

Figure S1. Stable bipolar cell numbers after cone degeneration. Related to Figure 1.

(A, B, D, E, G, H) Representative images of vertical slices from control (A, D, G) and *Cone-DTR* (B, E, H) retinas 30 days after DT injection at P10 stained for Gao (A, B), PKCa (D, E) and Syt2 (G, H) (red) and DAPI (blue). Scale bar = $20 \mu m$.

(C, F, I) Summary data for Gao+ ON-bipolar cells number (C, control, open, $200.89 \pm 6.49 \text{ mm}^{-1}$, 9 slices from 3 mice, *Cone-DTR*, filled, $206.13 \pm 8.18 \text{ mm}^{-1}$, 9 slices from 3 mice, p = 0.424 by Mann–Whitney *U* test), PKCa+ rod bipolar cells number (F, control, open, $180.32 \pm 8.91 \text{ mm}^{-1}$, 9 slices from 3 mice, *Cone-DTR*, filled, $180.80 \pm 7.59 \text{ mm}^{-1}$, 9 slices from 3 mice, p = 0.894 by Mann–Whitney *U* test), and Syt2+ type 2 bipolar cells number (I, control, open, $61.89 \pm 2.66 \text{ mm}^{-1}$, 9 slices from 3 mice, *Cone-DTR*, filled, 66.61 $\pm 3.38 \text{ mm}^{-1}$, 9 slices from 3 mice, p = 0.324 by Mann–Whitney *U* test).

Figure S2. Morphologic distinction of BC5t, BC5i/o, and XBC. Related to Figure 2.

(A) Scatter plots of BC5t, BC5i/o, and XBC axon length vs. territories. Because BC5t axons are bistratified, the sum of their branch lengths (i.e., axon length) is greater than that of BC5i/o cells.

(B) Scatter plots of BC5i/o and XBC axon density (i.e., length / territory) vs. axon stratification width.

Figure S3. Synaptic differentiation and rewiring of bipolar cell dendrites after cone degeneration in young retinas. Related to Figure 3.

(A, B, E, F, I, J, M, N) Representative super-resolution images of maximum intensity projections for dendrites (green) of XBC (A, B), BC5i/o (E, F), BC6 (I, J), and BC7 (M, N) in control (A, E, I, M) and *Cone-DTR* (B, F, J, N) retinas 30 days after DT injection at P10 stained for Gpr179 (red) and cone arrestin (CAR, blue). Scale bar = 5 μ m. Insets show higher magnification views of colocalization between dendrite tips and Gpr179 within (white boxes) and outside of (cyan boxes) cone pedicles.

(C, D) Summary data for synaptic differentiation (percentage of dendritic tips colocalized with Gpr179 in cone pedicles, C, control, $84.72\% \pm 2.63\%$, *Cone-DTR*, $83.73\% \pm 4.20\%$, p = 0.78 by Mann–Whitney U test) and putative rod inputs (percentage of dendritic tips colocalized with Gpr179 outside of cone pedicles, D, control, $3.64\% \pm 1.63\%$, *Cone-DTR*, $16.02\% \pm 4.95\%$, p = 0.026 by Mann–Whitney U test) in control (open, n = 11 cells from 3 mice) and *Cone-DTR* (filled, n = 8 cells from 3 mice) XBCs.

(G, H) Summary data for synaptic differentiation (G, control, $82.54\% \pm 0.56\%$, *Cone-DTR*, $85.68\% \pm 3.76\%$, p = 0.97 by Mann–Whitney U test) and putative rod inputs (H, control, $1.28\% \pm 0.57\%$, *Cone-DTR*, $6.57\% \pm 1.98\%$, p = 0.008 by Mann–Whitney U test) in control (open, n = 11 cells from 3 mice) and *Cone-DTR* (filled, n = 8 cells from 3 mice) BC5i/o cells.

(K, L) Summary data for synaptic differentiation (K, control, $86.30\% \pm 4.12\%$, *Cone-DTR*, $84.67\% \pm 2.66\%$, p = 0.40 by Mann–Whitney U test) and putative rod inputs (L, control, $1.24\% \pm 0.84\%$, *Cone-DTR*, $6.49\% \pm 2.25\%$, p = 0.02 by Mann–Whitney U test) in control (open, n = 8 cells from 3 mice) and *Cone-DTR* (filled, n = 6 cells from 3 mice) BC6 cells.

(O, P) Summary data for synaptic differentiation (O, control, $85.14\% \pm 3.19\%$, Cone-DTR, $83.44\% \pm 1.80\%$, p = 0.66 by Mann–Whitney U test) and putative rod inputs (P, control, $0.63\% \pm 0.63\%$, *Cone-DTR*, $3.47\% \pm 0.80\%$, p = 0.031 by Mann–Whitney U test) in control (open, n = 14 cells from 3 mice) and *Cone-DTR* (filled, n = 8 cells from 3 mice) BC7 cells. Throughout this figure, * indicates p < 0.05 and ** indicates p < 0.01.

Figure S4. Homeostatic rewiring varies gradually with cone loss. Related to Figure 3.

(A, B) Scatter plots of the numbers of tips per cone vs. cone density nearby (i.e., within a 2,754 μ m² square center on the imaged bipolar cell) for XBC (A, control, n = 10 cells from 3 mice, open, *Cone-DTR*, n = 9 cells from 3 mice, filled, r = -0.415, p = 0.078) and BC5i/o (B, control, n = 14 cells from 3 mice, open, *Cone-DTR*, n = 21 cells from 4 mice, filled, r = -0.668, p = 1.14 x 10⁻⁵) at 30 days after DT injection at P10. (C, D) Scatter plots of the numbers of tips per cone vs. cone density nearby (i.e., within a 1,784 μ m² square center on the imaged bipolar cell) for BC6 (C, control, n = 22 cells from 5 mice, open, *Cone-DTR*, n = 17 cells from 5 mice, filled, r = -0.492, p = 1.5 x 10⁻⁴) and BC7 (D, control, n = 9 cells from 3 mice, open, *Cone-DTR*, n = 12 cells from 3 mice, filled, r = -0.575, p = 6.4 x 10⁻⁴) at 30 days after DT injection at P10. (E, F) Scatter plots of the dendrite territory vs. cone density nearby (i.e., within a 2,754 μ m² square center on the imaged bipolar cell) for XBC (E, same cells as in A, r = -0.345, p = 0.148) and BC5i/o (F, same cells as in B, r = -0.035, p = 0.841) at 30 days after DT injection at P10.

(G, H) Scatter plots of the dendrite territory vs. cone density nearby i.e., within a 1,784 μ m² square center on the imaged bipolar cell) for BC6 (G, same cells as in C, r = -0.434, p = 0.0058) and BC7 (H, same cells as in D, r = -0.092, p = 0.691) at 30 days after DT injection at P10.

(I-L) Analogous to (A-D) but for 30 days after DT injection at P30 for XBC (I, control, n = 16 cells from 4 mice, open, *Cone-DTR*, n = 20 cells from 4 mice, filled, r = -0.556, p = 4 x 10⁻⁴), BC5i/o (J, control, n = 13 cells from 3 mice, open, *Cone-DTR*, n = 15 cells from 3 mice, filled, r = -0.610, p = 7 x 10⁻⁴), BC6 (K, control, n = 17 cells from 4 mice, open, *Cone-DTR*, n = 15 cells from 4 mice, filled, r = -0.295, p = 0.101), and BC7 (L, control, n = 11 cells from 3 mice, open, *Cone-DTR*, n = 14 cells from 4 mice, filled, r = -0.621, p = 9 x 10⁻⁴).

(M-P) Analogous to (E-H) but for30 days after DT injection at P30 for XBC (M, same cells as in I, r = -0.073, p = 0.671), BC5i/o (N, same cells as in J, r = -0.114, p = 0.571), BC6 (O, same cells as in K, r = -0.41, p = 0.019), and BC7 (P, same cells as in L, r = -0.198, p = 0.344). Throughout this figure, significant correlations are marked with solid lines.

Figure S5. Short-term dendritic remodeling after cone degeneration. Related to Figure 3.

(A) Timeline of the experiment. Mice were intravitreally injected with *AAV-Grm6-YFP* at P6 to label ON bipolar cells and intraperitoneally injected with DT once at P10 to ablate cones. Seven days after DT injection (P17), retinas were dissected for analysis.

(B, C, H, I, N, O, T, U) Representative images of maximum intensity projections for dendrites (cyan) of XBC (B, C), BC5i/o (H, I), BC6 (N, O), and BC7 (T, U) cells in control (B, H, N, T) and *Cone-DTR* (C, I, O, U) retinas 7 days after DT injection at P10 with cone arrestin (CAR, red) staining. Scale bar = 5 μ m. Insets show higher magnification views of overlaps between dendritic tips and cones pedicles.

(D-G) Summary data for total numbers of tips in cones (D, control, 5.65 ± 0.69 , *Cone-DTR*, 3.53 ± 0.47 , p = 0.019 by Mann–Whitney U test), numbers of tips per cone (E, control, 1.78 ± 0.27 ; *Cone-DTR*, 1.67 ± 0.21 , p = 0.76 by Mann–Whitney U test), contact ratios (F, control, 0.40 ± 0.04 , *Cone-DTR*, 0.48 ± 0.04 , p = 0.22 by Mann–Whitney U test), and dendritic territories, control (G, 441.47 ± 28.27 µm², *Cone-DTR*, 529.99 ± 29.39 µm², p = 0.035 by Mann–Whitney U test) in control (open, n = 16 cells from 4 mice) and *Cone-DTR* (filled, n = 15 cells from 4 mice) XBCs.

(J-M) Summary data for total numbers of tips in cones (J, control, 15.20 ± 1.14 , *Cone-DTR*, 11.68 ± 1.21 , p = 0.041 Mann–Whitney U test), numbers of tips per cone (K, control, 2.55 ± 0.16 , *Cone-DTR*, 3.45 ± 0.32 , p = 0.012 Mann–Whitney U test), contact ratios (L, control, 0.67 ± 0.04 , *Cone-DTR*, 0.80 ± 0.05 , p = 0.055 by Mann–Whitney U test), and dendritic territories (M, control, $426.64 \pm 17.14 \mu m^2$, *Cone-DTR*, $512.10 \pm 24.99 \mu m^2$, p = 0.007 by Mann–Whitney U test) in control (open, n = 20 cells from 4 mice) and *Cone-DTR* (filled, n = 19 cells from 3 mice) BC5i/o cells.

(P-S) Summary data for total number of tips in cones (P, control, 14.00 ± 1.46 , *Cone-DTR*, 9.89 ± 1.06 , p = 0.036 by Mann–Whitney U test), numbers of tips per cone (Q, control, 3.82 ± 0.34 , *Cone-DTR*, 4.52 ± 0.87 , p = 0.54 by Mann–Whitney U test), contact ratios (R, control, 0.96 ± 0.04 , *Cone-DTR*, 0.94 ± 0.04 , p

= 0.81 by Mann–Whitney U test), and dendritic territories (S, control, $151.29 \pm 13.40 \ \mu\text{m}^2$, *Cone-DTR*, $212.59 \pm 14.41 \ \mu\text{m}^2$, p = 0.011 by Mann–Whitney U test) in control (open, n = 6 cells from 5 mice) and *Cone-DTR* (filled, n = 9 cells from 3 mice) BC6 cells.

(V-Y) Summary data for total number of tips in cones (V, control, 22.20 ± 2.00 , *Cone-DTR*, 10.60 ± 1.33 , $p = 2.2 \times 10^{-4}$ by Mann–Whitney U test), numbers of tips per cone (W, control, 4.30 ± 0.31 , *Cone-DTR*, 4.42 ± 0.25 , p = 0.76 by Mann–Whitney U test), contact ratios (X, control, 0.92 ± 0.03 , *Cone-DTR*, 0.87 ± 0.05 , p = 0.38 by Mann–Whitney U test), and dendritic territories (Y, control, $286.28 \pm 21.25 \mu m^2$, *Cone-DTR*, $329.85 \pm 21.52 \mu m^2$, p = 0.16 by Mann–Whitney U test) in control (open, n = 15 cells from 7 mice) and *Cone-DTR* (filled, n = 15 cells from 8 mice) BC7 cells. Throughout this figure, * indicates p < 0.05, ** indicates p < 0.01, and *** indicates p < 0.001.

Figure S6. Synaptic differentiation and rewiring of bipolar cell dendrites after cone degeneration in mature retinas. Related to Figure 4.

(A, B, E, F, I, J, M, N) Representative super-resolution images of maximum intensity projections for dendrites (green) of XBC (A, B), BC5i/o (E, F), BC6 (I, J), and BC7 (M, N) in control (A, E, I, M) and *Cone-DTR* (B, F, J, N) retinas 30 days after DT injection at P10 stained for Gpr179 (red) and cone arrestin (CAR, blue). Scale bar = 5 μ m. Insets show higher magnification views of colocalization between dendrite tips and Gpr179 within (white boxes) and outside of (cyan boxes) cone pedicles.

(C, D) Summary data for synaptic differentiation (percentage of dendritic tips colocalized with Gpr179 in cone pedicles, C, control, $85.98\% \pm 3.18\%$, *Cone-DTR*, $85.07\% \pm 4.87\%$, p = 0.85 by Mann–Whitney U test) and putative rod inputs (percentage of dendritic tips colocalized with Gpr179 outside of cone pedicles, D, control, $2.97\% \pm 1.58\%$, *Cone-DTR*, $17.37\% \pm 6.14\%$, p = 0.050 by Mann–Whitney U test) in control (open, n = 11 cells from 3 mice) and *Cone-DTR* (filled, n = 8 cells from 3 mice) XBCs.

(G, H) Summary data for synaptic differentiation (G, control, $86.26\% \pm 1.55\%$, *Cone-DTR*, $83.69\% \pm 2.39\%$, p = 0.45 by Mann–Whitney U test) and putative rod inputs (H, control, $0.00\% \pm 0.00\%$, *Cone-DTR*, $5.43\% \pm 2.02\%$, p = 0.033 by Mann–Whitney U test) in control (open, n = 11 cells from 3 mice) and *Cone-DTR* (filled, n = 17 cells from 3 mice) BC5i/o cells.

(K, L) Summary data for synaptic differentiation (K, control, $86.14\% \pm 1.71\%$, *Cone-DTR*, $84.22\% \pm 1.84\%$, p = 0.34 by Mann–Whitney U test) and putative rod inputs (L, control, $0.00\% \pm 0.00\%$, *Cone-DTR*, $7.40\% \pm 3.32\%$, p = 0.028 by Mann–Whitney U test) in control (open, n = 9 cells from 3 mice) and *Cone-DTR* (filled, n = 12 cells from 3 mice) BC6 cells.

(O, P) Summary data for synaptic differentiation (O, control, $87.68\% \pm 1.86\%$, *Cone-DTR*, $85.08\% \pm 4.08\%$, p = 0.83 by Mann–Whitney U test) and putative rod inputs (P, control, $0.79\% \pm 0.79\%$, *Cone-DTR*, $8.33\% \pm 2.46\%$, p = 0.021 by Mann–Whitney U test) in control (open, n = 14 cells from 3 mice) and *Cone-DTR* (filled, n = 8 cells from 3 mice) BC7 cells. Throughout this figure, * indicates p < 0.05 and ** indicates p < 0.01.

Figure S7. Remodeling of bipolar cell dendrites 7 days after DT injection at P30. Related to Figure 4. (A) Timeline of the experiment. Mice were intravitreally injected with *AAV-Grm6-YFP* at P6 to label ON bipolar cells, and intraperitoneally injected with DT once at P30 to ablate cones. Seven days after DT injection (P37), retinas were dissected for analysis.

(B, C, H, I, N, O, T, U) Representative images of maximum intensity projections for dendrites (cyan) of XBC (B, C), BC5i/o (H, I), BC6 (N, O), and BC7 (T, U) cells in control (B, H, N, T) and Cone-DTR (C, I, O, U) retinas 30 days after DT injection at P10 with cone arrestin (CAR, red) staining. Scale bar = 5 μ m. Insets show higher magnification views of overlaps between dendritic tips and cones pedicles.

(D-G) Summary data for total numbers of tips in cones (D, control, 9.42 ± 1.42 , *Cone-DTR*, 3.75 ± 0.65 , p = 0.006 by Mann–Whitney U test), numbers of tips per cone (E, control, 2.06 ± 0.19 , *Cone-DTR*, 1.85 ± 0.31 , p = 0.57 by Mann–Whitney U test), contact ratios (F, control, 0.55 ± 0.05 , *Cone-DTR*, 0.60 ± 0.08 , p = 0.63 by Mann–Whitney U test), and dendritic territories (G, control, $453.87 \pm 22.73 \ \mu\text{m}^2$, *Cone-DTR*, $441.97 \pm 27.68 \ \mu\text{m}^2$, p = 0.74 by Mann–Whitney U test) in control (open, n = 12 cells from 4 mice) and *Cone-DTR* (filled, n = 8 cells from 4 mice) XBCs.

(J-M) Summary data for total numbers of tips in cones (J, control, 22.14 ± 1.06 , *Cone-DTR*, 9.25 ± 1.63 , p = 5.5 x 10⁻⁵ by Mann–Whitney U test), numbers of tips per cone (K, control, 3.13 ± 0.19 , *Cone-DTR*, 3.80 ± 0.46 , p = 0.42 by Mann–Whitney U test), contact ratios (L, control, 0.85 ± 0.04 , *Cone-DTR*, 0.87 ± 0.04 , p = 0.82 by Mann–Whitney U test), and dendritic territories (M, control, $454.26 \pm 30.01 \mu m^2$, *Cone-DTR*, $463.76 \pm 22.19 \mu m^2$, p = 0.80 by Mann–Whitney U test) in control (open, n = 14 cells from 4 mice) and *Cone-DTR* (filled, n = 16 cells from 3 mice) BC5i/o cells.

(P-S) Summary data for the total numbers of tips in cones (P, control, 16.47 ± 1.08 , *Cone-DTR*, 12.53 ± 1.03 , p = 0.014 by Mann–Whitney U test), numbers of tips per cone (Q, control, 4.56 ± 0.25 , *Cone-DTR*, 4.97 ± 0.31 , p = 0.31 by Mann–Whitney U test), contact ratios (R, control, 0.93 ± 0.03 , *Cone-DTR*, 0.93 ± 0.03 , *Cone-DTR*

0.03, p = 0.87 by Mann–Whitney U test), and dendritic territories (S, control, $160.93 \pm 6.71 \ \mu\text{m}^2$, *Cone-DTR*, $199.14 \pm 11.17 \ \mu\text{m}^2$, p = 0.007, by Mann–Whitney U test) in control (open, n = 15 cells from 4 mice) and *Cone-DTR* (filled, n = 15 cells from 4 mice) BC6 cells.

(V-Y) Summary data for total numbers of tips in cones (V, control, 20.40 ± 1.01 , *Cone-DTR*, 12.21 ± 1.32 , $p = 3.45 \times 10^{-5}$ by Mann–Whitney U test), numbers of tips per cone (W, control, 4.29 ± 0.21 , *Cone-DTR*, 5.13 ± 0.37 , p = 0.056 by Mann–Whitney U test), contact ratios (X, control, 0.90 ± 0.03 , *Cone-DTR*, 0.88 ± 0.04 , p = 0.68 by Mann–Whitney U test), and dendritic territories (Y, control, $256.82 \pm 10.01 \mu m^2$, *Cone-DTR*, $287.68 \pm 18.61 \mu m^2$, p = 0.12 by Mann–Whitney U test) in control (open, n = 15 cells from 5 mice) and *Cone-DTR* (filled, n = 14 cells from 5 mice) BC7 cells. Throughout this figure, * indicates p < 0.05, ** indicates p < 0.01, and *** indicates p < 0.001.

Figure Panel	Parameter	Control	Control (N)	Cone-DTR	Cone-DTR (N)	p-value
		$(Mean \pm SEM)$		$(Mean \pm SEM)$		
Figure 1F	Pedicle size	30.63 ± 1.16	22 cells from	48.79 ± 1.82	21 cells from 5	1.5 x 10 ⁻⁵
	(μm^2)		3 mice		mice	
Figure 1L	Pedicle size	32.52 ± 1.05	22 cells from	52.25 ± 1.44	21 cells from 4	6.0 x 10 ⁻⁵
-	(μm^2)		3 mice		mice	
Figure 10	Cells thickness	10.83 ± 0.27	12 slices	10.92 ± 0.29	12 slices from	0.85
-	(#)-ONL		from 3 mice		3 mice	
Figure 10	Cells thickness	4.42 ± 0.15	12 slices	4.31 ± 0.12	12 slices from	0.68
-	(#)-INL		from 3 mice		3 mice	
Figure 1U	Cells thickness	10.63 ± 0.16	16 slices	10.53 ± 0.16	19 slices from	0.54
-	(#)-ONL		from 3 mice		3 mice	
Figure 1U	Cells thickness	4.31 ± 0.12	16 slices	4.37 ± 0.11	19 slices from	0.73
-	(#)-INL		from 3 mice		3 mice	
Figure 1R	Density (#/µm ²)-	$11.10 \pm 0.46 \text{ x } 10^3$	9 fields from	$5.41 \pm 0.24 \text{ x } 10^3$	9 fields from 3	1.3 x 10 ⁻⁴
-	M-cones		3 mice		mice	
Figure 1R	Density (#/µm ²)-	$0.32 \pm 0.03 \text{ x } 10^3$	9 fields from	$0.16 \pm 0.01 \ x \ 10^3$	9 fields from 3	4.5 x 10 ⁻⁴
-	S-cones		3 mice		mice	
Figure 1R	M-/S-cone ratio	37.22 ± 3.07	9 fields from	34.27 ± 2.60	9 fields from 3	0.43
			3 mice		mice	
Figure 1X	Density (#/µm ²)-	$10.85 \pm 0.18 \text{ x } 10^3$	12 fields	$5.28 \pm 0.19 \text{ x } 10^3$	9 fields from 3	1.2 x 10 ⁻⁴
	M-cones		from 3 mice		mice	
Figure 1X	Density (#/µm ²)-	$0.28 \pm 0.02 \ x \ 10^3$	12 fields	$0.14\pm 0.01\ x\ 10^{3}$	9 fields from 3	1.2 x 10 ⁻⁴
	S-cones		from 3 mice		mice	
Figure 1X	M-/S-cone ratio	40.29 ± 2.64	12 fields	39.37 ± 3.18	9 fields from 3	0.97
-			from 3 mice		mice	

 Table S1. Statistical data for Figure 1. Related to Figure 1. All p-values are from Mann–Whitney U tests.

Figure Panel	Parameter	Control	Control (N)	Cone-DTR	Cone-DTR (N)	p-value
		(Mean \pm SEM)		$(Mean \pm SEM)$		
Figure 2F	Axonal	$1072.99 \pm$	14 cells from 3	997.86 ± 59.67	15 cells from 4	0.32
	territory (µm ²)	53.97	mice		mice	
Figure 2M	Axonal	396.07 ± 14.37	15 cells from 3	380.95 ± 19.54	19 cells from 4	0.63
-	territory (µm ²)		mice		mice	
Figure 2T	Axonal	168.68 ± 7.37	16 cells from 3	177.53 ± 9.18	16 cells from 3	0.34
	territory (µm ²)		mice		mice	
Figure 2A'	Axonal	303.73 ± 14.26	13 cells from 3	285.44 ± 19.34	16 cells from 3	0.52
-	territory (µm ²)		mice		mice	
Figure 2G	Synapses (#)	116.86 ± 3.98	14 cells from 3	120.43 ± 4.55	15 cells from 4	0.14
			mice		mice	
Figure 2N	Synapses (#)	77.12 ± 2.84	15 cells from 3	81.24 ± 2.55	19 cells from 4	0.22
-			mice		mice	
Figure 2U	Synapses (#)	71.53 ± 3.02	16 cells from 3	68.40 ± 3.27	16 cells from 3	0.80
-			mice		mice	
Figure 2B'	Synapses (#)	115.58 ± 4.17	13 cells from 3	117.08 ± 5.24	16 cells from 3	0.40
-			mice		mice	

 Table S2. Statistical data for Figure 2. Related to Figure 2 All p-values are from Mann–Whitney U tests.

Figure Panel	Parameter	Control	Control (N)	Cone-DTR	Cone-DTR (N)	p-value
		$(Mean \pm SEM)$		$(Mean \pm SEM)$		
Figure 3D	Total tips in	8.55 ± 0.89	11 cells from 4	7.60 ± 0.72	13 cells from 4	0.11
	cones (#)		mice		mice	
Figure 3J	Total tips in	21.59 ± 0.99	17 cells from 4	19.14 ± 1.18	22 cells from 4	0.13
	cones (#)		mice		mice	
Figure 3P	Total tips in	15.83 ± 0.80	23 cells from 5	14.82 ± 0.92	17 cells from 6	0.42
	cones (#)		mice		mice	
Figure 3V	Total tips in	20.77 ± 1.29	13 cells from 8	16.00 ± 1.07	16 cells from 7	0.008
	cones (#)		mice		mice	
Figure 3E	Tips/cone (#)	1.42 ± 0.08	11 cells from 4	2.03 ± 0.25	13 cells from 4	0.024
			mice		mice	
Figure 3K	Tips/cone (#)	3.09 ± 0.19	17 cells from 4	5.81 ± 0.43	22 cells from 4	8.8 x 10 ⁻⁵
			mice		mice	
Figure 3Q	Tips/cone (#)	4.03 ± 0.17	23 cells from 5	4.72 ± 0.24	17 cells from 6	0.022
			mice		mice	
Figure 3W	Tips/cone (#)	3.80 ± 0.20	13 cells from 8	5.36 ± 0.53	16 cells from 7	0.018
			mice		mice	
Figure 3F	Contact ratio	0.63 ± 0.02	11 cells from 4	0.77 ± 0.04	13 cells from 4	0.006
			mice		mice	
Figure 3L	Contact ratio	0.82 ± 0.04	17 cells from 4	0.97 ± 0.02	22 cells from 4	6.9 x 10 ⁻⁵
			mice		mice	
Figure 3R	Contact ratio	0.95 ± 0.03	23 cells from 5	0.96 ± 0.03	17 cells from 6	0.78
			mice		mice	
Figure 3X	Contact ratio	0.91 ± 0.03	13 cells from 8	0.98 ± 0.02	16 cells from 7	0.085
			mice		mice	
Figure 3G	Dendritic	436.20 ± 30.25	11 cells from 4	$440.85 \pm$	13 cells from 4	0.93
	territory (µm ²)		mice	25.54	mice	
Figure 3M	Dendritic	440.56 ± 20.58	17 cells from 4	445.71 ±	22 cells from 4	0.84
	territory (µm ²)		mice	14.76	mice	
Figure 3S	Dendritic	153.91 ± 6.90	23 cells from 5	$198.26 \pm$	17 cells from 6	0.009
-	territory (µm ²)		mice	12.07	mice	
Figure 3Y	Dendritic	$23\overline{2.82 \pm 11.55}$	13 cells from 8	$31\overline{7.34} \pm$	16 cells from 7	0.013
-	territory (µm ²)		mice	26.84	mice	

Table S3. Statistical data for Figure 3. Related to Figure 3. All p-values are from Mann–Whitney U tests.

Figure Panel	Parameter	Control	Control (N)	Cone-DTR	Cone-DTR (N)	p-value
E' 4D	TD (1 ()	$(Mean \pm SEM)$	17 11 6 2	$(Mean \pm SEM)$	20 11 6 5	0.54
Figure 4D	Total tips in	9.14 ± 0.84	17 cells from 3	8.25 ± 1.06	20 cells from 5	0.54
	cones (#)		mice		mice	
Figure 4J	Total tips in	21.86 ± 1.09	14 cells from 4	15.19 ± 1.03	16 cells from 4	1.3 x 10 ⁻⁴
	cones (#)		mice		mice	
Figure 4P	Total tips in	16.37 ± 0.87	19 cells from 5	12.93 ± 1.05	18 cells from 5	0.016
	cones (#)		mice		mice	
Figure 4V	Total tips in	22.00 ± 1.20	14 cells from 8	16.47 ± 1.23	15 cells from 7	0.003
C .	cones $(\hat{\#})$		mice		mice	
Figure 4E	Tips/cone (#)	2.15 ± 0.13	17 cells from 3	2.90 ± 0.27	20 cells from 5	0.025
0	1 ()		mice		mice	
Figure 4K	Tips/cone (#)	3.67 ± 0.19	14 cells from 4	4.70 ± 0.21	16 cells from 4	0.002
i igui e ill	11pt/ conc (//)	0107 - 0117	mice		mice	01002
Figure 40	Tins/cone (#)	4.61 ± 0.22	19 cells from 5	5.60 ± 0.38	18 cells from 5	0.023
I iguie 4Q	rips/cone (//)	4.01 ± 0.22	mice	5.00 ± 0.50	mice	0.025
Figure 4W	Tips/cone (#)	4.04 ± 0.33	14 cells from 8	3.56 ± 0.41	15 cells from 7	0.004
e			mice		mice	
Figure 4F	Contact ratio	0.51 ± 0.05	17 cells from 3	0.76 ± 0.05	20 cells from 5	0.002
6			mice		mice	
Figure 4L	Contact ratio	0.76 ± 0.02	14 cells from 4	0.91 ± 0.03	16 cells from 4	0.003
8			mice		mice	
Figure 4R	Contact ratio	0.94 ± 0.03	19 cells from 5	0.92 ± 0.04	18 cells from 5	0.69
8			mice		mice	
Figure 4X	Contact ratio	0.91 ± 0.03	14 cells from 8	0.89 ± 0.04	15 cells from 7	0.85
118010 111		0.01 - 0.00	mice	0.03 - 0.01	mice	0.00
Figure 4G	Dendritic	454.31 ± 27.68	17 cells from 3	429.01 ±	20 cells from 5	0.53
8	territory (um ²)		mice	28.38	mice	
Figure 4M	Dendritic	453.59 ± 17.37	14 cells from 4	450.12 ±	16 cells from 4	0.98
Ŭ	territory (μm^2)		mice	26.49	mice	
Figure 4S	Dendritic	158.74 ± 11.50	19 cells from 5	244.03 ± 20.38	18 cells from 5	0.003
0	territory (um ²)		mice		mice	
Figure 4Y	Dendritic	277.64 ± 16.90	14 cells from 8	285.38 ±	15 cells from 7	0.86
	territory (um ²)		mice	27.46	mice	

 Table S4. Statistical data for Figure 4. Related to Figure 4. All p-values are from Mann–Whitney U tests.

Figure Panel	Parameter	Control (N)	Cone-DTR (N)	p-value
Figure 6B	Amplitude (µV)-Dark- adapted flash a-wave	5 mice	6 mice	0.22
Figure 6B	Amplitude (µV)-Dark- adapted flash b-wave	5 mice	6 mice	0.19
Figure 6H	Amplitude (µV)-Dark- adapted flash a-wave	6 mice	8 mice	0.41
Figure 6H	Amplitude (µV)-Dark- adapted flash b-wave	6 mice	8 mice	0.19
Figure 6D	Amplitude (µV)- Light-adapted flash b- wave	5 mice	6 mice	0.79
Figure 6J	Amplitude (µV)- Light-adapted flash b- wave	6 mice	8 mice	0.01
Figure 6F	Amplitude (μV)- Light-adapted flash	9 mice	6 mice	0.17
Figure 6L	Amplitude (μV)- Light-adapted flash	6 mice	8 mice	0.003

Table S5. Statistical data for Figure 6. Related to Figure 6. All p-values are from bootstrapping.

Figure Panel	Parameter	Control	Control (N)	Cone-DTR	Cone-DTR (N)	p-value
		(Mean \pm SEM)		$(Mean \pm SEM)$		-
Figure 7C	ETMs (# 180s ⁻¹)	10.20 ± 0.58	5 mice	9.83 ± 0.70	6 mice	0.85
Figure 7G	ETMs (# 180s ⁻¹)	10.67 ± 0.80	6 mice	8.14 ± 0.60	7 mice	0.029
Figure 7E	Shallow (%)	80.00 ± 3.94	10 mice	73.33 ± 2.11	6 mice	0.24
Figure 7H	Shallow (%)	81.36 ± 4.36	7 mice	56.25 ± 4.60	8 mice	0.003

 Table S6. Statistical data for Figure 7. Related to Figure 7. All p-values are from Mann–Whitney U tests.