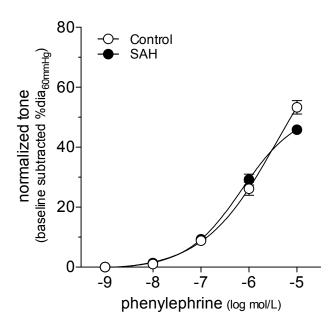
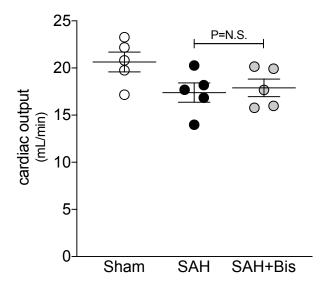

Plasma norepinephrine levels mice with subarachnoid hemorrhage

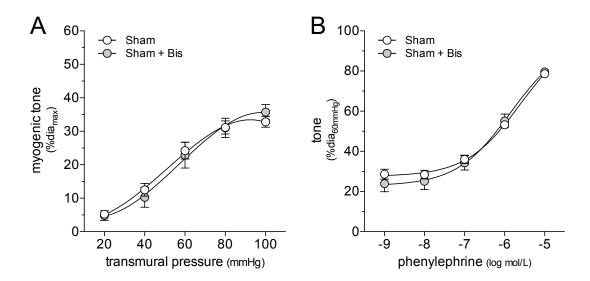
At 2-days post-subarachnoid hemorrhage (SAH) induction, circulating plasma norepinephrine levels are not different between SAH and sham-operated control mice (sham n=7, SAH n=10). The SAH group did not pass the Shapiro-Wilk normalicy test; the data are therefore compared with a non-parametric Mann-Whitney test (P=NS).


Telemetric blood pressure measurements in mice with subarachnoid hemorrhage

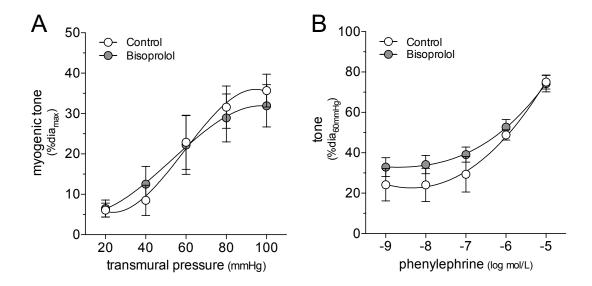
Telemetric mean arterial blood pressure measurements in conscious mice indicate that mice with subarachnoid hemorrhage (SAH; n=3) *do not* develop hypertension within 1-week post-SAH induction (sham n=5). Baseline measurements were collected 1 day prior to SAH or sham surgery; the surgical window is delineated by dotted vertical lines. White and gray shading indicate "lights on" and "lights off" periods, respectively.


Representative diameter measurements

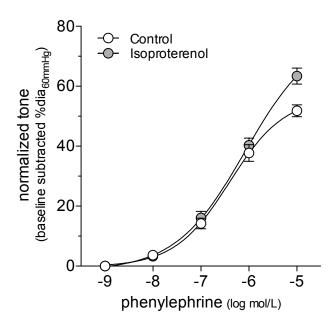
Stepwise increases in transmural pressure (20-100mmHg) are indicated in the boxes above the tracing. The active diameter tracing is acquired first ("dia_{active}"; black line), followed by measurement of passive diameter under calcium-free conditions ("dia_{max}"; gray line). Shown are representative diameter tracings from cremaster skeletal muscle resistance arteries isolated from (A) sham-operated mice (dia_{max} = 68 μ m) and (B) mice with subarachnoid hemorrhage (SAH; dia_{max} = 68 μ m). Myogenic tone is calculated as the percent constriction in relation to the maximal diameter at each respective transmural pressure: tone (% of dia_{max}) = [(dia_{max}-dia_{active})/dia_{max}]x100. *Panel C* displays the calculated myogenic tone measures for the arteries displayed in *Panels A and B*.


Baseline-normalized phenylephrine responses mice with subarachnoid hemorrhage

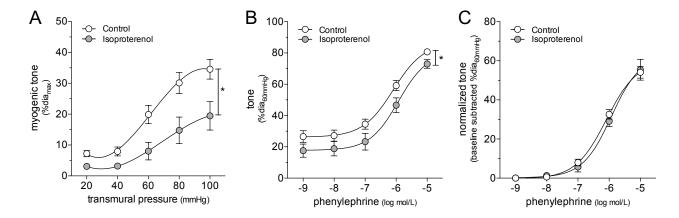
When baseline tone is normalized, phenylephrine-stimulated vasoconstriction in cremaster skeletal muscle resistance arteries isolated from mice with subarachnoid hemorrhage (SAH; at 2 days post-induction) are not different from sham-operated controls. Data were statistically compared with a 2-way ANOVA (P=N.S.; sham dia_{max}: $78\pm2~\mu m$, n=26; SAH $78\pm2~\mu m$, n=22).


Post-operative bisoprolol treatment does not protect cardiac function following subarachnoid hemorrhage

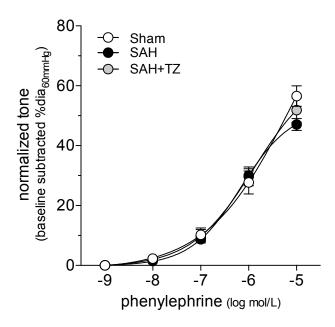
When delivered immediately following experimental subarachnoid hemorrhage (SAH) induction, bisoprolol treatment (Bis; twice daily for 2 days with i.p. injections; 10 mg/kg initial pre-operative dose followed by 5 mg/kg for all subsequent injections) does not prevent the reduction in cardiac output at 2-days post-SAH (n=5 for all groups). The SAH and SAH+Bis groups were statistically compared with a Student's t test (P=N.S.).


Bisoprolol does not alter cremaster artery reactivity in sham animals

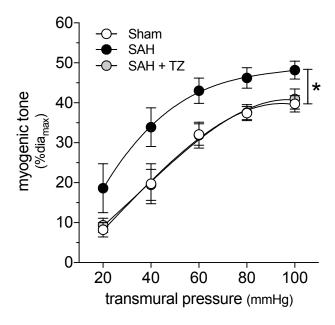
In sham-operated mice, *in vivo* bisoprolol treatment (Bis; twice daily for 2 days with i.p. injections; 10 mg/kg initial pre-operative dose followed by 5 mg/kg for all subsequent injections) has no effect on **(A)** myogenic reactivity or **(B)** phenylephrine responses in cremaster skeletal muscle resistance arteries isolated at 2 days post-surgery/treatment (sham dia_{max}: 80 ± 2 µm, n=13; Sham+Bis dia_{max}: 70 ± 4 µm, n=9). The sham data in both panels are reproduced from *Figure 2* for comparison to the Sham+Bis data. Data were statistically compared with a 2-way ANOVA (P=N.S.)


Bisoprolol does not alter cremaster artery reactivity in vitro

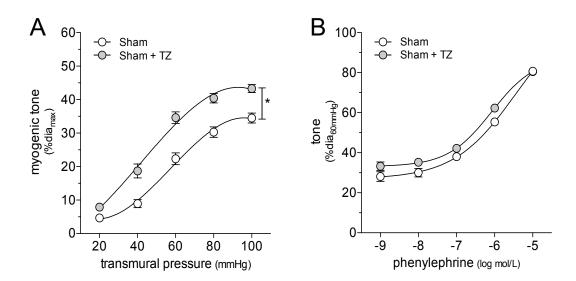
In vitro, bisoprolol (5 μ mol/L for 30 minutes) does not affect cremaster skeletal muscle resistance artery (**A**) myogenic reactivity or (**B**) phenylephrine responses (dia_{max} = 76±5, n=4). Data were statistically compared with a repeated measures 2-way ANOVA (P=N.S.).


Baseline-normalized phenylephrine responses for isoproterenol-treated mice

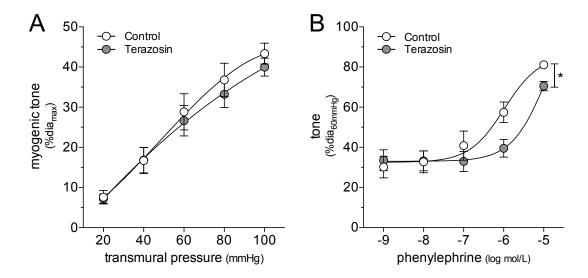
When baseline tone is normalized, phenylephrine responses in cremaster skeletal muscle resistance arteries isolated from isoproterenol-treated mice (150 mg/kg/day i.p. for 2 days) are not different from saline-treated controls. Data were statistically compared with a 2-way ANOVA (P=N.S.; control dia_{max}: $80\pm4~\mu m$, n=8; isoproterenol dia_{max}: $79\pm2~\mu m$, n=8).


Isoproterenol alters cremaster artery myogenic reactivity in vitro

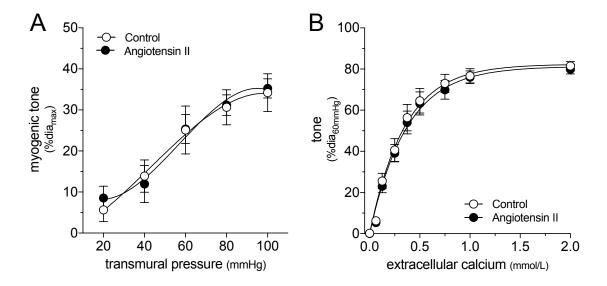
(A) In vitro, isoproterenol (1 μ mol/L for 30 minutes) attenuates cremaster skeletal muscle resistance artery myogenic reactivity. (B) Phenylephrine responses are also attenuated by isoproterenol treatment, due to a shift in basal tone. (C) When baseline tone is normalized, phenylephrine responses are unaffected by isoproterenol treatment. All data were statistically compared with a paired 2-way ANOVA (dia_{max} = 73±3, n=8). * denotes P<0.05.


Baseline-normalized phenylephrine responses for terazosin-treated mice

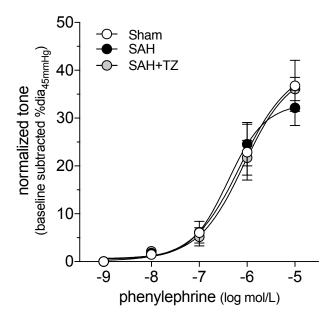
When baseline tone is normalized, phenylephrine responses in cremaster skeletal muscle resistance arteries isolated from SAH mice are not different from those isolated from sham-operated controls. Normalized phenylephrine responses in cremaster skeletal muscle resistance arteries isolated from terazosin-treated mice (TZ; twice daily for 2 days with i.p. injections; 1 mg/kg initial pre-operative dose followed by 0.5 mg/kg for all subsequent injections) are also not different from sham-operated controls. Data were statistically compared with a 2-way ANOVA (P=N.S.; sham dia_{max}: $76\pm3 \mu m$, n=13; SAH dia_{max}: $76\pm3 \mu m$, n=12; SAH+TZ dia_{max}: $74\pm2 \mu m$, n=13).


Post-operative terazosin treatment normalizes myogenic reactivity following subarachnoid hemorrhage

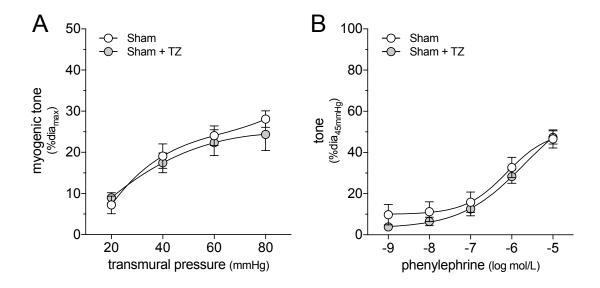
When delivered immediately following experimental subarachnoid hemorrhage (SAH) induction, terazosin (TZ; twice daily for 2 days with i.p. injections; 1 mg/kg initial dose followed by 0.5 mg/kg for all subsequent injections) normalizes the augmented myogenic vasoconstriction observed in cremaster skeletal muscle resistance arteries at 2-days post-SAH. Data were statistically compared with a 2-way ANOVA (sham dia_{max}: $72\pm4~\mu m$, n=5; SAH dia_{max}: $76\pm6~\mu m$, n=5; SAH+TZ dia_{max}: $72\pm5~\mu m$, n=6). * denotes P<0.05.


Terazosin augments cremaster artery myogenic reactivity in sham animals

In sham-operated mice, *in vivo* terazosin treatment (TZ; twice daily for 2 days with i.p. injections; 1 mg/kg initial pre-operative dose followed by 0.5 mg/kg for all subsequent injections) (**A**) augments myogenic reactivity in cremaster skeletal muscle resistance arteries isolated at 2 days post-surgery/treatment, but (**B**) does not alter phenylephrine responses (sham dia_{max}: $75\pm2~\mu m$, n=19; Sham+TZ dia_{max}: $76\pm3~\mu m$, n=26). * denotes P<0.05.


Terazosin does not alter cremaster artery myogenic reactivity in vitro

(A) *In vitro*, terazosin (25nmol/L for 30 minutes) has no effect on cremaster skeletal muscle resistance artery myogenic reactivity. **(B)** However, *in vitro* terazosin treatment attenuates phenylephrine-stimulated vasoconstriction. Data were statistically compared with a repeated measures 2-way ANOVA $(dia_{max} = 78\pm 4, n=6)$. * denotes P<0.05.


In vitro angiotensin II treatment does not alter cremaster artery myogenic reactivity or calcium sensitivity

Cremaster skeletal muscle resistance arteries isolated from naïve mice were treated for 4 hours with either 10 nmol/L angiotensin II or control buffer *in vitro*. The arteries were then washed and assessed in normal buffer. Angiotensin treatment does not affect (A) myogenic tone or (B) calcium sensitivity (control dia_{max}: $69\pm4~\mu m$, n=5; angiotensin II dia_{max}: $78\pm5~\mu m$, n=6). Data were statistically compared with a 2-way ANOVA.

Baseline-normalized phenylephrine responses in terazosin-treated cerebral arteries

When baseline tone is normalized, phenylephrine responses in olfactory cerebral arteries isolated from SAH mice are not different from those isolated from sham-operated controls. Normalized phenylephrine responses in olfactory cerebral arteries isolated from terazosin-treated mice (TZ; twice daily for 2 days with i.p. injections; 1 mg/kg initial pre-operative dose followed by 0.5 mg/kg for all subsequent injections) are also not different from sham-operated controls. Data were statistically compared with a 2-way ANOVA (P=N.S.; sham dia_{max}: $108\pm4~\mu m$, n=6, SAH dia_{max}: $104\pm7~\mu m$, n=5, SAH+TZ dia_{max}: $108\pm10~\mu m$, n=6).

Terazosin does not alter olfactory cerebral artery reactivity in sham animals.

In sham-operated mice, *in vivo* terazosin treatment (TZ; twice daily for 2 days with i.p. injections; 1 mg/kg initial pre-operative dose followed by 0.5 mg/kg for all subsequent injections) has no effect on (A) myogenic reactivity (sham dia_{max}: 108 ± 4 µm, n=6; Sham+TZ dia_{max}: 110 ± 5 µm, n=5) or (B) phenylephrine responses (sham dia_{max}: 110 ± 4 µm, n=5; Sham+TZ dia_{max}: 110 ± 5 µm, n=5) in olfactory cerebral arteries isolated at 2 days post-surgery/treatment. The sham data in both panels are reproduced from *Figure 6*, for comparison to the Sham+TZ data. Data were statistically compared with a 2-way ANOVA (P=N.S.).

Echocardiographic measures in mice with subarachnoid hemorrhage

	Sham	SAH
Mouse Body Weight (g)	22.9 ± 0.3	22.5 ± 0.3
Wall Thickness (mm)	0.658 ± 0.016	0.654 ± 0.022
Systolic Diameter (mm)	2.66 ± 0.06	2.68 ± 0.07
Diastolic Diameter (mm)	3.87 ± 0.05	3.75 ± 0.06
Systolic Volume (μl)	17.8 ± 1.0	18.0 ± 1.1
Diastolic Volume (μl)	48.0 ± 1.6	44.2 ± 1.6
Fractional Shortening (%)	31.3 ± 0.8	28.9 ± 0.9
LVEF (%)	64 ± 1	60 ± 1
Stroke Volume (µl)	30.2 ± 0.9	26.2 ± 0.7 *
Heart Rate (min ⁻¹)	510 ± 7	477 ± 10 *
Cardiac Output (ml/min)	15.3 ± 0.4	12.4 ± 0.4 *

Data are means \pm SEM (n=35 in both groups). * denotes P < 0.05 for an unpaired comparison (Student's t test). Acronyms: LVEF – Left ventricular ejection fraction; SAH – subarachnoid hemorrhage.

Echocardiographic measures in bisoprolol-treated mice

	Sham	SAH	SAH+Bis
Mouse Body Weight (g)	22.3 ± 0.4	21.9 ± 0.5	21.9 ± 0.5
Wall Thickness (mm)	0.665 ± 0.020	0.671 ± 0.033	0.653 ± 0.031
Systolic Diameter (mm)	2.46 ± 0.05	2.61 ± 0.09	2.49 ± 0.10
Diastolic Diameter (mm)	3.68 ± 0.05	3.65 ± 0.08	3.68 ± 0.10
Systolic Volume (μl)	15.3 ± 1.4	16.4 ± 1.7	14.2 ± 1.5
Diastolic Volume (μl)	41.4 ± 2.1	39.7 ± 2.2	41.1 ± 2.8
Fractional Shortening (%)	33.1 ± 1.3	28.4 ± 1.8	32.3 ± 2.1
LVEF (%)	64 ± 2	59 ± 3	66 ± 2
Stroke Volume (μΙ)	26.1 ± 1.0	23.3 ± 1.3	26.9 ± 1.7
Heart Rate (min ⁻¹)	542 ± 10	485 ± 15 *	512 ± 16
Cardiac Output (ml/min)	14.2 ± 0.7	11.4 ± 0.8 *	14.6 ± 0.8

Data are means \pm SEM (sham n=12; SAH n=11; SAH+Bis n=10). * denotes P<0.05 for an unpaired comparison to the sham (ANOVA with Dunnett's post-test). Acronyms: Bis: – bisoprolol; LVEF – Left ventricular ejection fraction; SAH – subarachnoid hemorrhage.

Echocardiographic measures in isoproterenol-treated mice

	Naïve	Isoproterenol
Mouse Body Weight (g)	25.4 ± 0.5	24.9 ± 0.4
Wall Thickness (mm)	0.662 ± 0.033	0.691 ± 0.030
Systolic Diameter (mm)	3.07 ± 0.13	2.89 ± 0.99
Diastolic Diameter (mm)	4.24 ± 0.11	3.87 ± 0.08 *
Systolic Volume (μl)	23.1 ± 2.6	21.2 ± 1.6
Diastolic Volume (μl)	60.5 ± 4.2	51.7 ± 1.7 *
Fractional Shortening (%)	27.7 ± 1.2	25.4 ± 1.5
LVEF (%)	62 ± 2	59 ± 3
Stroke Volume (µl)	37.4 ± 2.5	30.5 ± 1.0 *
Heart Rate (min ⁻¹)	477 ± 12	471 ± 11
Cardiac Output (ml/min)	17.8 ± 0.9	14.4 ± 0.6 *

Data are means \pm SEM (naïve n=5; isoproterenol n=9). * denotes P < 0.05 for an unpaired comparison (Student's t test). Acronym: LVEF – Left ventricular ejection fraction.

Echocardiographic measures in terazosin-treated mice

	Sham	SAH	SAH+TZ
Mouse Body Weight (g)	23.9 ± 0.4	23.3 ± 0.3	23.8 ± 0.5
Heart Wall Thickness	0.669 ± 0.029	0.684 ± 0.031	0.673 ± 0.025
Systolic Diameter	2.74 ± 0.09	2.72 ± 0.10	2.80 ± 0.10
Diastolic Diameter	3.93 ± 0.08	3.81 ± 0.10	3.82 ± 0.09
Systolic Volume	18.2 ± 1.4	18.7 ± 1.8	21.0 ± 1.9
Diastolic Volume	50.4 ± 2.2	46.6 ± 2.5	48.5 ± 2.6
Fractional Shortening	30.6 ± 1.2	28.8 ± 1.0	26.9 ± 1.2
LVEF (%)	64 ± 2	61 ± 2	57 ± 2 *
Stroke volume (µI)	32.2 ± 1.3	27.9 ± 1.0 *	27.5 ± 1.7 *
Heart rate (min ⁻¹)	500 ± 9	480 ± 14	443 ± 16 *
Cardiac Output (ml/min)	16.0 ± 0.6	13.3 ± 0.4 *	12.0 ± 0.3 *

Data are means \pm SEM (sham n=16; SAH n=16; SAH+TZ n=12). * denotes P<0.05 for an unpaired comparison to the sham (ANOVA with Dunnett's post-test). Acronyms: TZ: – terazosin; LVEF – Left ventricular ejection fraction; SAH – subarachnoid hemorrhage.