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1 Minimal synthesis time of a set of r-proteins in E. coli

In E. coli there are 7,536 amino acids per ribosome [36], including S1, and the maximal peptide
chain elongation rate is 22 amino acids per second [10]. These numbers give a minimum of
5.7 minutes for the time it takes to synthesize a complete set of r-proteins. In addition, it is
estimated that in order to support elongation roughly 5.4 molecules of EF-Tu (394 amino acids),
0.8 molecules of EF-G (704 amino acids), and 0.18 molecules of EF-Ts (283 amino acids) are
required per ribosome; and that in order to support initiation roughly 0.25 molecules of IF1
(72 amino acids), 0.3 molecules of IF2 (890 amino acids), and 0.2 molecules of IF3 (180 amino
acids) are required per ribosome [10]. Taking these numbers into account gives a minimum of
10,598 amino acids that need to be synthesized per ribosome, thus amounting to no less than 8
minutes of ribosome time. Note that this is a minimum time, and that many other proteins are
indirectly needed to ensure high elongation rates of the ribosome. However, for our purposes it is
sufficient to note that ribosomes spend a significant fraction of their time making themselves and
that there is a selective pressure to reduce that fraction. In what follows we neglect the turn-over
of ribosomes, but taking this into account would only strengthen our conclusions further since
ribosomes would then need to spend even more time reproducing themselves.

2 Deriving a simple bound on the fraction of time ribosomes

must spend on r-protein production

In balanced growth cells must, on average, double all components each generation. Thus, if
doubling the number of ribosomes takes some minimal amount of time, the average generation
time, Tgen, could not drop below this number. Here we first consider the idealized scenario in
which all r-proteins (including nascent peptides) are in the form of active ribosomes. Denoting
the total amount of r-protein in the cell (measured in amino acids) by Ntotal

rp (t), then

dNtotal
rp (t)

dt
= kϕ

Ntotal
rp (t)

N
, (1)

where k is the translation rate in amino acids per second, ϕ is the time fraction ribosomes spend
elongating r-proteins, N is the number of amino acids in the ribosome, and Ntotal

rp (t)/N is the total
number of ribosomes in the cell. The doubling time in this idealized scenario serves as a lower
bound on Tgen and is given by τln(2)/ϕ, where τ = N/k. Thus

Tgen ≥ τln(2)/ϕ , (2)

and rearrangement gives
ϕ ≥ τln(2)/Tgen . (3)

The factor ln(2) reflects the idealized assumption that the investment in r-proteins immediately
produces a return in terms of increased translation rate, i.e., that the delay between initiating the
production of r-proteins and their eventual incorporation into ribosomes is negligible. That is a
good approximation given the high number n of r-proteins, but we will relieve it in subsequent
sections. Given the maximal translation rates observed, this means that in fast growth E. coli
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ribosomes must spend at least 20% of their time elongating r-proteins rather than making the
rest of the proteome.

Eukaryotic cells take more time to double, but their ribosomes are also larger and slower.
For example, cytosolic ribosomes in S. cerevisiae contain almost 13,000 amino acids which are
roughly 75% more than the amount found in E. coli’s ribosome. In addition, these ribosomes
have a maximal elongation rate of ∼10 amino acids per second, i.e., roughly half that of E. coli
ribosomes. The observed generation times of 75-90 minutes would thus require yeast ribosomes
to spend at least 16-20% of their time on r-protein elongation, similarly to what is observed for fast
growing E. coli. Such high demands are also expected in cells of higher organisms during critical
points in their life cycle which require fast growth and proliferation, e.g. during development.
The purpose of the main text is to point out that if not for many unusual features of ribosomes
this requirement would be even more taxing. The unique features of ribosomes thus allow them
to spend a shorter fraction of their time on self-production.

There could also be an efficiency advantage to producing r-proteins in small pieces due to the
limited processivity of ribosomes, i.e., the fact that ribosomes sometimes terminate prematurely.
It has been reported that as much as 10% of ribosomes in E. coli fail to finish translation [37].
However, even if those numbers were accurate, that does not mean that 10% are wasted, since
premature termination can happen anywhere along the mRNA. If the premature termination
occurred close to the middle of the mRNA on average (and due to the processive nature of the
process, the average position for premature termination should be closer to the start site), the
waste would be roughly 5% for a typical protein, and much smaller yet for a typical r-protein.
This type of waste would also be reduced to some extent by making many small r-proteins,
since everything up to the point of the premature termination is wasted, suggesting that the
optimal number of separate r-proteins should even be slightly higher than predicted above.
Accounting for premature termination thus supports qualitatively similar conclusions and for
a similar reason: ribosomes should be made of many small r-proteins because it increases the
efficiency of ribosome biogenesis.

However, here we do not explicitly take this effect into account, partly because it supports
similar conclusions, but primarily because we simply do not believe the drop-off rates are that
high in natural systems. Specifically, the frequency of premature termination is expected to
depend strongly on amino acid composition and the availability of the various charged tRNAs.
Perturbations of gene expression, which easily can create shortages of some charged tRNAs, can
then easily lead to an over-estimate of the drop-off rate, e.g. if any proteins are over-expressed, as
was the case for many studies reporting high drop-off rates. From an evolutionary perspective,
we would also find it very peculiar if the translation machinery – which can achieve such a
high accuracy that most protein molecules do not contain a single incorrect amino acid, even
though most such proteins should still be functional – could not avoid a 10% risk of terminating
prematurely. For the very long proteins in E. coli, which can be >1,500 amino acids long, the
great majority of protein production events would then create a protein of incorrect size. It is
therefore our belief that the actual premature termination rate in nature is substantially lower
than estimated and that the effects are even smaller. However, our main conclusion here is still
unchanged even if this is not the case.
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3 rRNA production requires little ribosome involvement

The rRNA is synthesized by RNA polymerases. Assuming that most RNA polymerases are
active and that most protein allocated to RNA polymerase mass is in the form of assembled RNA
polymerases – both of which are imperfect but have little impact on the main result – one can
approximate

dNtotal
rRNA(t)
dt

= γ
Nribo

pol (t)

Npol
, (4)

for the total amount, Ntotal
rRNA(t), of rRNA in the cell (measured in nucleotides). Here, γ is the

transcription rate, Nribo
pol (t) is the total amount of amino acids in the form of RNA polymerases

dedicated to the synthesis of rRNA, Npol is the number of amino acids per RNA polymerase, and
Nribo

pol (t)/Npol is the number of RNA polymerases dedicated to the synthesis of rRNA.
RNA polymerases are in turn synthesized by ribosomes and we can thus write

dNribo
pol (t)

dt
= kψ

Ntotal
rp (t)

N
, (5)

where ψ is the fraction of their time ribosomes spend synthesizing RNA polymerases that would
in turn be dedicated to the synthesis of rRNA. Combining Eq. (4) and (5), it immediately follows
that

d2Ntotal
rRNA(t)
dt2 =

γkψ
Npol

Ntotal
rp (t)

N
=
γkψ
Npol

Ntotal
rRNA(t)

NrRNA
, (6)

where we have defined NrRNA to be the total number of RNA nucleotides per ribosome, and
noted that the number of ribosomes in the cell can then also be written as Ntotal

rRNA(t)/NrRNA. The
solution to Eq. (6) is once again exponential growth for which the doubling time is given by√
τpolτrRNA/ψln(2), where τpol = Npol/k and τrRNA = NrRNA/γ. Since this is an idealized scenario,

we have the following bound on the generation time

Tgen ≥
√
τpolτrRNA/ψln(2) . (7)

3.1 Derivation of Eq. (4) in the paper

In balanced growth doubling times of the r-protein and rRNA mass must match in order to avoid
imbalances. In the idealized scenario described above the equalities in Eqs. (2) and (7) hold and
this in turn implies that

τln(2)
ϕ
=

√
τpolτrRNA

ψ
ln(2) , (8)

from which it follows that
ψ = ϕ2τpolτrRNA

τ2 . (9)

Taking the equality in (3) and using it to eliminate one power of ϕ we recover Eq. (4) in the text

ψ

ϕ
=

[Tgen/τ]ln(2)
[Tgen/τpol][Tgen/τrRNA]

. (10)
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In E. coli the transcription rate for rRNA is estimated at ∼85 nucleotides per second and there
are 4,566 RNA nucleotides per ribosome. It follows that τrRNA is ∼54 seconds. In addition, there
are 7,536 amino acids per ribosome and 4,320 amino acids per RNA polymerase (including σ70).
Since translation rates range from 13 amino acids per second at slow growth (Tgen = 100 minutes)
to 22 amino acids per second at fast growth (Tgen = 20 minutes) we find

1
280

≤ [Tgen/τ]ln(2)
[Tgen/τpol][Tgen/τrRNA]

≤ 1
56

. (11)

This means that in an ideal setting the fraction of time ribosomes spend on producing r-proteins
should be roughly two orders of magnitude higher than that spent on the production of rRNA.
The argument in the main text that rRNA requires a much smaller ribosomal time-investment
per mass is thus highly robust to imperfections in the estimated numbers.

Depending on growth conditions, only about a sixth (slow growth) to a third (fast growth)
of RNA polymerases in E. coli are active [10] and ψ above should thus be correspondingly
higher in order to compensate. This can be corrected for in Eq. (9) but is hardly enough to
reverse the trend. Moreover, accounting for auxiliary production costs further solidifies the
conclusion that r-proteins are much more costly than rRNAs. The additional cost coming from
the need to produce polymerases to support transcription of mRNAs coding for r-proteins
adds to the r-protein burden, but probably not too much because of the strong amplification of
transcriptional output by translation [38]; And this cost may also be further reduced by coupling
between transcription and translation as this could prevent back-tracking of polymerases [39,40].
However, recent proteomics studies suggest that the amount of protein required in order to
produce the nucleotides, charged tRNAs, amino acids, initiation and elongation factors that are
needed for the r-protein production chain is much greater than that required for the synthesis of
the nucleotides needed for rRNA [5,41].

4 Nascent ribosomal peptides are idle forcing more ribosome

involvement in r-protein production

The calculation above assumed that all r-proteins mass is in the form of active ribosomes, thus
neglecting the fact that some r-protein mass is nascent, i.e., in the process of being translated.
To take this into account we let n denote the number of r-proteins and let Li denote the length
in codons of the mRNA transcript coding for the i-th ribosomal protein. Note that Li is also the
length in amino acids of the i-th ribosomal protein. In what follows we keep the total number
of amino acids in the ribosome, N =

∑n
i=1 Li, fixed and compute how the minimal fraction of

ribosomes dedicated to the synthesis of ribosomal proteins depends on n and the set {L1, · · · ,Ln}.
This is again an idealized case because we ignore other sources for ribosome idleness that will be
included in subsequent sections. We further note that the effect can be approximately understood
from the simple argument in the main text: the length of the nascent peptides is roughly half
the length of the full protein because the average position of the ribosome is close to the middle
of the mRNA. However, because of the autocatalytic nature of the process, the average position
is in fact not exactly in the middle. To intuitively understand this, for example imagine that
the ribosome consisted of a single large r-protein and that ribosomes only made themselves. At
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balanced growth, there would then be twice as many ribosomes initiating rather than terminating
the translation of the r-protein, much like populations of exponentially growing cells have twice
as many newborn as dividing cells. Thus the average position of the ribosome is closer to the
initiation site. This effect is minor when the ribosome consists of many r-proteins or when
ribosomes also translate other proteins, but should still be accounted for. We further account for
the fact that the r-proteins are all of different lengths. This section thus derives a more complete
but mathematically more detailed description, and in subsequent sections we analyze the results
with further emphasis on intuition.

Let ρi(x, t) denote the r-protein mass density (coming from elongating ribosomes) at position
x and time t on mRNAs of type i, and observe that this density obeys a simple transport equation

∂ρi(x, t)
∂t

= −k
∂ρi(x, t)
∂x

, (12)

(1 ≤ i ≤ n, 0 ≤ x ≤ Li). This approximates elongation as being continuous rather than taking
discrete jumps between codons, but that approximation is virtually perfect even for the shortest
r-proteins. The probability density to locate a ribosome at position x and time t on an mRNA of
type i is then found by normalizing by the total number

pi(x, t) = ρi(x, t)/Ntotal
rp (t) . (13)

where Ntotal
rp (t) is once again the total amount of r-protein in the cell. Combing Eqs. (12) and (13)

we see that the probability densities pi(x, t) obey the following differential equation

∂pi(x, t)
∂t

=
1

Ntotal
rp (t)

∂ρi(x, t)
∂t

− dNtotal
rp (t)

dt
ρi(x, t)[

Ntotal
rp (t)

]2 = −k
∂pi(x, t)
∂x

− dNtotal
rp (t)

dt
pi(x, t)
Ntotal

rp (t)
. (14)

At steady state ∂pi(x,t)
∂t = 0. Setting πi(x) = lim

t→∞pi(x, t) to be the steady state probability densities,
we have

∂πi(x)
∂x

= − πi(x)
kNtotal

rp (t)

dNtotal
rp (t)

dt
(15)

which further implies that at steady state 1
Ntotal

rp (t)

dNtotal
rp (t)
dt must equal some unknown constant which

does not depend on time. Moreover, since this constant determines the doubling time of r-protein
mass it sets a lower bound for the cell generation time. This means that in the best case scenario

Tgen = lim
t→∞

{ ln(2)Ntotal
rp (t)

dNtotal
rp (t)/dt

}
, (16)

which in turn gives
∂πi(x)
∂x

= − ln(2)
kTgen

πi(x) . (17)

The solution to Equation (17) is given by

πi(x) = Aie−xln(2)/kTgen , (18)
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where {A1, · · · ,An} are unknown constants to be determined.
In order to determine the unknown constants above we impose the boundary condition

kρ1(L1, t) = ... = kρn(Ln, t), (19)

which asserts coordinated production of ribosomal proteins, and implies that

Ai = Ce
Liln(2)
kTgen , (20)

where C is some constant that does not depend on the index i. To determine it we observe that

dNtotal
rp (t)

dt
=

k
N

n∑
i=1

Li∫
0

ρi(x, t)dx . (21)

Dividing both sides by Ntotal
rp (t), taking the limit t → ∞, and utilizing Eqs. (13) and (16), we see

that at steady state

T−1
genln(2) =

k
N

n∑
i=1

Li∫
0

πi(x, t)dx =
CkTgen

τln(2)

n∑
i=1

[
e

Liln(2)
kTgen − 1

]
, (22)

which gives

C =
τln2(2)

kT2
gen

n∑
i=1

[
e

Liln(2)
kTgen − 1

] , (23)

and

Ai =
τln2(2)e

Liln(2)
kTgen

kT2
gen

n∑
i=1

[
e

Liln(2)
kTgen − 1

] . (24)

We would now like to determine the time fractionϕ ribosomes spend on r-protein translation.
To do this, we first observe that not all r-protein mass is found in the form of assembled ribosomes.
Indeed, a quantity

Nnascent
rp (t) =

1
N

n∑
i=1

Li∫
0

xρi(x, t)dx . (25)

is found in the form nascent, or semi-translated, ribosomal peptides and we thus have

ϕ =

n∑
i=1

Li∫
0
ρi(x, t)dx

Ntotal
rp (t) −Nnascent

rp (t)
. (26)
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Dividing throughout by Ntotal
rp (t), going to steady state, utilizing Eq. (22), and recalling that we

still neglect some other sources for ribosome idleness (such as noisy expression or the time spent
initiating) we find

ϕ ≥

n∑
i=1

Li∫
0
πi(x)dx

1 − 1
N

n∑
i=1

Li∫
0

xπi(x)dx

=
τln(2)/Tgen

1 − 1
N

n∑
i=1

Li∫
0

xπi(x)dx

, (27)

and comparison to Eq. (3) makes it clear that idleness coming from nascent ribosomal peptides
results in higher demand for ribosome involvement in r-protein production. Working out the
sum and integrals in the denominator and rearranging we conclude that

ϕ ≥ τln(2)/Tgen

1 + kTgenC
ln(2) − 1

=

n∑
i=1

[
e

Liln(2)
kTgen − 1

]
=

n∑
i=1

[
e
τiln(2)
Tgen − 1

]
, (28)

with τi = Li/k. In the subsequent sections we consider more intuitive formulations and special
cases of this result.

4.1 Derivation of Eq. (1) in the paper — smaller r-proteins reduce idleness

Eq. (1) in the paper could be obtained from Eq. (28) by looking at the case where all r-proteins
have equal lengths. In this case τi = N/nk = τ/n, and

ϕ ≥ n(2τ/nTgen − 1) . (29)

Rearrangement gives the equivalent formulation in terms of a bound on the generation time

Tgen ≥ τ/[nLog2(1 + ϕ/n)] . (30)

This result could be further interpreted and understood by recalling that

Log2(1 + x) =
x

ln(2)
− x2

2ln(2)
+ o(x2) . (31)

Equation (30) could thus be written approximately as

Tgen ≥ τln(2)
ϕ(1 − ϕ/2n)

� τ(1 + ϕ/2n)ln(2)
ϕ

, (32)

which in turn means that to a good approximation Eq. (32) could have been obtained directly
from Eq. (2) by replacing τ there with τe f f = τ(1+ϕ/2n). This should make intuitive sense because
from every ribosome which is engaged in the translation of r-proteins there hangs a nascent, or
semi-translated, ribosomal peptide which is roughly N/2n amino acids long, i.e., half the length
of the mature protein on average. This could be seen as an effective increase in r-protein mass
but since it is only a fraction ϕ of all ribosomes that are engaged in the translation r-proteins, the
effective number of amino acids added, per ribosome, is ϕN/2n. Replacing the number of amino
acids in the ribosome, N, with Ne f f = N(1 +ϕ/2n), and τ = N/k with τe f f = Ne f f/k then produces
the same result. This makes it easy to understand why having more and smaller r-proteins will
reduce the penalty coming from nascent ribosomal peptides that cannot contribute to production,
and that in the limit n →∞ Eqs. (29) & (30) reduce to Eqs. (3) & (2) as expected.
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4.2 Derivation of Eq. (3) in the paper — r-proteins with similar lengths reduce

idleness

To derive Eq. (3) we note that when r-proteins are not equally sized we can always write

τi = τ/n + δ(τi) , (33)

where δ(τi) is defined as the difference between τi and τ/n. Combining Eqs. (28) and (33) we
have

ϕ ≥
n∑

i=1

[
e
τln(2)
nTgen e

δ(τi)ln(2)
Tgen − 1

]
. (34)

We now observe that
ex ≥ 1 + x + x2/2 , (35)

for x ≥ 0, from which it follows that

ϕ ≥ n(2τ/nTgen − 1) +
2τ/nTgen

2

n∑
i=1

(
δ(τi)ln(2)

Tgen

)2

, (36)

where we have further used the fact that
n∑

i=1
δ(τi) = 0 by definition. Denoting the mean and

variance of the translation times {τ1, ..., τn} by 〈τi〉 = 1
n

n∑
i=1
τi =

τ
n and σ2(τi) = 1

n

n∑
i=1

(τi − 〈τi〉)2 =

1
n

n∑
i=1
δ2(τi) correspondingly, we find

ϕ ≥ n(2τ/nTgen − 1) + 2τ/nTgen
τ2ln(2)2

2nT2
gen

σ2(τi)
〈τi〉2 . (37)

Equation (3) in the paper then follows by noting that τi = Li/k. Hence, the coefficient of variation
(ratio between standard deviation and mean) of the translation times {τ1, ..., τn} is effectively the
coefficient of variation for r-protein lengths {L1, ...,Ln}. Slight rearrangement then gives

ϕ ≥ n

⎛⎜⎜⎜⎜⎝2τ/nTgen

⎡⎢⎢⎢⎢⎣1 + 1
2

(
τln(2)
nTgen

)2

CV2
L

⎤⎥⎥⎥⎥⎦ − 1

⎞⎟⎟⎟⎟⎠ , (38)

and we see that having r-proteins which are more equally sized (smaller CV2
L) reduces the idleness

coming from nascent ribosomal peptides. Also, note that in the limit CV2
L → 0 Eq. (38) reduces

to Eq. (29) as expected.
Some intuition for the result in Eq. (37) could once again be gained by expanding its right

hand side to first order in 1/n. Recalling that

2x = 1 + xln(2) +
1
2

(
xln(2)

)2
+ o(x2) , (39)

we see that

n(2τ/nTgen − 1) + 2τ/nTgen
τ2ln(2)2

2nT2
gen

σ2(τi)
〈τi〉2 � τln(2)

Tgen
+
τ2ln(2)2

2nT2
gen

(
1 +

σ2(τi)
〈τi〉2

)
, (40)
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which in turn means that to first order in 1/n Eq. (37) is equivalent to

Tgen ≥
τ
[
1 + ϕ

2n

(
1 + σ2(τi)

〈τi〉2
)]

ln(2)

ϕ
. (41)

Equation (41) could have been obtained directly from Eq. (2) by replacing τ there with τe f f =

τ
[
1 + ϕ

2n

(
1 + σ2(τi)

〈τi〉2
)]

. This makes sense because from every ribosome engaged in the translation
of r-proteins there hangs a nascent, or semi-translated, ribosomal peptide; and while the length
of the latter is roughly N/2n amino acids—the fact that r-proteins are not exactly equally sized
will slightly change this result. Indeed, the average length of the nascent peptide associated
with ribosomes translating the i-th r-protein is roughly 1

2Li, but the frequency in which different
nascent peptides occur is not equal throughout. For a given production rate, ribosomes will
spend twice as much time on transcripts which are twice as long, and there would hence be
roughly twice as many ribosomes translating these transcripts. In other words, the probability to
find a ribosome on a transcript of a certain type is proportional to the length of this transcript, thus
suggesting that the typical length of a nascent peptide is determined by the following weighed
average

Average length of nascent peptide =
n∑

i=1

1
2

Lipi , (42)

where pi = Li/N. This in turn gives

Average length of nascent peptide =
N
2n

[
1 + CV2

L

]
, (43)

where CV2
L is the coefficient of variation of the set {L1, ..,Ln}. Since only a fractionϕof all ribosomes

are engaged in the translation r-proteins, we once again note that this amounts to an effective
increase of ϕN

2n

[
1 + CV2

L

]
in the number of amino acids per ribosome. Replacing the number of

amino acids in the ribosome, N, with Ne f f = N
(
1 + ϕ

2n

[
1 + CV2

L

])
, and τ = N/k with τe f f = Ne f f/k

then gives the desired result.

5 Ribosomal proteins are unusually small and similarly sized

As shown in the main text, all cytosolic r-proteins are on average much smaller than the corre-
sponding genomic averages. However, because many other proteins are smaller yet, the question
is if this difference is so unusual. That is, is the set of r-proteins that make up a ribosome signif-
icantly different (statistically) from a random sets of proteins taken from the genome? Here we
perform the detailed calculations for E. coli that contains 56 r-proteins that average 132 amino
acids. Indeed we find that the probability of averages of 132 amino acids or lower is exceedingly
small. In fact, after picking 106 random sets of 56 proteins from the genome we did not generate
a single set with remotely as small average as the actual r-proteins, i.e., the probability that the
mean protein length in a randomly selected sample of 56 proteins is equal or smaller than 132
amino acids is too low to be determined by our brute force Monte Carlo simulations (Extended
Data Figure 2, left). However, a bound on the probability can be analytically derived by utilizing
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the Chernoff bound from probability theory. This also allows for a systematic, multi-organism
examination.

The Chernoff bound is attained by applying Markov’s inequality to e−tX, where X is a non-
negative random variable and t > 0. Letting X denote the average length of a protein in a random
sample {X1, ..Xn} of size n we have

X =
1
n

n∑
i=1

Xi , (44)

the Markov’s inequality asserts that

Pr(X ≤ a) = Pr(e−tX ≥ e−ta) ≤ E[e−tX]
e−ta = etaE

[ n∏
i=1

e−
tXi
n

]
. (45)

Sampling such that {X1, ..Xn} are independent and identically distributed, this formula further
reduces to

Pr(X ≤ a) ≤ eta
n∏

i=1

E
[
e−

tXi
n

]
= eta

(
E
[
e−

tX1
n

])n
. (46)

Finally, noting that the above equation holds for every t > 0 we have

Pr(X ≤ a) ≤ min
t>0

{
eta

(
E
[
e−

tX1
n

])n}
. (47)

Given E. coli’s genome the expectation value on the right hand side of Eq. (47) can be numerically
computed for n = 56, a = 132, and various values of t. Minimizing over t > 0 we then find

Pr(X ≤ 132) ≤ 10−17 . (48)

The ribosomal proteins in E. coli are thus indeed unusually small, and unlikely to arise without
selection on the lengths of ribosomal proteins. Utilizing the same method to the analysis of more
than a thousand different organisms we arrive at similar conclusions for all organisms considered
(Extended Data Figure 2, right).

As mentioned in the main text, we also find that in addition to being unusually small,
ribosomal proteins are much more similar to each other in length than proteins in the genome
overall. Again the fact that there are so many r-proteins in the ribosome means that this effect
is highly significant statistically. Specifically, the coefficients of variation observed for the length
distributions of r-proteins in various different organisms are extremely unusual.

Intuitively it may seem that the unusually low CVL could be a by product of the unusually
low averages, since the latter means that proteins are largely confined to the left tail of the
distribution, i.e., it could have been the case that r-proteins are similar to one another in length
because they are small on average. However, since the coefficient of variation is defined as the
ratio between the standard deviation and mean, random samples in which the average protein
length has dropped two or three fold in comparison to the overall genomic mean would need to
show an even sharper drop in their standard deviation to start and display some reduction in the
coefficient of variation—let alone explain the CVs observed for ribosomes. This could in principle
be tested by generating many random sets of the expected average length (allowing some small
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deviations from the exact average length observed), and analyzing the corresponding width of
the length distribution in those sets. However, because the low averages are so exceedingly rare
to begin with, this is not feasible. We therefore used two separate approaches.

To generate random complexes with n ≤ 20, we used a simple brute force sampling method.
We then derive the CVL in random samples that have approximately the correct average r-
protein lengh (the exact cut-offs were not important), as a function of n. This allows us to
directly estimate the probability of finding a CVL as low or lower than the actual CVL for the
r-proteins. The actual CVL is indeed lower than expected by random sampling for all n, and
with increasing n the effect becomes more and more significant. In this way we can reach n = 20
where the probability of achieving such low CVL is already exceedingly small. However, using
this method to generate random complexes with average protein lengths as low as those seen
in ribosomes becomes computationally changeling for higher n as the probability to observe
these type of events becomes exceedingly small. And yet, as the need to sample rare events
has arisen time and again in various different areas of research, different approaches have been
developed to address this reoccurring problem [42], and we have utilized one such approach for
our purposes here. In particular, to obtain the data used to draw curves for n > 20, we first use
brute force sampling to generate a "seed" of size n = 2 proteins and an average protein length
that is within the desired range (average length of an r-protein ±5 amino acids). This seed is
then made into a complex with n = 3 proteins by adding to it a randomly chosen protein for
which the average protein length of the joint complex is still within the desired range (several
trials may be required). Additional randomness is then introduced by replacing all proteins in
the newly generated complex with randomly drawn proteins, one by one, while keeping the
average protein length in the desired range. This procedure is repeated many times. The end
result is a randomly generated complex with n = 3 proteins and an average protein length that
is within the desired range. This could then be used as a seed to iteratively obtain complexes
of size n = 4, 5, 6, ... in the very much the same manner described above. As it turn out, this
sampling method is considerably faster than the brute force one for n > 20, and we have verified
that for n ≤ 20 the results generated by the two are practically equivalent. Results coming from
combining these two approaches are described in Extended Data Figure 3, which shows that
the observed coefficients of variation are indeed highly unusual, even when conditioning on the
small average length of the r-proteins.

6 Deriving the initiation penalty for increasing n and predicting

the optimum number of r-proteins

To take into account the time ribosomes are sequestered from elongation due to initiation (and
similar processes), we first consider a fixed overhead time τoh for every translation event. We let
ρi(x, t) denote the r-protein mass density (coming from ribosomes) at position x and time t on
mRNAs of type i, and again observe that this density obeys a simple transport equation at the
elongation phase

∂ρi(x, t)
∂t

= −k
∂ρi(x, t)
∂x

, (49)
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(1 ≤ i ≤ n, 0 ≤ x ≤ Li), and that its evolution at the overhead phase could be effectively modeled
in the same way

∂ρi(x, t)
∂t

= −k
∂ρi(x, t)
∂x

, (50)

(1 ≤ i ≤ n, −Loh ≤ x ≤ 0), where Loh is a fictitious number of "overhead codons" chosen to assure
τoh = Loh/k. Just as the description of elongation does not account for the statistical variation in
the movement of the ribosome from codon to codon, modeling initiation this way ignores the
(unknown) statistical variation in the time required for initiation. However, we only consider
the steady state average where such variation is of little importance.

The solution to Eq. (49) is once again given by

πi(x) = Aie−xln(2)/kTgen , (51)

(1 ≤ i ≤ n, 0 ≤ x ≤ Li), where the constants Ai are given in Eq. (24) above. For Eq. (50), we
similarly find

πi(x) = Bie−xln(2)/kTgen , (52)

(1 ≤ i ≤ n, −Loh ≤ x ≤ 0), and Bi = Ai for continuity at x = 0.
We then determine the time fraction ϕ ribosomes spend on the elongation of r-proteins.

Denoting the totality of r-protein engaged in overhead processes Noh
rp (t), we have

ϕ =

n∑
i=1

Li∫
0
ρi(x, t)dx

Ntotal
rp (t) −Nnascent

rp (t) −Noh
rp (t)

. (53)

Dividing by Ntotal
rp (t) throughout, considering the steady state, calculating the integrals, and

remembering that this calculation neglects additional sources for ribosome idleness, we find

ϕ ≥

n∑
i=1

Li∫
0
πi(x)dx

1 − 1
N

n∑
i=1

Li∫
0

xπi(x)dx − n∑
i=1

0∫
−Loh

πi(x)dx

=

n∑
i=1

[
e
τiln(2)
Tgen − 1

]
1 −

[
e
τohln(2)

Tgen − 1
] n∑

i=1

[
e
τiln(2)
Tgen

] . (54)

A comparison to Eq. (28) makes it clear that idleness coming from overhead processes such as
initiation results in higher demand for ribosome involvement in r-protein production.

6.1 Derivation of Eq. (2) in the paper

To further derive Eq. (2) in the paper we note that in the relevant range of parameters Tgen 

τi 
 τoh. Thus, by expanding to leading orders, we find that Eq. (54) could be written to an
excellent approximation as

ϕ ≥ τln(2)
Tgen

[
1 +

τln(2)
Tgen

(
1 + CV2

L

2n
+

nτoh

τ

)]
, (55)
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where we have again used the fact that CV2
L, the coefficient of variation of the set {L1, ..,Ln}, is also

the coefficient of variation of the set {τ1, .., τn} as these are related by τi = Li/k. Minimizing the
expression on the right hand side of Eq. (55) with respect to the number of r-proteins n we find

n∗ =

√
1 + CV2

L

2
τ
τoh

, (56)

for the optimal number of proteins in the ribosome. In particular, note that n∗ does not depend
on the generation time Tgen or on the fraction ϕ, and is hence robust with respect to changes
in growth conditions. Finally, we note that accounting for cases where during the overhead
processes only one subunit of the ribosome is bound, and hence idle, can be done by introducing
a factor α ≤ 1 to multiply τoh in Eq. (56). In E. coli the large subunit of the ribosome does not
participate in certain stages of the regular initiation process but is thought to participate in the
"scanning" mode of initiation that seems to be prevalent in r-protein translation and in translation
from operons in general. Since this subunit contains about 60% of the total amount of protein
in the ribosome this suggests a range of 0.4 ≤ α ≤ 1, thus leading to some uncertainty in the
determination of nopt. We also note that this is a generous range since even without scanning
initiation there is no direct evidence that cells exploit the fact that only the small sub-unit is
bound for the initial part of the initiation process.

7 The effect of noisy production of r-proteins

Even if production rates for all r-proteins were perfectly matched on average, chance would
inevitably create more of some r-proteins and less of others. The assembly of complete ribosomes
is then limited by the r-protein that by chance is present in the lowest number, creating an
idle surplus pool of all other r-proteins (Extended Data Figure 1A). To quantify the severity
of this effect, we assume a commonly observed statistical distribution of gene expression for
each individual r-protein, and consider a worst case scenario in which there is no coordination
between the expression of different r-proteins. More concretely, we consider a case where the
abundance of each r-protein follows a negative binomial – a right-skewed discrete distribution
that has been both frequently predicted and observed in single cells for several organisms. The
negative binomial distribution can be parametrized in terms of its mean, μ, and variance, σ2, to
give the probability

Pr(Xi = k) =
(
k + μ2/(σ2 − μ) − 1

k

)( μ
σ2

)μ2/(σ2−μ)
(
σ2 − μ
σ2

)k

, (57)

that the number of proteins, Xi, of any given r-protein of type i = {1, ...,n} is k = {0, 1, 2, ...}. We
are then interested in the r-protein found in least numbers

Xmin = min{X1, ...,Xn} , (58)

as only Xmin complete ribosomes can be assembled. We further consider the average "noisy"
surplus

〈Δ〉 = 〈Xi − Xmin〉 = 〈Xi〉 − 〈Xmin〉 , (59)
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noting that the average size of the r-protein surplus pool (measured in amino acids) is given
by N〈Δ〉, where N again is the total number of amino acids in the ribosome. Sampling from
the negative binomial distribution for various values of its parameters and various values of
the number of r-proteins, n, within the relevant range, we observe that for n = 1, 〈Δ〉 = 0 by
definition, and that for 1 < n < 200 (Extended Data Figure 1B, inset)

〈Δ〉
σ

� a + b
√

ln(n) , (60)

with a � −3/4 and b � 3/2, which in turn means that the idle fraction of r-protein mass due to
noise obeys (Extended Data Figure 1B, main)

〈Δ〉
μ

� σ
μ

(
a + b

√
ln(n)

)
. (61)

Thus, the change in the idle fraction for a change in n is set by the square root of the logarithm of n.
One intuition for this damped response is that with each independent draw from a distribution it
is less likely that the next draw will be lower than any of the preceding draws. If it does happen
to be lower, it is likely not by much, because the probability in the tails of many distributions
decrease so sharply when moving far from the average. For example, a classical result from
extreme value theory asserts that when {X1, ...Xn} are independent, and identically distributed,
Gaussian random variables with mean μ and variance σ2

〈Xmin〉 = μ − σ
√

2ln(n) + o(1) , (62)

which gives the same type of behaviour for 〈Δ〉 as the negative binomial.
To double-check that similar principles hold for more complete kinetic models of stochastic

gene expression (again in the worst-case scenario of no coordinated production), we further
simulated the perhaps most commonly used model of stochastic gene expresion for each of
the r-proteins, considering a Poisson process for production of mRNA, a Poisson of process for
the production of proteins for each mRNA, exponentially distributed lifetimes of mRNAs and
proteins, and explicitly accounting for growth and division. This created very similar ∼√

ln(n)
scaling for 〈Δ〉, as expected because those models produce distributions that are very close to
negative binomials. This has two interesting consequences for the combined protein mass in the
form of surplus pools and nascent peptide for r-proteins. First, the optimal number of r-proteins
that minimizes the total idle fraction, nopt, can be very high even with passive noise control
without coordination between genes, particularly in eukaryotes where abundances are higher
and spontaneous noise may be smaller compared to the average. Second, the total idle fraction is
almost constant around and above nopt (Extended Data Figure 1C), meaning that any higher n is
almost optimal as well. This means that noise does not necessarily limit the number of r-proteins
n, despite the fact that we approximated incomplete ribosomes as useless, when in reality some
r-proteins are not essential. Gene expression is also subject to ’extrinsic’ noise, but any differences
that are shared by the r-proteins would not create wasteful differences between them. Though
such effects can make gene expression in general seem very noisy, it would thus have very little
relevance for this problem.

Though noise is not a problem, it may still seem like it would be hard for cells to ensure the
same average expression from all genes. However, a similar argument applies to that problem:
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if the average expression rates followed some distribution, this should increase the wasted
surplus pools of r-proteins, but for many types distributions, the problem of unmatched averages
should only become marginally worse with increasing n, particularly at high n. In addition,
as described in the main text, E. coli uses transcriptional coupling, translational coupling, and
negative feedback control to ensure that they shut offproduction of any r-proteins that accumulate
in free form, whether due to noise or different average expression rates. Finally, this system is
also under extreme selective pressure to maximize efficiency, as opposed to many synthetically
modified genes studied in the field of stochastic gene expression.
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