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Supplemental File 1 

RNA-seq library preparation, sequencing, processing and quality control procedures 

Total RNA from 384 samples (i.e., n=375 patients, with n=9 replicate samples) were sent to the 

University of California Davis Genomics Core Facility (Davis, CA, USA) for library preparation and 

sequencing. Prior to library preparation, 600 nanograms (ng) of total RNA was treated with the Globin-

Zero Gold rRNA Removal Kit (Illumina Inc., San Diego, CA) to deplete cytoplasmic ribosomal RNA(1) 

and human globin mRNA. (2, 3) The globin/ribo depleted RNA was cleaned with Agencourt RNAClean 

XP (Beckman Coulter, Indianapolis, IN) and the sequencing libraries were prepared with KAPA RNA 

HyperPrep Kit (Roche Diagnostics Corp., Indianapolis, IN) according to the manufacturer’s protocol. 

Fourteen cycles of polymerase chain reaction (PCR) amplification were used for double six base pair index 

addition and library fragment enrichment. Prepared libraries were quantified on a Roche LightCycler 480II 

(Roche Diagnostics Corp., Indianapolis, IN) using KAPA Illumina library quantitative PCR reagents 

(Roche Diagnostics Corp., Indianapolis, IN).  

Sequencing of the 384 samples was done on an Illumina HiSeq 4000 apparatus (Illumina Inc., San 

Diego, CA). All 384 samples were multiplexed into four pools of 96 samples each, with each sample 

labeled with a dual-indexed adapter.(4) The sample pools were sequenced on four lanes for 100 cycles of 

single-end reads with a 1% PhiX v3 control library spike (Illumina Inc., San Diego, CA). Post-sequencing 

basecall files (bclfiles) were demultiplexed and converted into a FASTQ file format using the bcl2fastq 

v2.17 software (Illumina Inc., San Diego, CA). Data were posted and retrieved from a secure FTP site 

hosted by the Core Facility. 

RNA-seq data processing was performed based on best practices (5, 6) and our previous 

experience.(7, 8) Illumina adapters and leading or trailing low quality bases were removed and reads with 

an average quality per base below 15 in a 4-base sliding window or below a minimum length of 36 bases 

were removed using Trimmomatic.(9) Individual samples were inspected with FASTQC (10) and in 
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aggregate with MultiQC.(11) After initial QC, 10 bases were trimmed from the beginning of all reads and 

reads were re-inspected with FASTQC. 

 The reference genome was prepared using the GRCh38 assembly 

(gencode.v24.GRCh38.p5.fa).(12) Transcriptome annotations (n=60,725) were obtained from the Gencode 

v24 primary assembly (gencode.v24.primary_assembly.annotation.gtf).(12) Trimmed reads were aligned to 

the annotated reference genome using the STAR aligner.(13) Output alignment files were validated using 

ValidateSam. Read groups were added to the alignment file using the Picard tool 

AddOrReplaceReadGroups. Sorted alignment files were inspected using RNA-SeQC(14) and joined for 

each sample. Abundance of RNA was estimated from the combined aligned reads using featureCounts.(15) 

Replicate count data were processed in edgeR.(16) Ensembl transcripts (17) were annotated with 

Entrez gene ID and symbol.(18) Lowly expressed tags were filtered out by retaining only those tags with 

>10/L reads per million (where L is the minimum library size in millions) in at least N samples (where N is 

the smallest group size). Count estimates were normalized with the trimmed means of M-values (TMM) 

method.(19) TMM normalization was applied to the dataset in edgeR using calcNormFactors. Data were 

explored using multi-dimensional scaling (MDS) plots for all samples to identify sample outliers and 

potential batch effects due to technical artifacts (i.e., RNA integrity number (RIN), date of RNA 

extraction). The same technician performed all of the RNA extractions in one laboratory. Associations 

between technical variables and CIN group were assessed using Fisher’s Exact Test or a generalized linear 

model in R. Significance was assessed at a p-value of 0.05.  

Microarray hybridization, preprocessing, normalization and quality control procedures 

 For each sample, (n=360 patients in sample 2) approximately 100 ng of total RNA were labeled 

using the Illumina Total Prep RNA Amplification Kit (Thermo Fisher Scientific, Waltham, MA) and 

hybridized to the HumanHT-12 v4.0 Expression BeadChip (46,538 probes) (Illumina, San Diego, CA).(20, 

21) The BeadChips were scanned using the iScan system (Illumina, San Diego, CA) at the University of 

California, San Francisco Genomics Core Facility. Each HumanHT-12 BeadChip contained 12 sample 
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BeadArrays. Initial quality assessment was performed using BeadArray.(22) Summary level data were 

calculated from the uncorrected, non-normalized, and non-transformed summary intensities at the probe 

level with GenomeStudio (Illumina, San Diego, CA). Data preparation and analyses were performed in R 

(Version 3.3.3) using well-established protocols (23-26) and our previous experience.(20, 21)  

Assessment of array performance and data quality are critical for accurate analysis of microarray 

data.(27) By evaluating array intensities relative to other arrays and to expected controls, outliers are 

identified and excluded from further analysis. Sample performance was evaluated using quality assessment 

plots. The R package ‘arrayQualityMetrics’ version 3.16.0 was employed to identify potential outlier arrays 

on a quantitative basis by evaluating inter-array and intra-array intensities using expected controls.(28) We 

examined for potential outlier arrays under three criteria: by quantifying the distance between arrays; the 

individual array signal intensity distributions; and the individual array quality relative to the median across 

arrays. Individual arrays were defined as outliers if they met at least two of three criteria.(21) 

Background correction is a procedure that attempts to remove signals (e.g., instrument noise) that 

are not attributable to the signal of interest.(26, 29) Background correction was performed with a 

normal+exponential convolution model using Illumina’s negative control probes to estimate the 

parameters.(30) Normalization attempts to compensate for differences between sample preparations 

without knowledge of the actual differences.(26, 29) Quantile normalization was performed using 

Illumina’s negative and positive control probes in addition to regular probes to control for variations in 

total mRNA production across samples.(30) Finally, log2 transformation was done to facilitate the 

comparisons of variations in transcript intensity from different genes.(21, 29)    

Background correction and quantile normalization were performed with the neqc function from 

the R package ‘limma’, that produces a matrix of log2 transformed expression intensities with the control 

probe-sets removed.(31) The detection p-value provided by GenomeStudio represents the confidence that 

sufficient expression measurements occur above background for a probe. Probes with a detection p-value 
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0.05 were excluded. Finally, potential clustering of samples was evaluated by principal components 

analysis.(21)  

Surrogate variable analysis (SVA) 

For both the RNA-seq and microarray data, SVA was used to identify technical variations that 

contributed to heterogeneity in the sample (e.g., batch effects) that were not due to the variable of interest 

(i.e., nausea group membership) or significant demographic covariates.(32) The “be” method was used to 

identify surrogate variables.(32, 33) Any surrogate variable that was significantly associated with the 

phenotype was excluded. 

Differential GE  

For the RNA-seq data, differential GE tests were performed using our previous protocol. (7, 8) DE 

was determined under a variance modeling strategy that addressed the over-dispersion observed in GE 

count data using edgeR.(34) For this analysis, the overall dispersion, as well as the gene-wise and tag-wise 

dispersion, were estimated using general linear models estimated using the Cox-Reid (CR)-adjusted 

likelihood method.(35, 36) Differences in GE between the two CIN groups were tested using likelihood 

ratio tests. Demographic and clinical characteristics that differed between the two CIN groups, as well as 

surrogate variables, were included as covariates in the model.  

For the microarray data from sample 2, differential GE tests were performed using our previously 

published protocol. (20, 37) Briefly, a linear model was fit using the “ls” method which included array 

weights and significant demographic, clinical, and surrogate variables using limma.(38) The “eBayes” 

method was used to evaluate for differential expression (DE).(39)  

Fisher’s Combined Probability test was used to combine the differential GE tests from both 

datasets using the uncorrected p-values.(19, 20) The two datasets (i.e., sample 1 and sample 2)  were 

merged at the gene level using the ENTREZ gene identifier. The significance of the combined 

transcriptome-wide GE analysis was assessed using a strict false discovery rate (FDR) of 5% under the 
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Benjamini-Hochberg (BH) procedure.(42) No minimal fold-change was evaluated using the p.adjust R 

function. 

Pathway Impact Analysis (PIA)  

Most pathway analyses consider pathways as lists of genes and ignore the additional information 

available in the pathway representation (e.g., topology). However, PIA includes potentially important 

biological factors (e.g., gene-gene interactions, flow signals in a pathway, pathway topologies) as well as 

the magnitude (i.e., log fold-change) and the p-values from the DE analysis.(43) Using Pathway 

Express,(44) the PIA included p-values and log fold changes for all genes that had DE results to determine 

the probability of a pathway perturbation (pPERT). By including all genes in the analysis, and using the DE 

analysis results to represent the biological differences between the groups, we are able to capture the 

adjustments made for the demographic, clinical, and technical (i.e. surrogate variables) variations in the 

sample. A total of 208 signaling pathways were defined using the KEGG database.(45) Sequence loci data 

were annotated with Entrez gene IDs. The gene names were annotated using the HUGO Gene 

Nomenclature Committee resource database.(46)  PIA was performed independently for each dataset (i.e., 

microarray and RNA-seq). 

 Fisher’s Combined Probability test was used to determine the overall number of significantly 

perturbed pathways by combining the uncorrected p-values (i.e., pPERT) from the PIA tests for both 

samples.(40, 41) Significance of the combined transcriptome-wide PIA analysis was assessed using a 

family wise error rate (FWER) of 1% under the Bonferroni method.(44) 
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Supplementary Figure 1: Flow diagram of number of patients available for phenotypic and gene 
expression (GE) analyses.


