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Supplementary Note 1: Saturation behaviour of single h-VSi centre under pulsed 

laser excitation 

To evaluate the optical excitation efficiency in the pulsed regime, we use a 780 nm picosecond laser diode 

(PicoQuant LDH-P-C-780). The laser operation regime was kept constant to maintain the same pulse shape and 

duration throughout all measurements. The pulse energy 𝐸  was subsequently varied and we observed the 

resulting photon count rate 𝐼pulsed in the zero-phonon line, as shown in Supplementary Fig. 1. 

 In this experiment, we used a slow repetition rate of 2 MHz to assure that the electron comes back to the ground 

state before laser excitation (and is not trapped in the metastable state with ≈ 100 ns lifetime). Under this 

condition, we can interpret the background subtracted relative intensity as excitation probability. Since the laser 

pulse length (56 ps FWHM) is much shorter than the excited state lifetime of h-VSi centre (6 ns), the intensity 

saturation can be modelled by an exponential equation 

𝐼pulsed(𝐸) = 𝐼0,pulsed [1 − exp (−
𝐸

𝐸0
)] , (1) 

where 𝐼0,pulsed is the saturation intensity and 𝐸0 is the pulse energy at which the excitation probability is 1 −

𝑒−1 = 0.632 . We obtained 𝐸0 = 4.0 ± 0.1 pJ  from the fitting. The typical laser pulse energy for HOM 

experiments is 5.5 pJ, which corresponds to an excitation probability of about 74 %. 

 

Supplementary Figure 1. Saturation behaviour of photoluminescence intensity in the zero-phonon line pulsed laser excitation 

at 780 nm. The pulse length is 56 ps in FWHM. The dots are experimental results and the red lines are the fitting to the model 

Supplementary Eq. (1), yielding a saturation pulse energy of 𝐸0 = (4.0 ± 0.1) pJ. 



Supplementary Note 2: Evaluation of the interferometer — 

transmissivity/reflectivity ratio of two beam splitters and fringe contrast 

In this study, an unbalanced Mach-Zehnder type fibre-based interferometer (Supplementary Fig. 2) is used for 

HOM type two-photon interference. To characterise the quality of the interferometer, the intensity 

transmissivity/reflectivity ratio (𝑇/𝑅) of the two beam splitters (BS1 and BS2) has to be measured. To this end, 

we excite a single h-VSi centre by the pulsed laser at 4.1 MHz repetition rate. We detect the rate of ZPL photons 

through the interferometer by two SNSPDs (D1 and D2) in early (0 ≤  𝑡 ≤  48 ns) and late (δ𝑡 ≤  𝑡 ≤ δ𝑡 +

48 ns) time bins. Here, δ𝑡 = 48.7 ns is the path travel time difference of two arms. As 𝛿𝑡 is much longer than 

the photon coherence time, there is no single-photon interference at the output. The photons in the early time bin 

take the shorter arm and the photons in the late time bin take the longer arm. The integrated photon counts of two 

detectors in early and late time bins are 𝑁(D1, early) ≡ 𝑁11 = 𝜂1𝑇1𝑅2𝑁0 , 𝑁(D1, late) ≡ 𝑁12 = 𝜂1𝑅1𝑇2𝑁0 , 

𝑁(D2, early) ≡ 𝑁21 = 𝜂2𝑇1𝑇2𝑁0, and 𝑁(D2, late) ≡ 𝑁22 = 𝜂2𝑅1𝑅2𝑁0, where 𝜂𝑖  is the detection efficiency of 

D𝑖 and 𝑁0 is the total number of input photons. From these relationships, the 𝑇 𝑅⁄  ratios of two beam splitters 

are calculated to be 𝑇1 𝑅1⁄ = √𝑁11𝑁21 𝑁12𝑁22⁄ = 1.129 ± 0.006 and 𝑇2 𝑅2⁄ = √𝑁12𝑁21 𝑁11𝑁22⁄ = 1.046 ±

0.005. 

The fringe contrast of the interferometer is measured with a highly coherent monochromatic laser (Toptica DLC 

DL pro 850) at ZPL wavelength of h-VSi centre. By optimising the polarisation rotation in the long interferometer 

arm with a fibre polarisation controller, the maximum interference fringe contrast obtained in this interferometer 

is (1 − 𝜀)  =  0.995 . Since the theoretical limit of the fringe contrast with unbalanced 𝑇/𝑅  ratios is 

2(√𝑇1𝑇2/𝑅1𝑅2 + √𝑅1𝑅2/𝑇1𝑇2)
−1

= 0.9965 ± 0.0006, we consider the interferometer to be well aligned. 

 

Supplementary Figure 2. Schematic image of the interferometer. BS1,2: 50:50 beam splitter, D1,2: superconducting nanowire 

single photon detectors (SNSPD). 

   



Supplementary Note 3: Correction of experimental imperfection factors in Hong-

Ou-Mandel interference visibility 

The HOM visibility gives the overlap integral of the wave packet of two photons in ideal conditions, but the 

experiment is affected by timing jitter of photon arrival time, background noise photons, and interferometer 

imperfections such as non-unity fringe contrast and unbalanced transmissivity and reflectivity. The timing jitter 

decreases the two-photon overlap integral. The existence of background noise photon decreases the probability 

of events to have two indistinguishable photons from the h-VSi  centre at the beam splitter, resulting in the 

decrease of a raw HOM visibility. In this note, we extend the discussion on the HOM visibility by Santori et al.1 

by considering the effect of noise photons to estimate the correct photon overlap integral. 

The signal photons are from 𝐴1 and 𝐴2 transitions of the h-VSi at the focus and the noise photons come from the 

ensemble of silicon vacancies on surface, bulk fluorescence, Raman scattering, laser breakthrough, etc.. We 

denote the probability to have a photon from the signal and noise sources per one laser pulse to be 𝑝 and 𝑞, 

respectively. Since the pulse length of the excitation laser (56 ps) is much shorter than the excited state lifetime 

of h-VSi (6 ns), the probability to have two ZPL photons from the same h-VSi centre by one excitation laser is 

negligibly small. The noise photons can be modelled as a Poissonian photon source, however we can safely 

neglect the probability to have two noise photons per laser pulse since the average number of noise photon is 

much smaller than 1 per laser pulse. Under these assumptions, we write the probability to have 𝑛 photons per 

laser pulse, 𝑝𝑛 (𝑛 = 0, 1, 2), and the signal to noise ratio SN as 

{ 
𝑝0 = (1 − 𝑝)(1 − 𝑞),

𝑝1 = 𝑝(1 − 𝑞) + (1 − 𝑝)𝑞,
𝑝2 = 𝑝𝑞,

(2) 

SN =
𝑝

𝑞
. (3) 

Using these parameters and the other mentioned non-ideal parameters, the coincidence counts of five peaks in 

two-pulse HOM excitation scheme are calculated to be 

𝐴0 = (𝑝1 + 2𝑝2)2𝜂1𝜂2𝑁0 {𝑇1𝑅1 [(𝑇2
2 + 𝑅2

2) − 2 (
SN

SN + 1
)

2

(1 − 𝜀)2𝑇2𝑅2𝑉] +2𝑔(𝑇1
2 + 𝑅1

2)𝑇2𝑅2} , (4) 

{ 
𝐴+1⋅Δ𝑡 = (𝑝1 + 2𝑝2)2𝜂1𝜂2𝑁0[(𝑇1

2 + 𝑅1
2)𝑇2𝑅2 + 2𝑔𝑇1𝑅1𝑇2

2],

𝐴−1⋅Δ𝑡 = (𝑝1 + 2𝑝2)2𝜂1𝜂2𝑁0[(𝑇1
2 + 𝑅1

2)𝑇2𝑅2 + 2𝑔𝑇1𝑅1𝑅2
2],

(5) 

{ 
𝐴+2⋅Δ𝑡 = (𝑝1 + 2𝑝2)2𝜂1𝜂2𝑁0 ⋅ 𝑇1𝑅1𝑇2

2,

𝐴−2⋅Δ𝑡 = (𝑝1 + 2𝑝2)2𝜂1𝜂2𝑁0 ⋅ 𝑇1𝑅1𝑅2
2,

(6) 



where 𝑁0 is the number of repetitions of the experiment, (1 − 𝜀) is the interferometer’s fringe contrast, and 𝑉 is 

the overlap integral of two photons from the h-VSi centre. The parameter 𝑔 = 2𝑝2 (𝑝1 + 2𝑝2)2⁄  comes from the 

events in which two photons enter in the interferometer during one laser excitation pulse. Thus, it is equal to 

𝑔(2)(𝜏 = 0)  when the autocorrelation measurement is performed under the same condition as the HOM 

experiment. When 𝑔(2)(𝜏 = 0)  degrades solely due to reduced signal-to-noise (SN), this parameter can be 

written as  

𝑔 =
2𝑝𝑞

(𝑝 + 𝑞)2
=

2SN

(SN + 1)2
. (7) 

This equation gives the lower limit of the parameter 𝑔  and 𝑔(2)(𝜏 = 0) . Supplementary Fig. 3 shows the 

comparison of experimentally measured 𝑔(2)(𝜏 = 0) (the same data as Fig. 1(d) in main text), and the SN limited 

value calculated from Supplementary Eq. (7). At pulse energies below 6 pJ, 𝑔(2)(𝜏 = 0) is close to the SN limit. 

The degradation of 𝑔(2)(𝜏 = 0) at higher laser pulse energies is probably due to double excitation within one 

laser pulse. Note that in the HOM experiment, the effect of double excitation is greatly minimised by time-gating 

in the first several ns. 

 

Supplementary Figure 3. 𝑔(2)(0) measured with pulsed excitation at repetition rate of 20.5 MHz (blue circles, left axis) and 

the lower bound of 𝑔(2)(0) (green triangles, left axis) calculated using Supplementary Eq. (7) from separately measured 

signal-to-noise ratio (red inverted triangle, right axis). Lines are guides to the eye. The difference between the experimentally 

measured 𝑔(2)(0) and SN limited one corresponds to 𝑔(2)(0) with background correction, i.e., the nonideality of the emitter. 

Error bars represent one standard error. 



From the experimentally obtained raw HOM visibility 𝑉0 = 1 − 2𝐴0 (𝐴+1⋅δ𝑡 + 𝐴−1⋅δ𝑡)⁄ , the corrected HOM 

visibility (two-photon overlap integral) is extracted to be 

𝑉 =
1

(1 − 𝜀)2
[{(

SN + 1

SN
)

2

𝛼2 +
4𝛼1

SN
} − (1 − 𝑉0) {(

SN + 1

SN
)

2

𝛼1 +
2𝛼2

SN
}] , (8) 

𝛼𝑖 =
1

2
(

𝑇𝑖

𝑅𝑖
+

𝑅𝑖

𝑇𝑖
)      (𝑖 = 1, 2). (9) 

Supplementary Fig. 4 shows the reduction of maximally observable experimental visibility due to finite SN ratio. 

Here, we assume an ideal interferometer (𝜀 = 0, 𝛼𝑖 = 1) and perfect two-photon overlap integral (𝑉 = 1). When 

SN is 28, which is a typical value for this study at the laser pulse energy of 5.5 pJ, the maximum achievable 

HOM visibility is upper bound at 81%. Note that for HOM experiments the repetition rate is lower compared to 

𝑔(2)(0) measurements shown in Supplementary Fig. 3. 

Note that SN is a function of the time gating strategy since the noise is composed of photons from various sources 

with different time scales. For example, the breakthrough of the excitation laser and the Raman scattering are 

very fast components, but the fluorescence from ensemble of silicon vacancies on surface has the same time 

constant as the signal photons.  

In addition to the visibility reduction due to finite SN, we now consider the effect of timing jitter of the photon 

arrival time. When the arrival timing of two photons at the second beam splitter is different by 𝛿𝑡arrival, the 

visibility decreases by a factor of exp(− |𝛿𝑡arrival| 𝜏ES⁄ ).2 By convoluting with a Gaussian distribution of timing 

jitter (standard deviation = 𝜎jitter), the averaged photon overlap integral decreases by a factor of  

𝛽jitter =  exp [(
𝜎jitter

√2𝜏ES

)

2

] erfc (
𝜎jitter

√2𝜏ES

) . (10) 

We estimate the timing jitter of the excitation laser to be about 55 ps (one standard deviation), most of which 

comes from the trigger pulse generation electronics. By adding the jitter coming from the finite pulse length (56 

ps in FWHM), the laser related timing jitter is estimated to be 60 ps (one standard deviation). We assume that 

the timing jitter caused through the ultra-fast relaxation process in the excited state vibronic levels is negligibly 

small, thus we take 𝜎jitter = 60 ps. As a consequence, the photon overlap integral decreases by 0.8 %. As a result, 

the HOM visibility after correction (including imperfection of the interferometer, SN ratio, and timing jitter) is 

𝑉 =
1

2(1 − 𝜀)2𝛽jitter
[{(

SN + 1

SN
)

2

𝛼2 +
4𝛼1

SN
} − (1 − 𝑉0) {(

SN + 1

SN
)

2

𝛼1 +
2𝛼2

SN
}] . (11) 



Comparing our theoretical model with the time gated raw data shown in Fig. 4(b) in the main text, we find that 

the maximum achievable HOM visibility is upper bound at (80 ± 1)% by SN, interferometer imperfections and 

timing jitter. The experimentally extracted visibility parameter 𝑉 = 0.85 ± 0.04 underlines that essentially ideal 

contrast could be reached by further improving the setup and noise filtering strategy.  

 

 

Supplementary Figure 4. Theoretical limit of raw HOM interference visibility in the two-pulse excitation scheme by taking 

into account the background noise (SN: signal to noise ratio) calculated with Supplementary Eq. (8). The HOM visibility is 

defined by 1 − 2𝐴0 (𝐴+1⋅δ𝑡 + 𝐴−1⋅δ𝑡)⁄  where 𝐴0 is the coincidence at zero time delay and 𝐴±1⋅δ𝑡 are those at the time delay 

of ±𝛿𝑡. In this plot, unity two-photon overlap integral and ideal interferometer are assumed. 

 

 

 

  



Supplementary Note 4: Resonant Rabi oscillation experiment with short 

radiofrequency pulse for spin-controlled indistinguishable photon generation 

To control the colour of photons via coherent manipulation of the ground state spin, a radiofrequency (RF) pulse 

is applied to the centre between two laser excitation pulses. The first optical transition initialises the spin state 

into one of the Kramers doublet subspaces 𝑚s = ± 1 2⁄  or ± 3 2⁄  depending on the observed colour of the 

emitted zero phonon line photon (𝐴1 or 𝐴2, respectively). The RF pulse coherently manipulates the spin state, 

and the resulting spin population in each subspace directly translated to the probability to observe the second 

photon in 𝐴1 or 𝐴2 .  Considering the time difference of interferometer arms δ𝑡 = 48.7 ns and the system’s 

excited state lifetime 𝜏ES = 6 ns, the allowed maximum pulse length is about 30 ns. Due to the short pulse length, 

we expect a frequency broadening exceeding the ground state zero-field splitting (ZFS) of 4.5 MHz. Thus, the 

RF field will drive all spin transitions simultaneously, leading to spin manipulation with non-unity fidelity. To 

determine optimal RF pulse length and the associated spin populations, we measured Rabi oscillation with 

resonant laser excitation3. 

The h-VSi centre is irradiated by a laser resonant to the 𝐴2 (𝐴1) transition for 9 μs, which initialises the spin state 

into 𝑚s = ± 1 2⁄  (± 3 2⁄ ) subspace. Thereafter, a RF pulse resonant with the |3 2⁄ ⟩GS ↔ |1 2⁄ ⟩GS transition is 

applied. Subsequently, the population of the spin sublevels 𝑚s = ± 3 2⁄  (± 1 2⁄ ) is read out by the same laser 

via the fluorescence intensity in the first 500 ns. Supplementary Figs. 5 (a) and (b) show the normalised results 

of Rabi experiment at RF power of 30 dBm. Due to the high pulse power, the Rabi frequency exceeds the zero-

field splitting, resulting in an oscillation pattern that is different from a simple cosine function. However, we still 

observe oscillations due to spin population flips (a detailed theoretical model of this Rabi result will be given 

later in this Supplementary Note). We determine three relevant pulse durations: 10 ns to induce a π/4-pulse, 19 

ns to induce a π/2-pulse, and 29 ns to induce a 3π/4-pulse. 

Due to the high-power RF condition the sample heats up significantly, which causes optical line broadening. 

Supplementary Fig. 5(c) shows typical optical absorption spectra (photoluminescence excitation spectroscopy) 

measured under similar RF conditions as used during the HOM experiments. To this end, we apply RF pulses 

with 30 dBm power at a repetition cycle of 10 ⋅ δ𝑡 = 487 ns. For RF pulse durations of 10 ns, 19 ns, and 29 ns, 

we observe linewidths of 82 ± 1 MHz, 86 ± 1 MHz, 112 ± 2 MHz. Although not implemented here, we note 

that this heating can be minimised by optimising the structure of the RF antenna to obtain a better RF field 

coupling to the spin. 

 



 

Supplementary Figure 5. Typical experimental data for Rabi oscillations under strong RF driving field, resonant with the 

|3 2⁄ ⟩GS ↔ |1 2⁄ ⟩GS transition. (a) Spin population development after the system is initialised into the 𝑚s =  ± 1 2⁄  subspace. 

(b) Spin population development after the system is initialised into the 𝑚s =  ± 3 2⁄  subspace. Red dots are data, and blue 

lines are fits. (c) Optical absorption spectra measured by photoluminescence excitation spectroscopy under the existence of 

RF pulses at the repetition cycle of 487 ns. The laser power was set to 3.5 W ⋅ cm−2 to reduce laser power broadening. For 

the π 4⁄ , π 2⁄  and 3π 4⁄  pulses, the observed linewidths are 82 ± 1 MHz , 86 ± 1 MHz , 112 ± 2 MHz , respectively 

(average over both transitions). 



For proper interpretation of the visibility of the spin-controlled HOM interference experiments, we quantify the 

maximally achievable HOM visibility at those different RF pulse and temperature conditions. To this end, we 

always perform an additional HOM interference experiment in which the identical RF pulse is applied right 

before an experimental sequence, instead of applying it during the sequence. A typical measurement with 

uncorrected data is shown in Supplementary Fig. 6. Then we obtain the normalised HOM visibility as 

𝑉norm =
𝑉(RF during sequence)

𝑉(RF before squence)
. (12) 

Here, 𝑉(RF during sequence)  and 𝑉(RF before squence)  are corrected for experimental imperfections by 

Supplementary Eq. (11). This way, the value (1 − 𝑉norm) equals to the amount of spin population flip from the 

initial spin subspace to the other, which can be directly compared with Rabi oscillation result as shown in Fig. 

3(d) in the main text. 

 

Supplementary Figure 6. Reference HOM measurement with 
𝜋

2
 pulse before the experimental sequence. Time gating settings 

are 𝑡Start = 2 ns  and Δ𝑡 = 16 ns . The observed raw HOM visibility is 0.56 ± 0.04 . After experimental imperfection 

corrections, we obtain 𝑉(RF before sequence) = 0.73 ± 0.05. 

 

Time evolution of ground state spin populations under pulsed strong RF drive 

To evaluate the time-dependent spin populations in the ground states under strong RF drive, we start with the 

static Hamiltonian, describing the system in an external magnetic field aligned along the z-axis: 

𝐻0 = 𝐷 ⋅ 𝑆𝑧
2 + 𝛾𝑒 ⋅ 𝐵𝑧 ⋅ 𝑆𝑧. (13) 



Here, 𝐷 = 2𝜋 ⋅ 2.25 MHz  is the ground state zero-field splitting, 𝛾𝑒 = 2π ⋅ 28 GHz ⋅ T−1  the electron 

gyromagnetic ratio, and 𝐵𝑧 ≈ 0.9 mT the externally applied field. Our RF drive is modelled by the interaction 

Hamiltonian:  

𝐻RF = Ω ⋅ cos(2π𝑓𝑡 + 𝜙) ⋅ 𝑆𝑥 (14) 

Here, Ω ≈ 2π ⋅ 14 MHz is the strength of the RF driving field, 𝑓 =  30.26911MHz is the RF frequency, 𝑡 the 

time, and 𝜙 is a (random) phase term, which accounts for the fact that the RF driving is here faster than the 

ground state level separation (2 ⋅ 𝐷) and not phase-synchronised, thus the rotating wave approximation might 

not be valid. With these Hamiltonian operators, the time evolution operator is given by 

𝑈(𝑡) = 𝑒−𝑖 ∫ [𝐻0+𝐻RF(𝑡′)]𝑑𝑡′𝑡

0 . (15) 

The time evolution of the four spin states in the ground state is then 

𝜌(𝑡) = 𝑈(𝑡)𝜌0𝑈†(𝑡). (16) 

Here, 𝜌(𝑡) is the density matrix describing the system at time 𝑡 and 𝜌0 is the state at 𝑡 = 0. We obtain 𝜌(𝑡) by 

solving Supplementary Eq. (15) numerically, averaging over the random phase term 𝜙, and using small time 

steps 𝑑𝑡 ≈ 0.5 ns, which is significantly smaller than the typical time scale of spin state development (≈ 10 ns). 

For the spin-controlled HOM interference experiments, emission of the first photon in the A1 or A2 line projects 

the state into the 𝑚s =  ±
1

2
 or 𝑚s =  ±

3

2
 ground state spin subspace, respectively. Thus, we have to distinguish 

between two realisations in which 𝜌0 =  
1

2
 (|

1

2
⟩ ⟨

1

2
| + |−

1

2
⟩ ⟨−

1

2
|) ≡ 𝜌0

(1 2⁄ )
 or 𝜌0 =  

1

2
 (|

3

2
⟩ ⟨

3

2
| + |−

3

2
⟩ ⟨−

3

2
|) ≡

𝜌0
(3 2⁄ )

, respectively. Supplementary Figs. 5 (a) and (b) shows the comparison of our theoretical model with the 

experimental results of resonant Rabi oscillation (described in Supplementary Note 4) with the initial state of 

𝜌0
(3 2⁄ )

 and 𝜌0
(1 2⁄ )

, respectively. To fit the data to our model, we normalise the amplitude of both the experimental 

data and theoretical model. We solve Supplementary Eq. (16) with two free parameters, i.e. Ω and 𝐵𝑧 , and 

minimise error squares. From both data sets, we extract a Rabi frequency of Ω = 2π ⋅ (14.4 ± 0.2) MHz and 

𝐵𝑧 = 0.919 ± 0.003 mT. In the end, we correct both the experimental data and the theoretical model for the 

above-used amplitude normalisation factor. 

In the HOM experiment under off-resonant excitation, each individual initial spin-state subspace is randomly 

chosen with almost equal probability after the system experiences intersystem crossing3. The resulting HOM 

visibility is an average of the cases with two different initial states. However, the data and fits show that the spin 

population transfer from each spin subspace to the other is almost equally efficient. Therefore, we can directly 

model the normalised HOM visibility as 𝑉norm = 1 − 𝑝̅, in which 𝑝̅ is the amount of flipped spin population, 



after averaging over both realisations (i.e. with the system being in the initial state of 𝜌0
(3 2⁄ )

 and 𝜌0
(1 2⁄ )

, 

respectively). The associated model is plotted as a solid line in Fig. 3(d) in the main text. 

 

Supplementary Note 5: Analysis of pure dephasing rate and spectral diffusion 

amplitude by HOM visibility with time-gating 

First, we derive the Eq. (1) in the main text. We follow the derivation given by Thoma et al.4. Assume the photons 

arrive at the beam splitter at 𝑡 = 0 and detected at 𝑡 = 𝑡D  and 𝑡 = 𝑡D + 𝜏  at different detectors. The time-

resolved coincidence count rate per a pair of photons is given by 

𝐺(2)(𝑡𝐷, 𝜏) = Γ2(1 − 𝑒−γ𝜏)e−Γ(2𝑡D+𝜏). (17) 

Here, Γ =
1

6 ns
 is the inverse excited state lifetime, and 𝛾 = Γ0

′[1 − e−(𝛿𝑡 𝜏c⁄ )2
] + 2𝛾′, with Γ0

′ being the amplitude 

of spectral diffusion, 𝜏c the associated time constant, and 𝛾′ the pure dephasing rate of the single emitter5. Also, 

we consider ideal 50:50 beam splitter since we compare this theory with experimental HOM visibility after 

imperfection correction by Supplementary Eq. (11). Integration of Supplementary Eq. (17) over 𝑡D and 𝜏 within 

the gated detection time window [𝑡Start, 𝑡Stop] gives the HOM visibility after normalisation. The coincidence for 

normalisation is given by 

𝐺′(2)
(𝑡D, 𝜏) = Γ2e−Γ(2𝑡D+𝜏). (18) 

Therefore, the HOM visibility with time gating analysis is calculated to be 

𝑉 = 1 −
∫ 𝑑𝑡D

𝑡Stop

𝑡Start
∫ 𝑑𝜏𝐺(2)(𝑡D, 𝜏)

𝑡Stop−𝑡D

0

∫ 𝑑𝑡D
𝑡Stop

𝑡Start
∫ 𝑑𝜏𝐺′(2)(𝑡D, 𝜏)

𝑡Stop−𝑡D

0

, (19) 

which equals to Eq. (1) in the main text. 

By fitting the data in main text Fig. 4(c) with the model in Eq. (1), we extract 𝛾 (which is the only free fitting 

parameter). For further analysis, we decompose 𝛾 into a slow term (related to spectral diffusion with amplitude 

Γ0
′), and a fast term (related to pure dephasing with rate γ′). As outlined in the main text, the major contribution 

to HOM visibility reduction is pure dephasing, while spectral diffusion due to laser ionisation is relatively slow 

compared to the experimental time scale, i.e. 𝜏𝑐 ≫ 𝛿𝑡 = 48 ns. Then we can directly extract the maximum pure 

dephasing rate, as it is 𝛾 = 2𝛾max
′ . In other words, HOM visibility reduction is only due to pure dephasing. The 

amplitude of (slow) spectral diffusion Γ0
′ is obtained by considering the emission linewidth (measured over time 

scales of seconds to minutes). The FWHM optical linewidth is 



Δν =
Γ + Γ0

′ + 𝛾′

2π
. (20) 

For reasons of completeness, we can also assume the opposite scenario, i.e. no pure dephasing (𝛾′ = 0 MHz), 

such that HOM visibility contrast reduction is solely explained by fast spectral diffusion. In this case we compute 

the maximum spectral diffusion amplitude Γ0,max
′  according to Supplementary Eq. ( 20 ), and solve 𝛾 =

Γ0
′ [1 − e−(𝛿𝑡 𝜏c,min⁄ )

2

] for the minimal spectral diffusion time constant 𝜏c,min. 

The related results are shown in the in Supplementary Table I. 

 

Supplementary Table I. Summary of temperature dependent spectral linewidth (averaged over both transitions 𝐴1 and 𝐴2), 

the maximum pure dephasing rate 𝛾max
′  and associated spectral diffusion amplitude Γ0

′ for the model in which the HOM 

contrast is limited by pure dephasing. Additionally, we give the maximum amplitude of spectral diffusion Γ0,max
′  and its 

minimum time constant 𝜏c,min for the model in which the HOM contrast is solely limited by spectral diffusion (i.e. 𝛾′ = 0). 

Error values correspond to one standard error. 

  Pure dephasing limited Spectral diffusion limited 

Temperature PLE linewidth 𝛾max
′ 2π⁄  Γ0

′ 2π⁄  Γ0,max
′ 2π⁄  𝜏c,min 

[K] [MHz] [MHz] [MHz] [MHz] [ns] 

5.0 62.4 ± 0.4 1.5 ± 0.4 34.4 ± 0.5 35.9 ± 0.4 109 ± 8 

5.9 70.1 ± 0.3 4.0 ± 0.7 39.6 ± 0.7 43.6 ± 0.3 81 ± 6 

6.8 82.4 ± 0.3 11.5 ± 1.7 44.4 ± 1.8 55.9 ± 0.3 51 ± 6 

 

 

  



Supplementary Note 6: Vibronic interaction theory 

The origin of dephasing in the optical signal for V1 center is the coupling to the V1’ polaronic excited state 

mediated by acoustic phonons. As outlined in more details in Udverhelyi et al.6, at very low temperatures, only 

the acoustic phonons have significant occupation number. However, compared to the temperatures in the 

experiment, the polaronic gap between V1 and V1’ is relatively large (4.4 meV), which excludes the 

consideration of two-phonon (Raman scattering) processes to be competitive with the single phonon absorption 

process. Thus we describe the dephasing with a resonant phonon coupling7. This can be formulated using time-

dependent perturbation theory with first order contribution in the linear vibronic interaction leading to Fermi’s 

Golden Rule formula for the transition rate 

𝛾′ = 2π ∑ 𝑛𝑘

𝑘

|𝜒𝑘|2𝛿(Δ𝐸 − ℏ𝜔𝑘), (21) 

where 𝑘 is the index of phonon mode, 𝑛𝑘 is the acoustic phonon occupation number, 𝜒𝑘 is the linear vibronic 

interaction strength,  ℏ𝜔𝑘 is the acoustic phonon energy, and Δ𝐸 is the energy gap between V1 and V1’ levels. 

For the density of acoustic phonon states 𝜌(𝜔) we use the Debye-model as 𝜌(𝜔) = 𝜌𝜔2, where 𝜌 is a constant. 

We can approximate |𝜒𝑘|2̅̅ ̅̅ ̅̅ ̅ ≈ 𝜒𝜔 phonon mode average for the acoustic phonons, where 𝜒 is a constant. After 

this, the summation results in 

𝛾′ =
2π

ℏ3
𝜌𝜒(Δ𝐸)3𝑛(Δ𝐸, 𝑇), (22) 

where we use the thermal occupation function of phonons 𝑛(Δ𝐸, 𝑇). Since Δ𝐸 is relatively large we find the low 

temperature limit of this function with exponential temperature dependence, as described in Eq. (2) in the main 

text. 

 

 

  



Supplementary Note 7: Analysis of quantum beating with spin control via RF pulse 

This note explains the analysis of quantum beating obtained with the HOM interference experiment with spin-

flip RF pulses. The time delay of the RF pulse from the first laser pulse is 18 ns. Therefore, the coincidence data 

is taken within the detection time window [𝑡Start, 𝑡Stop] = [1.5 ns, 18 ns]  with the time-gating technique 

described in Fig. 4(a) in the main text. This strategy rejects the laser related noise and ensures that the system is 

in the ground state while RF pulse is applied for the collected data. Due to non-unity spin flip fidelity in our 

conditions and the existence of noise photons, we consider three components in the coincidence data. The first 

component is the interference of photons from different transitions {𝐴1, 𝐴2}, which causes beating due to the 

frequency difference of two photons 𝛿𝜈 ≅ 1 GHz. The coincidence count distribution per pair of two photons 

(detected at 𝑡 = 𝑡D and 𝑡 = 𝑡D + 𝜏 at different detectors, 𝑡 = 0: the earliest possible arrival time) for this case is 

given by4,5 

𝐺1
(2)(𝑡𝐷, 𝜏) = Γ2[1 + cos(2π𝛿𝜈𝜏 + π) e−γ𝜏]e−Γ(2𝑡D+𝜏), (23) 

where Γ =
1

6 ns
 is the inverse excited state lifetime, 𝛾 is the sum of the pure dephasing rate and the spectral 

diffusion rate discussed in Supplementary Note 5. The integration of the Supplementary Eq. (23) within the 

detection time window 𝑡D ∈ [𝑡Start, 𝑡Stop − 𝜏] gives the beating pattern in the correlation measurement 

𝐺̅1
(2)(0 < 𝜏 < Δ𝑡) = ∫ 𝑑𝑡D𝐺1

(2)(𝑡D, 𝜏)
𝑡Stop−𝜏

𝑡Start

 

=
Γ

2
e−2Γ𝑡Start𝑒−Γ𝜏[1 −  e−2Γ(Δ𝑡−𝜏)][1 + cos(2π𝛿𝜈𝜏 − π) e−𝛾𝜏]. (24) 

Here, Δ𝑡 = 16.5 ns is the detection window. The second component is the interference of photons from the same 

transition {𝐴𝑖 , 𝐴𝑖} (𝑖 = 1, 2), which results from non-perfect spin flip fidelity by RF pulse. The corresponding 

correlation data 𝐺̅2
(2)(𝜏) is obtained by substituting 𝛿𝜈 = 0 to Supplementary Eq. (24) 

𝐺̅2
(2)(𝜏) =

Γ

2
e−2Γ𝑡Starte−Γ𝜏[1 −  e−2Γ(Δ𝑡−𝜏)][1 − e−𝛾𝜏]. (25) 

For simplicity, we assume 𝛾 in Supplementary Eqs. (24) and (25) are approximated to be the same. The third 

component is the interference involves noise photons and remained coincidences resulting from the imperfection 

of the interferometer. Here, we assume that noise photons have the same decay time as the signal photon, which 

is indeed observed in the experiment and is probably from an h-VSi ensemble that exists on the surface. The fast 

noise photons (laser related) are filtered out by time-gating. The frequency difference of photons involving noise 

photons is randomly distributed and the optical coherence time is expected to be much shorter than the timing 



resolution of our detection system and electronics (0.4 ns). Therefore, the corresponding coincidence counts 𝐺̅3
(2)

 

is obtained from Supplementary Eq. (24) by averaging cosine term and taking a limit of 𝛾 → ∞ as 

𝐺̅3
(2)

(𝜏) =
Γ

2
e−2Γ𝑡Starte−Γ𝜏[1 −  e−2Γ(Δ𝑡−𝜏)]. (26) 

The total coincidence counts 𝐺̅tot
(2)

 are obtained by summing up these three components 𝐺̅𝑖
(2)

 with associated 

coefficients 𝑐𝑖. By considering 𝜏 < 0 region, a small time difference between two detectors 𝑡0, and the finite 

detection timing resolution of the detectors and electronics (approximated by an Gaussian broadening with a 

standard deviation of 𝜎det), the total coincidence is calculated to be 

𝐺̅tot
(2)(𝜏) = [∑ 𝑐𝑖𝐺̅𝑖

(2)(|𝜏 − 𝑡0|)

3

𝑖=1

] ∗ [
1

√2π𝜎det

exp (−
𝜏2

2𝜎det
2 )] . (27) 

This function is fitted to the experimental data which is measured with 0.1 ns bin width and is smoothened by 

three-point averaging (the time binning and 3 point average are also considered in the fitting). In Supplementary 

Eq. (23), the non-ideal transmissivity/reflectivity ratio of the beam splitters and the non-unity interferometer 

fringe contrast is neglected. However, these imperfections are considered in the evaluation of the coefficient  𝑐3.  

 

We can extract the parameters 𝛾, 𝑐2 𝑐1⁄ , and 𝑐3 𝑐1⁄  from experiments. 𝛾 = (84 ± 4) MHz is obtained from the 

HOM visibility when the RF pulse is applied prior to the first laser excitation pulse (the experiment without spin 

flip). The coefficient ratio 𝑐2 (𝑐1 + 𝑐2)⁄  corresponds to the amount of the spin population transfer by the RF pulse, 

which is equal to (1 − 𝑉norm) = 0.37 ± 0.06 as discussed in Supplementary Note 4. As a result, we obtain  

𝑐2

𝑐1
=

𝑉norm

1 − 𝑉norm
= 1.68 ± 0.45. (28) 

The coefficient ratio 𝑐3 (𝑐1 + 𝑐2)⁄  can be evaluated from Supplementary Eq. (4) 

𝑐3

𝑐1 + 𝑐2
=

𝐴0|𝑉=1

𝐴0|𝑉=0 − 𝐴0|𝑉=1
=

𝛼2 + 2𝛼1𝑔

[SN (SN + 1)⁄ ]2(1 − 𝜀)2
− 1 (29) 

as 𝐴0|𝑉=1  corresponds to the coincidence count remained when the photons from the emitter is perfectly 

indistinguishable, i.e., contributions from noise photons and the interferometer imperfections, and the rest is the 

possible number of events related to the interference of photons from {𝐴𝑖 , 𝐴𝑗} transitions. In combination with 

Supplementary Eq. (29), we obtain 𝑐3 𝑐1⁄ = 0.63 ± 0.11. With these fixed parameters, there are only four fitting 

parameters left: 𝑐1 = 753 ± 12 ,  𝑡0 = (0.00 ± 0.02) ns , 𝛿ν = (0.965 ± 0.006) GHz , and 𝜎det = (0.17 ±



0.02) ns. The beating frequency 𝛿ν well agrees with the frequency difference of 𝐴1 and 𝐴2 transitions and the 

detection timing resolution 𝜎det is reasonable considering the SNSPD manufacturer’s specifications. 

  



Supplementary Note 8: ZPL fine structure investigations with Fabry-Pérot filter 

cavity 

To investigate the ZPL emission linewidth under off-resonant excitation, we use a home-made fibre-coupled 

narrowband plano-convex Fabry-Pérot cavity as high-resolution spectrometer for the ZPL emission. 

In the first step, we characterise the main cavity parameters, i.e. its free spectral range (FSR) and transmission 

linewidth Δ𝜈cav. To this end, we scan a narrowband tunable diode laser (Toptica DLpro) over several cavity 

transmission peaks. The frequency of the laser is constantly monitored using a wavemeter (HighFinesse WS7-

30). The result is shown in Supplementary Fig. 7. 

 

Supplementary Figure 7. Cavity transmission while scanning a narrowband laser over several transmission peaks. 

We find that the average separation between two consecutive peaks is FSR = 5.145 GHz, and that the Lorentzian 

transmission width of each individual peak is Δ𝜈 = 29 ± 1 MHz. 

 

Having characterised the main cavity parameters, we now use it as a spectrometer for inferring the linewidth of 

the ZPL emission in the 𝐴1  and 𝐴2  transitions under off-resonant excitation. We use continuous-wave off-

resonant excitation at 730 nm, and at a power of 150 µW, which corresponds to approximately three times the 

saturation power (half of maximum count rate is reached at 𝑃sat = 57 ± 5 µW). We split the h-VSi  centre 

emission into PSB and ZPL using a dichroic mirror. The ZPL emission is then fibre-coupled and sent to the 

cavity. We tune the cavity length (and thus the transmission frequency) via a piezoelectric actuator attached to 

one of the cavity mirrors. To monitor slow cavity drifts (e.g. due to temperature), we use the narrowband resonant 

excitation laser as a reference. The laser is frequency locked using the wavemeter at a frequency of 1-2 GHz 

below the h-VSi transition lines. A small fraction of the laser is sent through the setup, and through the cavity 

filter. A typical measurement result is shown in Supplementary Fig. 8. 

 



 

Supplementary Figure 8. Typical cavity-recorded emission spectrum of the single h-VSi centre used for the HOM experiments. 

Four peaks are observed, and associated with the narrowband frequency reference laser, and the 𝐴1  and 𝐴2  transitions, 

respectively. 

The narrowband cavity is scanned in length for a frequency equivalent of about 7 GHz. The two high peaks 

correspond to the frequency-stabilised narrowband laser. From the previous cavity characterisation, the peak 

separation is known to be 5.145 GHz, which provides the necessary frequency calibration for the measurement. 

The two smaller peaks are associated with the 𝐴1 and 𝐴2 transitions, respectively. Fitting the data with four 

Lorentzian peaks allows to extract the emission linewidths of the 𝐴1 and 𝐴2 transitions, respectively. Due to the 

finite resolution of the Fabry-Pérot cavity (Δ𝜈 = 29 ± 2 MHz), the emission linewidths of the two transitions 

appear larger than they are. Thus, we deconvolute the measured linewidth with the cavity linewidth, using the 

fact that the convolution of two Lorentzian functions with widths 𝑎1 and 𝑎2 results in a Lorentzian function with 

width 𝑎 = 𝑎1 + 𝑎2. For the defect that was used for the HOM experiments, we infer deconvoluted linewidths of 

Δ𝜈1 = 57 ± 6 MHz and Δ𝜈2 = 48 ± 6 MHz for the 𝐴1 and 𝐴2 transitions, respectively. 

 

To show the repeatability of our results, we perform the same studies on six different h-VSi centres. The emission 

spectra are shown in Supplementary Fig. 9. 



 

Supplementary Figure 9. Emission spectra of six h-VSi centres. HOM experiments have been performed on defect #1. 

However, all other observed defects show basically the same narrow emission lines, underlining the repeatability of the 

experiment. The 𝐴1 transition linewidths were found in the range of 49 − 89 MHz, while the 𝐴2 emission linewidths are 

found in the range of 46 − 76 MHz (after correcting for the finite resolution of the Fabry-Pérot cavity spectrometer). 

The separation between two lines (mainly due to excited state zero field splitting) is also very consistent and in the range of 

0.927 − 1.015 GHz. All solid lines are fits to the data using Lorentzian functions. 
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