Eosinophils, basophils and type 2 immune microenvironments in COPD-affected lung tissue Prajakta Jogdand¹, Premkumar Siddhuraj¹, Michiko Mori¹, Caroline Sanden^{1,2}, Jimmie Jönsson², Andrew F. Walls³, Jennifer Kearley⁴, Alison A. Humbles⁴, Roland Kolbeck⁴, Leif Bjermer⁵, Paul Newbold⁶ and Jonas S. Erjefält^{1,5} **Affiliations:** ¹Dept of Experimental Medical Science, Lund University, Lund, Sweden. ²Medetect AB, Lund, Sweden. ³Clinical and Experimental Sciences, University of Southampton, Southampton General Hospital, Southampton, UK. ⁴Dept of Respiratory, Inflammation and Autoimmunity, AstraZeneca, Gaithersburg, MD, USA. ⁵Dept of Respiratory Medicine and Allergology, Lund University, Lund, Sweden. ⁶Dept of Translational Sciences, AstraZeneca, Gaithersburg, MD, USA. Correspondence: Jonas S. Erjefält, Unit of Airway Inflammation, BMC D12, Lund University, SE-221 84, Lund, Sweden. E-mail: jonas.erjefalt@med.lu.se ## @ERSpublications Highly localised Th2- and eosinophil-rich pockets were identified in COPD-affected lungs, which increased in number with increasing disease severity and included basophils. This exemplifies a novel type of heterogeneity in the immunopathology of COPD. http://bit.ly/2HexTco Cite this article as: Jogdand P, Siddhuraj P, Mori M, et al. Eosinophils, basophils and type 2 immune microenvironments in COPD-affected lung tissue. Eur Respir J 2020; 55: 1900110 [https://doi.org/10.1183/13993003.00110-2019]. This single-page version can be shared freely online. ABSTRACT Although elevated blood or sputum eosinophils are present in many patients with COPD, uncertainties remain regarding the anatomical distribution pattern of lung-infiltrating eosinophils. Basophils have remained virtually unexplored in COPD. This study mapped tissue-infiltrating eosinophils, basophils and eosinophil-promoting immune mechanisms in COPD-affected lungs. Surgical lung tissue and biopsies from major anatomical compartments were obtained from COPD patients with severity grades Global Initiative for Chronic Obstructive Lung Disease stages I–IV; neversmokers/smokers served as controls. Automated immunohistochemistry and *in situ* hybridisation identified immune cells, the type 2 immunity marker GATA3 and eotaxins (CCL11, CCL24). Eosinophils and basophils were present in all anatomical compartments of COPD-affected lungs and increased significantly in very severe COPD. The eosinophilia was strikingly patchy, and focal eosinophil-rich microenvironments were spatially linked with GATA3⁺ cells, including type 2 helper T-cell lymphocytes and type 2 innate lymphoid cells. A similarly localised and interleukin-33/ST2-dependent eosinophilia was demonstrated in influenza-infected mice. Both mice and patients displayed spatially confined eotaxin signatures with CCL11⁺ fibroblasts and CCL24⁺ macrophages. In addition to identifying tissue basophilia as a novel feature of advanced COPD, the identification of spatially confined eosinophil-rich type 2 microenvironments represents a novel type of heterogeneity in the immunopathology of COPD that is likely to have implications for personalised treatment. Copyright ©ERS 2020. This version is distributed under the terms of the Creative Commons Attribution Non-Commercial Licence 4.0.