migration"] = response2

Slicing the dataset
X2 = dataset2.iloc[:, 0:300].values
y2 = dataset2.iloc[:, 300].values

#LOOCV function for 1 hidden layer
def cross_val1(hl_units, init, opt, batch_size, epochs, act, dropout):
 y_pred_all = []
 y_test_all = []
 for num in range(len(X2)):
 y_test = y2[num]
 X_test = X2[num, :]
 X_test = np.array([X_test])
 X_test.T
 X_train = np.delete(X2, (num), axis=0)
 y_train = np.delete(y2, (num), axis=0)
 classifier = Sequential()
 classifier.add(Dense(units = hl_units, kernel_initializer = init, input_dim = 300, activation =
act))
 classifier.add(Dropout(dropout))
 classifier.add(Dense(units = 1, kernel_initializer = init))
 classifier.compile(loss = 'mean_squared_error', optimizer = opt)
 classifier.fit(X_train, y_train, batch_size = batch_size, epochs = epochs)
 y_pred = classifier.predict(X_test)
 y_pred_all.append(y_pred[0][0])
 y_test_all.append(y_test)

 return (mean_squared_error(y_pred_all, y_test_all), mean_absolute_error(y_pred_all,
y_test_all), pearsonr(y_pred_all, y_test_all)[0])

#LOOCV function for 2 hidden layers
def cross_val2(hl_units, init, opt, batch_size, epochs, act, dropout):
 y_pred_all = []
 y_test_all = []
 for num in range(len(X2)):
 y_test = y2[num]
 X_test = X2[num, :]
 X_test = np.array([X_test])
 X_test.T
 X_train = np.delete(X2, (num), axis=0)
 y_train = np.delete(y2, (num), axis=0)
 classifier = Sequential()
 classifier.add(Dense(units = hl_units, kernel_initializer = init, input_dim = 300, activation =
act))
 classifier.add(Dropout(dropout))
 classifier.add(Dense(units = hl_units, kernel_initializer = init, input_dim = 300, activation =
act))
 classifier.add(Dropout(dropout))
 classifier.add(Dense(units = 1, kernel_initializer = init))
 classifier.compile(loss = 'mean_squared_error', optimizer = opt)
 classifier.fit(X_train, y_train, batch_size = batch_size, epochs = epochs)
 y_pred = classifier.predict(X_test)
 y_pred_all.append(y_pred[0][0])
 y_test_all.append(y_test)

 return (mean_squared_error(y_pred_all, y_test_all), mean_absolute_error(y_pred_all,
y_test_all), pearsonr(y_pred_all, y_test_all)[0])

#LOOCV function for 3 hidden layers
def cross_val3(hl_units, init, opt, batch_size, epochs, act, dropout):
 y_pred_all = []
 y_test_all = []
 for num in range(len(X2)):
 y_test = y2[num]
 X_test = X2[num, :]
 X_test = np.array([X_test])
 X_test.T
 X_train = np.delete(X2, (num), axis=0)
 y_train = np.delete(y2, (num), axis=0)
 classifier = Sequential()
 classifier.add(Dense(units = hl_units, kernel_initializer = init, input_dim = 300, activation =
act))

 classifier.add(Dropout(dropout))
 classifier.add(Dense(units = hl_units, kernel_initializer = init, input_dim = 300, activation =
act))
 classifier.add(Dropout(dropout))
 classifier.add(Dense(units = hl_units, kernel_initializer = init, input_dim = 300, activation =
act))
 classifier.add(Dropout(dropout))
 classifier.add(Dense(units = 1, kernel_initializer = init))
 classifier.compile(loss = 'mean_squared_error', optimizer = opt)
 classifier.fit(X_train, y_train, batch_size = batch_size, epochs = epochs)
 y_pred = classifier.predict(X_test)
 y_pred_all.append(y_pred[0][0])
 y_test_all.append(y_test)

 return (mean_squared_error(y_pred_all, y_test_all), mean_absolute_error(y_pred_all,
y_test_all), pearsonr(y_pred_all, y_test_all)[0])

#List of possible values
nodes_per_hidden_layer = [10,25,50,100,150,200,250,300]
dropout_rate = [0,0.05,0.1,0.2,0.5]

scores = []

#Performing Grid Search
for nodes in nodes_per_hidden_layer:
 for dr in dropout_rate:
 scores.append(cross_val1(nodes, ‘uniform’, ‘adagrad’, 2, 120, ‘selu’, dr))

for nodes in nodes_per_hidden_layer:
 for dr in dropout_rate:
 scores.append(cross_val2(nodes, ‘uniform’, ‘adagrad’, 2, 120, ‘selu’, dr))

for nodes in nodes_per_hidden_layer:
 for dr in dropout_rate:
 scores.append(cross_val3(nodes, ‘uniform’, ‘adagrad’, 2, 120, ‘selu’, dr))

	isci_101129_mmc1.pdf
	ADP73A1.tmp
	Vijay SiddharthP1P, and Taranjit S. GujralP1,2*
	Model development & optimization of network hyperparameters
	Supervised Deep Learning Approach
	Applying KiDNN to naïve datasets (Hs578t & FOCUS)
	Cell lines
	Kinetic cell migration assay

