1	Supplemental Materials
2	Ferric uptake regulator provides a new strategy for acidophile adaptation to
3	acidic ecosystems
4	Xian-ke Chen, Xiao-yan Li, Yi-fan Ha, Jian-qiang Lin, Xiang-mei Liu, Xin Pang, Jian-qun Lin [*] , and Lin-xu
5	Chen*
6	State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao
7	266237, P.R. China.
8	* Correspondence:
9	Lin-Xu Chen, Jian-Qun Lin
10	linxuchen@sdu.edu.cn, jianqunlin@sdu.edu.cn
11	Supplemental Materials and Methods
12	Plasmid construction, protein expression and purification
13	The fur gene was PCR-amplified from A. caldus MTH-04 chromosome and inserted into the Nde I and
14	<i>Xho</i> I sites of pET22b and the resulting plasmid was transformed into <i>E. coli</i> DH5α cells. To study AcFur
15	protein properties, three AcFur mutants (Site I (SI) H31A/H88A, Site II (SII) E106A/H123A, SiteI and SiteII
16	(SI&SII) H31A/H88A/E106A/H123A) were generated by site-directed mutagenesis. All plasmids were
17	confirmed by DNA sequencing (GENEWIZ, Tianjin, China).
18	E. coli BL21 Star harboring the fur and fur mutants plasmids were grown in LB medium of 0.01%
19	FeCl ₂ containing 100 μ g/mL Amp until the OD ₆₀₀ = 0.8 and were induced by adding isopropyl β -D-1-
20	thiogalactopyranoside (IPTG) (0.2 mM, final concentration) and incubating overnight at 18 °C. The cells
21	were harvested by centrifugation at 8000×g for 15 min at 4 $\%$ and lysed by ultrasonication in lysis buffer (25
22	mM Tris-HCl pH 8.0, 200 mM NaCl, 0.2 mM phenyl methane sulfonyl fluoride). After centrifugation at 17

 $000 \times g$ for 1 h at 4 °C, the supernatant was loaded to a Ni-NTA column (GE Healthcare), followed by a

24	washing buffer (25 mM Tris-HCl pH 8.0, 200 mM NaCl, 20 mM imidazole). The His-tagged AcFur and
25	AcFur mutants were eluted with elution buffer (25 mM Tris-HCl pH 8.0, 100 mM NaCl, and 250 mM
26	imidazole). Purified AcFur and AcFur mutants were analyzed by a 15% sodium dodecyl sulfate-
27	polyacrylamide gel electrophoresis (SDS-PAGE) followed by coomassie brilliant blue R-250 staining.
28	Bioinformatics analysis of conservation of Fur proteins in the bacteria of AMD ecosystems
29	The evolutionary conservation structure and sequences of Fur were assessed using the ConSurf
30	server(1). The ConSurf web servers calculated the evolutionary conservation of amino acid positions in the
31	AcFur using an empirical Bayesian paradigm. The conservation scores were grouped into a nine grades scale
32	and projected onto the structure and on the MSA for visualization.
33	Supplemental Figures
34	Fig. S1 Construction procedure of Δfur and complementation strains. (A) Schematic representation of
35	markerless gene knockout procedure. (B&C) Confirmation of Δfur by PCR. Positions of verification primers
36	used for PCR to confirm <i>fur</i> deletion. Lanes 1, 3, and 5, PCR amplifications from A. caldus MTH-04 wild
37	type chromosome with primers F1/R1, F2/R2 and F3/R3, respectively. Lanes 2, 4, and 6, PCR
38	amplifications from the A. caldus MTH-04 Δfur chromosome with primers F1/R1, F2/R2 and F3/R3,
39	respectively. (D&E) Confirmation of complementation strains by PCR. Positions of verification primers
40	used for PCR to confirm complementation mutagenesis. Lanes 1, 2, 3, 4, 5, and 6, PCR amplifications with
41	Δfur (<i>fur</i>), Δfur (S I), Δfur (S II), Δfur (S I & II), Δfur , and WT chromosome, respectively. UHA and DHA
42	represent upstream and downstream homologous arms, respectively.

44 Fig. S2 Structure and sites conservation analysis of AcFur proteins and its homologs based on

45 *Acidithiobacillus*. (A&B) The nine-color conservation grades are projected onto the structure and sequence

- of AcFur protein. The variable positions (grade 1) colored turquoise, the intermediately conserved positions
- 47 (grade 5) colored white, the most conserved positions (grade 9) colored maroon.

48

43

49 Fig. S3 Soluble test of Recombinant protein pET22b-dC. Recombinant protein pET22b-dC was pointed

- 50 by red arrows. Lane M: M5 Prestained Protein Ladder Maker; lanes ce-s corresponding to the total proteins
- and supernatant of pET-22b; lanes ce-e corresponding to the crude extraction (ce), supernatant (s), flow (f),

52 washing (w), elution (e) of pET-22b-dC.

53

54 Supplemental Table

55 Table S1 Occurrence of fur and DtxR genes in published genomic information of AMD bacteria.

Phylum	Bacteria	Assembly level	Fur	DtxR
αProteobacteria	Acidiphilium cryptum JF-5	complete genome	NO	NO
	Acidiphilium multivorum			
	AIU301	complete genome	NO	NO
	Acidiphilium angustum			
	ATCC 35903	Scaffold	NO	NO
	Acidiphilium rubrum ATCC			
	35905	Scaffold	NO	NO
	Acidocella aminolytica 101	Scaffold	WP_048880410.1	NO
	Acidocella facilis ATCC			
	35904	Contig	WP_026439175.1	NO
	Acidomonas methanolica			
	NBRC 104435	Scaffold	WP_081797598.1	NO
β Proteobacteria	Ferrovum myxofaciens P3G	Contig	WP_031595537.1	NO
	Thiomonas intermedia K12	complete genome	WP_013121860.1	NO
	Thiomonas arsenitoxydans			
	3As	Chromosome	WP_013104191.1	NO
	Thiomonas delicata DSM			
	16361	Scaffold	WP_094159584.1	NO
	Thiomonas			
	bhubaneswarensis DSM			
	18181	Scaffold	WP_055449419.1	NO
		4		

	Acidiferrobacter thiooxydans			
yProteobacteria	ZJ	Contig	WP_083996317.1	NO
	Acidiferrobacter sp. SPIII_3	complete genome	WP_110138519.1	NO
	Acidihalobacter ferrooxidans			
	V8	Chromosome	WP_076835706.1	NO
	Acidihalobacter prosperus			
	F5	complete genome	WP 070077907.1	NO
	Metallibacterium scheffleri	1 0	_	
	DKE6	Contig	WP 081127454.1	NO
	Acidithiobacillus thiooxidans			
Acidithiobacilla	ATCC 19377	Scaffold	WP 010641352.1	NO
110100000000000000000000000000000000000	Acidithiobacillus			
	ferrooxidans ATCC 23270	complete genome	WP 012536062 1	NO
	Acidithiobacillus caldus	complete genome	WP_00/860010_1	NO
	Acidithiobacillus farrivorans	complete genome	WI_00+007017.1	NO
	SS2	complete conomo	WD 014020060 1	NO
		complete genome	WP_014030009.1	NO
	Actaithiobactilus ferriaurans	1.	NUD 1105060401	NO
	JCM 18981	complete genome	WP_113526343.1	NO
	Acidithiobacillus albertensis	a		
	DSM 14366	Scaffold	WP_010641352.1	NO
	Desulfomonile tiedjei DSM			
δproteobacteria	6799	complete genome	WP_014810043.1	WP_014809611.1
	Acidobacterium ailaaui			
Acidobacteria	PMMR2	Contig	WP_026442842.1	WP_049961364.1
	Acidobacterium capsulatum			
	ATCC 51196	complete genome	WP_015898090.1	ACO33208.1
	Granulicella mallensis			
	MP5ACTX8	complete genome	WP_014263331.1	AEU38646.1
	Granulicella pectinivorans			
	DSM 21001	Contig	WP_089840414.1	WP_089837736.1
	Granulicella rosea DSM			
	18704	Contig	WP_089407384.1	WP_142988166.1
	Granulicella tundricola	C		
	MP5ACTX9	complete genome	WP 013572743.1	ADW70438.1
	Terriglobus saanensis	1 0	_	
	SP1PR4	complete genome	ADV82922.1	ADV82279.1
	Terriglobus roseus DSM			
	18391	complete genome	NO	AFL86563.1
Nitrospirae	Leptosnirillum rubarum	Scaffold	WP 014959897 1	NO
innospirae	Leptospirillum ferrinhilum	Sourroid		110
	MI -04/VSK	complete genome	WP 01/050807 1	NO
	Lentosnirillum farrooridans	complete genome	···· _01+/5/07/.1	
	C2 3	complete genome	WD 01/1/83/8 1	NO
	Lantosnirillum sn. Group II	complete genome	<u>w1_014440340.1</u>	
	<i>Lepiospirium sp.</i> Group II	aomnlata concerca	AVC24704 1	NO
		complete genome	AN324/90.1	NU
	Lepiospirilium sp. Group II	Cooffold	EU75052 1	NO
	C/3	Scalloid	EIJ/3933.1	NU
		5		

	Leptospirillum			
	ferrodiazotrophum	/	EES52611.1	NO
	Leptospirillum sp. Group IV			
	'UBA BS'	Scaffold	NO	NO
	Acidimicrobium ferrooxidans			
Actinobacteria	DSM 10331	complete genome	ACU53263.1	NO
	Acidithrix ferrooxidans Py-	1 0		
	F3	Contig	WP 052604974.1	NO
	Candidatus Koribacter	001118		
	versatilis Filin345	complete genome	ARF42368 1	NO
	Candidatus Solibacter	complete genome	HDI 12300.1	110
	usitatus Ellin6076	complete genome	ABI828/17 1	ARI83168 1
	Earrimicrohium acidinhilum	complete genome	ADJ02047.1	ADJ05100.1
	DSM 10407	Souffold	VIE75465 1	NO
	DSW 19497	Scariolu	KJE/J40J.1	NO
	Ferritorix inermotolerans	Caeffeld	SUE 40700 1	NO
T ' ' /		Scallold	SHE49700.1	NO
Firmicutes	Sulfobacillus benefaciens	Scarrold	PSR32246.1	NO
	Sulfobacillus acidophilus	1		
	DSM 10332	complete genome	AEJ38577.1	NO
	Sulfobacillus			
	thermosulfidooxidans DSM	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		
	9293	Scaffold	WP_051351132.1	NO
	Sulfobacillus sp. Hq2	Scaffold	WP_103375064.1	NO
	Sulfobacillus thermotolerans			
	Kr	/	AUW95357.1	NO
	Alicyclobacillus acidiphilus			
	NBRC 100859	Contig	WP_067621411.1	WP_067621532.1
	Alicyclobacillus			
	acidocaldarius DSM 446	complete genome	ACV59616.1	WP_012811361.1
	Alicyclobacillus			
	acidoterrestris ATCC 49025	Contig	EPZ52565.1	EPZ52800.1
	Alicyclobacillus			
	macrosporangiidus DSM			
	17980	Scaffold	WP_074951538.1	WP_074955662.1
	Alicyclobacillus mali NBRC			
	102425	Contig	WP_067846234.1	WP_067845958.1
	Alicyclobacillus herbarius	-		
	DSM 13609	Scaffold	WP_026961358.1	WP_026960854.1
	Alicyclobacillus contaminans			
	DSM 17975	Scaffold	WP_026975363.1	WP_035485231.1
	Alicyclobacillus hesperidum	Scaffold	NO	WP 006446406.1
	Alicvclobacillus montanus			_
	USBA-GBX-503	Scaffold	WP 072873733.1	WP 072872655.1
	Alicyclobacillus		···- <u>-</u> •·-•·•	
	ferrooxydans TC-34	Contig	WP 054968265 1	WP 0549707101
	Alicyclobacillus shizuokensis	0		
	NBRC 103103	Contig	WP 067927130 1	WP 0679231961
		6		

	Alicyclobacillus sendaiensis			
	NBRC 100866	Contig	WP_062305267.1	WP_062307455.1
	Alicyclobacillus			
	kakegawensis NBRC 103104	Contig	WP_067932739.1	WP_067930834.1
	Alicyclobacillus			
	tengchongensis	Contig	NO	WP_006446406.1
	Alicyclobacillus sacchari			
	DSM 17974	Scaffold	WP_134158132.1	WP_134158038.1
	Alicyclobacillus pomorum			
	DSM 14955	Scaffold	WP_026964647.1	NO
	Alicyclobacillus vulcanalis			
	DSM 16176	Scaffold	WP_143232488.1	WP_076348602.1
	Desulfosporosinus			
	acidiphilus SJ4	complete genome	AFM41980.1	NO
	Desulfosporosinus youngiae			
	DSM 17734	Chromosome	EHQ90093.1	NO
	Desulfosporosinus orientis			
	DSM 765	complete genome	AET68842.1	NO
	Desulfosporosinus lacus			
	DSM 15449	Scaffold	SHH87716.1	SHI82465.1
	Desulfosporosinus hippei			
	DSM 8344	Scaffold	SDG84826.1	NO
	Desulfosporosinus meridiei			
	DSM 13257	complete genome	AFQ44521.1	NO
	Desulfosporosinus			
	fructosivorans 63.6F	Scaffold	WP_135548847.1	WP_135550222.1
Aquificae	Hydrogenobaculum sp.	complete genome	WP_012513885.1	NO
_	Thermoplasma acidophilum			
Euryarchaeota	DSM 1728	complete genome	NO	DtxR 4O6J_A
	Thermoplasma volcanium			
	GSS1	complete genome	BAB59437.1	BAB60108.1
	Thermoplasma sp. Kam2015	Contig	WP_110642587.1	WP_110641559.1
	Cuniculiplasma divulgatum			
	PM4	complete genome	WP_021789929.1	NO
	Picrophilus oshimae DSM	~ .		
	9789	Contig	NO	SMD31358.1
	Picrophilus torridus DSM			
	9790	complete genome	NO	AA143/33.1
	Acidiplasma aeolicum	Contig	NO	WP_048101435.1
	Acidiplasma cupricumulans	Contig	NO	WP_048101435.1
	Acidiplasma sp. MBA-1	Contig	NO	WP_048101435.1
	Ferropiasma aciaarmanus		NO	1
		complete genome	NO	AGU00290.1
	rerropiasma acialphilum			WF_U81142039.1
	Ferropiasma inermophium	/	INU	
	r erropiusma	Contig	NO	WD 040101425 1
	сургелисет чинит	Colling 7	INU	wr_040101433.1
		,		

	Ferroplasma cupricumulans	Contig	NO	WP_048101435.1
Crenarchaeota	Acidianus hospitalis W1	complete genome	NO	AEE93435.1
	Acidianus sulfidivorans JP7	complete genome	NO	AWR97065.1
	Acidianus brierleyi DSM			
	1651	complete genome	NO	WP_110270607.1
	Acidianus manzaensis YN-25	complete genome	NO	ARM75708.1
	Candidatus Acidianus			
	copahuensis	Contig	NO	WP_048100246.1
	Acidilobus saccharovorans			
	345-15	complete genome	NO	NO
	Acidilobus sp. 7A	complete genome	NO	NO
	Metallosphaera sedula	complete genome	NO	WP_012021943.1
	Metallosphaera hakonensis			
	JCM 8857	complete genome	NO	AWR99707.1
	Metallosphaera			
	yellowstonensis	complete genome	NO	WP_048088038.1
	Metallosphaera cuprina Ar-4	Scaffold	NO	AEB94380.1
	Metallosphaera prunae	complete genome	NO	QCO30441.1
	Sulfolobus islandicus	Complete	NO	WP_012711465.1
	Sulfolobus acidocaldarius	Complete	NO	WP_011277038.1
	Sulfolobus metallicus	Contig	NO	WP_054838202.1
	Sulfurisphaera tokodaii	complete genome	NO	WP_010980111.1
	Saccharolobus solfataricus			
	P2	complete genome	NO	AAK40972.1

56 **References**

57 1. Ashkenazy H, Erez E, Martz E, Pupko T, Ben-Tal N. 2010. ConSurf 2010: calculating evolutionary conservation in sequence and

58 structure of proteins and nucleic acids. Nucleic Acids Res 38:W529-33.

59