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eFigure 1. Flow Diagram Allocating Subjects to Experimental Subsets  
 

 
 

Supplemental eFigure 1: Diagram of how initial preliminary patient population was filtered to obtain a targeted 

cohort for training and evaluating predictors of antidepressant treatment stability. To determine eligibility, we applied 

the index visit criteria and sufficient follow-up criteria described in “Procedures for Study Design, Outcome 

Definition, and Prediction Task Formulation”. The final experimental datasets used only the 11 most common 

antidepressants, listed in Supplemental eTable 1, as drug-specific outcomes to be predicted and evaluated. Some 

subjects had no experience with any of these drugs in the active care interval and were thus “unlabeled”. We included 

such subjects from Site A when training our topic models (which can leverage unlabeled data), but not when training 

direct history-to-stability classifiers. We did not use unlabeled subjects from Site B when evaluating classifiers, because 

no target outcome was known. Training, validation, and test sets were split in a way that balanced the empirical 

fraction of stability outcomes across subsets for each target antidepressant. 

Initial Dataset (n = 229,206) 

Assessed for eligibility

Excluded as ineligible (n = 147,576)

• (n= 38,957) No index antidepressant Rx after April 2008

• (n= 96,920) <2 antidepressant Rx within 30-390 days of index

• (n=  8,444) Age not in 18-80 years

• (n=  3,254) Total treatment duration less than 90 days

• (n=      1) Rx duration info did not match encounter info

Site A Experimental Data (n=51,048)

Treated by:

• psychiatrist   (22%, n=11,363)

• non-specialist (78%, n=39,685)

Split into:

• Training set    (50%, n=25,524)

• Unlabeled (     n=   496)

• Validation set  (25%, n=12,762) 

• Test set        (25%, n=12,762)

Site B Experimental Data (n=26,449)

Treated by:

• psychiatrist   (19%, n= 5,001)

• non-specialist (81%, n=21,448)

Split into:

• Test set       (99%, n=26,176)

• Unlabeled set  ( 1%, n=   273) 

Eligible Cohort (n = 81,630)

Assessed for stable treatment

Excluded from A (n = 2,595)

<1 event in history at first visit

Site A Eligible Data (n=53,643) Site B Eligible Data (n=27,987)

Excluded from B (n = 1,538)

<1 event in history at first visit
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eTable 1. List of 11 Target Antidepressants and all 27 Possible Antidepressants 

 

 

Supplemental eTable 1: Top: List of the 11 target antidepressants chosen to assess stability predictions in this study. 

Total counts indicate how many distinct patients in the Site A Eligible Dataset were ever prescribed each drug. All 

target drugs satisfy a minimum frequency criterion: prescribed to over 1000 patients at Site A. Stable count indicates 

how many distinct patients for which this drug satisfied our stability outcome definition. Bottom: Our study 

considered 27 possible antidepressants; here we show the 16 that did not have sufficient data to build and assess 

stability prediction models.
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eFigure 2. Example Treatment Histories and Stability Outcomes (Simple) 
 

 
 

Supplemental eFigure 2: Visualizations of antidepressant treatment history for representative patients (a), (b), and 

(c) selected to represent simple treatment histories. Top rows of each panel: Prescription events for target drugs 

shown with black lines, while the fill color indicates the duration of each prescription. Duration is computed for 

each prescription based on recorded dispensed quantities and stop dates. Middle rows of each panel: Black lines 

indicate days when any medical visit occurred (“any visit”), or when psychiatric specialty visits occurred (“Rx-

related psych visit”). Bottom rows of each panel: Red numbers indicate events where a new segment of 

antidepressant treatment begins. These are moments when the physician thinks a change is necessary, but may not 

know which drug will be effective. These dates could be eligible as evaluation dates for our stability prediction 

models. Subject in panel (a) was stable in their first prescription with fluoxetine (which was renewed around 360 

days later). Subject in panel (b) received several citalopram prescriptions over a year and met the stability criteria. 

Subject in panel (c) received several sertraline prescriptions, but their durations were all too short and lacked 

renewal/follow-up to meet stability criteria.



  © 2020 Hughes MC et al. JAMA Network Open. 
 

 

eFigure 3. Example Treatment Histories and Stability Outcomes (Complex) 
 

 
 

Supplemental eFigure 3: Visualizations of antidepressant treatment history for representative patients (d), (e), and (f) 

with more complex histories. See caption of Supplemental Figure 3 for interpretation of each panel’s rows. Subject 

in panel (d) first tried fluoxetine and venlafaxine (unstable), before switching to just venlafaxine (stable). Subject in 

panel (e) Tried many different treatments before eventual stability with citalopram. Subject in panel (f) had two 1-

day prescriptions for bupropion (each with an enforced stop date), as well as a brief later attempt with escitalopram. 

None of (f)’s treatment segments met the criteria for stability. 
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eFigure 4. Illustration of Proposed Topic Model Transformation of EHR Data 
 

 

Supplemental eFigure 4: Diagram illustration of how patient data turns into feature vector used to predict stability 

outcomes. Electronic health records (EHR) are first processed into a high-dimensional count vector of 9256 possible 

features (diagnoses, procedures, and medication prescriptions). Next, we compress these into a more interpretable, 

low-dimensional form using supervised topic models. We infer a per-visit low-dimensional feature vector and use it 

to make predictions about whether each drug is likely to be part of the patient’s stable treatment drug list. 
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eTable 2. Sociodemographic Summary of Site A and Site B Patients 
 

Site A Experimental Dataset Site B Experimental Dataset 

 n Proportion   n Proportion 

Total 51048 1.000  Total 26176 1.000 

Married/partner 22271 0.436  Married/partner 11632 0.444 

Female 33961 0.665  Female 19391 0.741 

White 42313 0.829  White 17893 0.684 

Black 2050 0.040  Black 2623 0.100 

Other 6685 0.131  Other 5660 0.216 

       

 mean sd   mean sd 

ACCI 2.60 3.40  ACCI 2.51 3.16 

Age 48.50 14.90  Age 48.96 14.21 

Fact count 1136.82 1319.05  Fact count 1226.68 1294.59 

 

Supplemental eTable 2: Demographics of all patients from two studied medical centers (Site A and Site B) who 

satisfy all required criteria to be evaluated by our prediction algorithms. Top: counts and frequencies of marital or 

long-term partner status, sex identities, and racial identities for all patients at each site. Bottom: Descriptive statistics 

of patient ages, age-adjusted Charlson comorbidity index score (ACCI), and fact count (number of total ICD9 / 

ICD10 / CPT / medication codeword events across entire electronic health record). 



  © 2020 Hughes MC et al. JAMA Network Open. 
 

 

eFigure 5. Histograms of Treatment History Statistics by Stability Outcome 
 

 
 

 

Supplemental eFigure 5: Distribution plots showing the empirical distributions of several key variables for three 

mutually-exclusive groups of patients from Site A: those with stable treatment on the first prescribed antidepressant, 

those that eventually reached stable treatment, and those that never achieved stable treatment. All plots are made 

using data from each patient’s active treatment interval (as defined in Supplemental eMethods 1), which lasts at least 

90 days, contains no gaps longer than 13 months, and ends after the first successful treatment interval or the end of 

the record. Top left: Histogram of total number of treatment visits (distinct dates when an antidepressant prescription 

occurred) during the active treatment period. Top right: Histogram of total duration (in days) of the active treatment 

period. Bottom left: Histogram of median interval (in days) between treatment visits. By definition, the longest 

allowed interval length is 13 months (390 days). Bottom right: Histogram of total number of distinct treatments 

(distinct combinations of the 11 target drugs). By definition, first-try stable patients use only one treatment. 
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eFigure 6. General Stability AUC Comparison by Feature 
 

 

 
Supplemental eFigure 6: Comparison of different representations of patient history for general stability prediction. 

Each color represents a different feature representation: “dem” is basic demographic information, “words” is the 

9256-dimensional sparse histograms of codeword counts found in the EHR history, and “topics” is the 10-

dimensional covariate vector extracted using our learned PC-sLDA topic model (reducing each observed 9256-

dimensional count vector to 10 dimensions). Combinations that use our learned topic features are shaded red, 

baselines without topics are shaded gray. For each feature combination, we trained an ensemble of 512 extremely 

randomized decision trees on the Site A training set, with hyperparameters tuned on the Site A validation set to 

maximize the area under the ROC curve (AUC) score. To indicate uncertainty, we show error bars with 95% 

confidence intervals of the AUC (i.e. scores at 2.5 and 97.5 percentiles) computed from 5000 bootstrap samples of 

the test set.
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eTable 3. AUC on Site A for General Stability XRT Classifiers 
 

 

Supplemental eTable 3: AUC performance for different feature representations evaluated on the Site A test set. 

Using extreme randomized trees (XRT) classifiers trained to predict general stability.

 dem words dem+words topics 

amitriptyline 0.564 (0.512, 0.611) 0.656 (0.607, 0.699) 0.654 (0.605, 0.697) 0.642 (0.593, 0.685) 

bupropion 0.510 (0.484, 0.534) 0.661 (0.636, 0.683) 0.665 (0.640, 0.686) 0.630 (0.605, 0.652) 

citalopram 0.519 (0.498, 0.539) 0.671 (0.651, 0.689) 0.672 (0.652, 0.690) 0.638 (0.618, 0.657) 

duloxetine 0.571 (0.522, 0.618) 0.623 (0.576, 0.666) 0.630 (0.584, 0.672) 0.588 (0.541, 0.630) 

escitalopram 0.535 (0.489, 0.575) 0.624 (0.582, 0.664) 0.625 (0.582, 0.665) 0.592 (0.549, 0.632) 

fluoxetine 0.515 (0.487, 0.539) 0.670 (0.645, 0.693) 0.673 (0.648, 0.696) 0.644 (0.618, 0.667) 

mirtazapine 0.527 (0.474, 0.573) 0.686 (0.638, 0.729) 0.681 (0.633, 0.724) 0.633 (0.584, 0.677) 

nortriptyline 0.568 (0.517, 0.615) 0.635 (0.586, 0.679) 0.639 (0.590, 0.683) 0.604 (0.554, 0.649) 

paroxetine 0.482 (0.439, 0.522) 0.668 (0.626, 0.706) 0.666 (0.624, 0.704) 0.652 (0.610, 0.690) 

sertraline 0.545 (0.519, 0.570) 0.693 (0.669, 0.714) 0.695 (0.671, 0.717) 0.664 (0.639, 0.686) 

venlafaxine 0.543 (0.502, 0.582) 0.666 (0.626, 0.702) 0.665 (0.624, 0.701) 0.624 (0.583, 0.660) 

avg 0.534 (0.521, 0.546) 0.660 (0.647, 0.671) 0.661 (0.648, 0.672) 0.628 (0.615, 0.640) 
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eTable 4. AUC on Site A for Drug-Specific Stability XRT Classifiers 

 

 

Supplemental eTable 4: AUC performance for different feature representations evaluated on the Site A test set. 

Using extreme random trees (XRT) classifiers trained to predict specific stability. 

 

 dem words dem+words topics 

amitriptyline 0.541 (0.489, 0.587) 0.607 (0.557, 0.653) 0.607 (0.557, 0.652) 0.624 (0.573, 0.667) 

bupropion 0.540 (0.515, 0.563) 0.698 (0.674, 0.719) 0.704 (0.681, 0.725) 0.642 (0.616, 0.663) 

citalopram 0.526 (0.505, 0.546) 0.659 (0.639, 0.677) 0.665 (0.645, 0.683) 0.626 (0.605, 0.645) 

duloxetine 0.576 (0.528, 0.619) 0.617 (0.569, 0.659) 0.627 (0.580, 0.669) 0.581 (0.532, 0.623) 

escitalopram 0.617 (0.575, 0.656) 0.625 (0.580, 0.665) 0.637 (0.593, 0.677) 0.587 (0.543, 0.626) 

fluoxetine 0.490 (0.462, 0.515) 0.667 (0.641, 0.690) 0.660 (0.635, 0.683) 0.638 (0.612, 0.662) 

mirtazapine 0.547 (0.494, 0.594) 0.683 (0.636, 0.727) 0.655 (0.607, 0.698) 0.649 (0.599, 0.694) 

nortriptyline 0.575 (0.525, 0.622) 0.634 (0.585, 0.676) 0.628 (0.577, 0.670) 0.600 (0.551, 0.645) 

paroxetine 0.493 (0.450, 0.533) 0.634 (0.593, 0.672) 0.631 (0.588, 0.668) 0.645 (0.602, 0.683) 

sertraline 0.543 (0.517, 0.568) 0.664 (0.640, 0.687) 0.669 (0.644, 0.691) 0.656 (0.631, 0.679) 

venlafaxine 0.561 (0.519, 0.601) 0.638 (0.597, 0.676) 0.635 (0.593, 0.672) 0.622 (0.581, 0.660) 

avg 0.546 (0.534, 0.558) 0.648 (0.635, 0.659) 0.647 (0.635, 0.658) 0.624 (0.612, 0.636) 
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eTable 5. AUC on Site A for General Stability LR Classifiers 
 

 

Supplemental eTable 5: AUC performance for different feature representations evaluated on the Site A test set. Using 

logistic regression (LR) classifiers trained to predict general stability.  

 dem words dem+words topics 

amitriptyline 0.530 (0.477, 0.577) 0.640 (0.590, 0.684) 0.639 (0.589, 0.684) 0.643 (0.595, 0.687) 

bupropion 0.524 (0.498, 0.547) 0.632 (0.607, 0.654) 0.633 (0.608, 0.655) 0.634 (0.609, 0.655) 

citalopram 0.506 (0.485, 0.526) 0.639 (0.619, 0.658) 0.640 (0.620, 0.659) 0.636 (0.615, 0.655) 

duloxetine 0.589 (0.539, 0.633) 0.599 (0.548, 0.644) 0.600 (0.550, 0.645) 0.599 (0.553, 0.641) 

escitalopram 0.558 (0.513, 0.600) 0.590 (0.546, 0.628) 0.590 (0.545, 0.628) 0.603 (0.561, 0.641) 

fluoxetine 0.492 (0.465, 0.516) 0.634 (0.609, 0.658) 0.636 (0.611, 0.660) 0.638 (0.612, 0.661) 

mirtazapine 0.573 (0.521, 0.620) 0.631 (0.579, 0.677) 0.632 (0.580, 0.678) 0.635 (0.586, 0.679) 

nortriptyline 0.575 (0.526, 0.621) 0.628 (0.580, 0.672) 0.628 (0.579, 0.672) 0.590 (0.541, 0.636) 

paroxetine 0.502 (0.458, 0.543) 0.619 (0.577, 0.658) 0.620 (0.578, 0.658) 0.647 (0.606, 0.686) 

sertraline 0.535 (0.509, 0.560) 0.657 (0.632, 0.680) 0.658 (0.633, 0.681) 0.657 (0.631, 0.679) 

venlafaxine 0.545 (0.503, 0.583) 0.629 (0.588, 0.665) 0.628 (0.587, 0.665) 0.620 (0.578, 0.657) 

avg 0.539 (0.526, 0.551) 0.627 (0.614, 0.639) 0.628 (0.614, 0.639) 0.627 (0.615, 0.639) 
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Supplemental eTable 6: AUC on Site B for General Stability XRT Classifiers 
 

 

Supplemental eTable 6: AUC performance for different feature representations evaluated on the Site B test set. 

Using extreme random trees (XRT) classifiers trained to predict general stability. 

 dem words dem+words topics 

amitriptyline 0.511 (0.487, 0.535) 0.606 (0.581, 0.629) 0.608 (0.583, 0.630) 0.596 (0.571, 0.618) 

bupropion 0.494 (0.474, 0.512) 0.614 (0.596, 0.631) 0.617 (0.599, 0.635) 0.622 (0.604, 0.638) 

citalopram 0.485 (0.470, 0.499) 0.636 (0.621, 0.649) 0.638 (0.623, 0.651) 0.637 (0.623, 0.651) 

duloxetine 0.540 (0.505, 0.573) 0.605 (0.570, 0.637) 0.608 (0.574, 0.640) 0.607 (0.572, 0.638) 

escitalopram 0.563 (0.530, 0.592) 0.628 (0.597, 0.656) 0.627 (0.596, 0.655) 0.603 (0.571, 0.632) 

fluoxetine 0.506 (0.487, 0.523) 0.656 (0.638, 0.672) 0.658 (0.640, 0.674) 0.649 (0.631, 0.665) 

mirtazapine 0.570 (0.531, 0.604) 0.659 (0.621, 0.693) 0.662 (0.623, 0.695) 0.614 (0.575, 0.649) 

nortriptyline 0.545 (0.503, 0.582) 0.619 (0.579, 0.654) 0.622 (0.582, 0.657) 0.638 (0.597, 0.672) 

paroxetine 0.518 (0.483, 0.551) 0.622 (0.589, 0.653) 0.622 (0.589, 0.652) 0.611 (0.578, 0.642) 

sertraline 0.530 (0.512, 0.546) 0.625 (0.609, 0.640) 0.627 (0.610, 0.642) 0.625 (0.609, 0.641) 

venlafaxine 0.554 (0.525, 0.580) 0.639 (0.612, 0.664) 0.639 (0.612, 0.664) 0.607 (0.580, 0.632) 

Avg 0.529 (0.519, 0.537) 0.628 (0.619, 0.636) 0.630 (0.621, 0.638) 0.619 (0.610, 0.627) 
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eFigure 7. PPV and NPV Tradeoffs for General Stability Classifiers 
 

 

 
 

Supplemental eFigure 7: Positive predictive value (PPV, higher is better) and negative predictive value 

(NPV, higher is better) for the binary classifiers trained to predict general stability, evaluated on Site A 

and Site B across all subjects. We show logistic regression (LR) and extremely randomized trees (XRT) 

classifiers across both 10-dimension “topics” and 9256 -dimensional “words” features. Each classifier is 

trained to produce a real-valued probability score for a given input. In each plot, we sweep across a range 

of possible decision thresholds for converting scores into binary decisions, to show how classifiers improve 

on the baselines of always predicting unstable (0) or always predicting stable (1). 
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eFigure 8. Important Features for XRT and LR Classifiers 

 
 

 

Supplemental eFigure 8: Visualization of learned features important to two baseline supervised machine learning 

predictors of stable treatment in general. We examined logistic regression  (LR)  and ensembles of extremely 

randomized decision trees  (XRT) using the “dem+words” feature representation, which combines the 9,256-

dimensional sparse histogram features of EHR codewords and the simple demographic features of age, gender, race, 

and year of evaluation visit. Left: We show the 10 most informative codewords for our extremely randomized trees 

ensemble classifier as ranked by Scikit Learn’s built-in measure of information theoretic relevance of each 

individual feature to the overall prediction. Note that these measures are not signed, so each shown feature’s 

presence might be positively or negatively correlated with stability. Right: For logistic regression, we show the top 

10 terms with most positive weight coefficient (top), as well as the top 10 terms with most negative coefficients 

(bottom). All features can be categorized as coming from ICD-9/10 codes (“I”), CPT procedural codes (“C”), 

medication codes (“M”), or demographics (“d”), as indicated in the second column. The third column provides the 

original code itself.
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eTable 7. Top-3 Stability Accuracy Comparison of Models With Clinical Practice 
 

 

Features Clf. Top-3 Accuracy Num. Assessable Num. Total Perc. Assessable 

topics LR 0.581 (0.566, 0.594) 4870 12762 38.2% 

topics XRT 0.578 (0.564, 0.590) 5097 12762 39.9% 

dem+words LR 0.591 (0.578, 0.604) 5335 12762 41.8% 

dem+words XRT 0.622 (0.610, 0.634) 6056 12762 47.4% 

Common stable meds   0.602 (0.591, 0.612)                    8178 12762          64.1% 

Observed Rx. 0.602 (0.593, 0.611) 12699 12762 99.5% 

Observed Rx. filled up 

with common stable 

0.637 (0.628, 0.646)    

 

12736 

 

12762 99.8% 

 

Supplemental eTable 7: Evaluation of drug-specific stability models as used to prioritize medications for patients. 

For each subject in the Site A test set, we imagine suggesting a set of 3 personalized antidepressants (the top 3 

ranked by each drug’s predicted probability of stability). We rank a patient “assessable” if any of these top 3 

recommendations are known to be either stable or non-stable. We compute “top 3 accuracy” as the fraction of 

assessable patients that had at least one of their top 3 stable. We report the accuracy on the Site A test set, as well as 

in parentheses the 95% confidence interval from 1000 bootstrap samples of the Site A test set. Each row shows a 

different stability prediction model determined by input features (“dem+words”: patient sociodemographics plus 

codeword count vectors; “topics”: our proposed 10-dimensional learned features) and a different classifier (“LR”: 

logistic regression; “XRT”: extremely randomized ensemble of 512 decision trees). We also compare to several 

baselines. “Common stable meds” means always suggesting the same 3 antidepressants most commonly associated 

with stable treatment in the Site A training set. “Observed Rx.” means suggesting exactly the same subset of the 11 

target drugs that were prescribed at the index visit in the patient’s record. “Observed Rx. filled up with common 

stable” means that if the record shows less than 3 drugs prescribed, we add to the observe prescriptions the one-size-

fits-all “common stable” drugs until 3 total drugs are considered. “Observed Rx.” shows a small fraction of subjects 

(<1%) as not assessable because a few subjects were only prescribed drugs outside the set of our 11 target drugs for 

which we had enough data to build and test models.
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eTable 8. Number of Medication Changes Needed by Predicted Stability Quartile 
 

 

Features Clf. Average Num. 

Med. Changes for 

1st quartile 

 

Average Num. 

Med. Changes for 

2nd quartile 

 

Average Num. 

Med. Changes for 

3rd quartile 

 

Average Num. 

Med. Changes for 

4th quartile 

 

topics  LR 1.722 (1.647, 1.799) 1.356 (1.288, 1.428) 1.134 (1.063, 1.204) 0.864 (0.816, 0.918) 

topics XRT 1.721 (1.639, 1.795) 1.359 (1.289, 1.435) 1.119 (1.057, 1.189) 0.878 (0.825, 0.936) 

dem+words LR 1.682 (1.609, 1.771) 1.389 (1.316, 1.465) 1.145 (1.072, 1.213) 0.860 (0.801, 0.924) 

dem+words XRT 1.754 (1.681, 1.843) 1.451 (1.377, 1.528) 1.135 (1.066, 1.207) 0.736 (0.688, 0.796) 

 

 

Supplemental eTable 8: Average number of additional changes to patient’s prescribed antidepressants beyond the 

first (index) treatment, as observed in the Site A test set, stratifying by quartiles of predicted probability of general 

stability. 1st quartile corresponds to lowest 25% of test set subjects by probability of stability at index visit; 4th 

quartile corresponds to the top 25% of test set subjects by probability of stability at index visit. Each row shows a 

different general stability prediction model, determined by selecting input features (“dem+words”: patient 

sociodemographics plus codeword count vectors; “topics”: our proposed 10-dimensional learned features) and a 

specific classifier (“LR”: logistic regression; “XRT”: extremely randomized ensemble of 512 decision trees). We 

report the mean number of additional visits at each quartile and in parentheses the 95% confidence interval for this 

mean based on 1000 bootstrap samples of the Site A test set. 
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eResults 1. Visualizations of Learned Models 
 

Supervised topic model visualizations 

 

We have created interactive HTML visualizations of the trained topic-word parameters and regression coefficients 

for all supervised topic models used in this study. Simply point your web browser to the links below to browse. 

 

• PC-sLDA topic model with 10 topics for general stability (model shown in Figure 3) 

Https://www.eecs.tufts.edu/~mhughes/research/htmlviz/v20190920/rank_words_by=proba_word_given_topic/

MODEL_NAME=general-LABEL_NAME=any-N_STATES=10.html 

 

• PC-sLDA topic model with 10 topics for drug-specific stability with bupropion 

Https://www.eecs.tufts.edu/~mhughes/research/htmlviz/v20190920/rank_words_by=proba_word_given_topic/

MODEL_NAME=specific-LABEL_NAME=bupropion-N_STATES=10.html 

 

Some of the code words have extremely long descriptions, so we show by default only the first 30 characters. If you 

hover your mouse over any word that is cut-off, you’ll see the entire description. 

 

Baseline classifier visualizations of feature importance 

 

We have also created interactive HTML visualizations of the top ranked features for both the logistic regression and 

extremely randomized trees (ensemble of 512 decision trees) classifiers used in this study. 

 

• Extremely randomized trees for general stability (also shown in eFigure 8 left) 

Https://www.eecs.tufts.edu/~mhughes/research/htmlviz/v20190920/rank_words_by=proba_word_given_topic/MOD

EL_NAME=general-FEAT_NAME=dem+words-CLF_NAME=extreme_random_trees-

LABEL_NAME=any_drug.html 

 

• Logistic regression for general stability (also shown in eFigure 8 right) 

Https://www.eecs.tufts.edu/~mhughes/research/htmlviz/v20190920/rank_words_by=proba_word_given_topic/MOD

EL_NAME=general-FEAT_NAME=dem+words-CLF_NAME=logistic_regr_l2-LABEL_NAME=any_drug.html 

 

• Logistic regression for drug-specific stability with bupropion. 

Https://www.eecs.tufts.edu/~mhughes/research/htmlviz/v20190920/rank_words_by=proba_word_given_topic/MOD

EL_NAME=specific-FEAT_NAME=dem+words-CLF_NAME=logistic_regr_l2-LABEL_NAME=bupropion.html 

https://www.eecs.tufts.edu/~mhughes/research/htmlviz/v20190920/rank_words_by=proba_word_given_topic/MODEL_NAME=general-LABEL_NAME=any-N_STATES=10.html
https://www.eecs.tufts.edu/~mhughes/research/htmlviz/v20190920/rank_words_by=proba_word_given_topic/MODEL_NAME=general-LABEL_NAME=any-N_STATES=10.html
https://www.eecs.tufts.edu/~mhughes/research/htmlviz/v20190920/rank_words_by=proba_word_given_topic/MODEL_NAME=specific-LABEL_NAME=bupropion-N_STATES=10.html
https://www.eecs.tufts.edu/~mhughes/research/htmlviz/v20190920/rank_words_by=proba_word_given_topic/MODEL_NAME=specific-LABEL_NAME=bupropion-N_STATES=10.html
https://www.eecs.tufts.edu/~mhughes/research/htmlviz/v20190920/rank_words_by=proba_word_given_topic/MODEL_NAME=general-FEAT_NAME=dem+words-CLF_NAME=extreme_random_trees-LABEL_NAME=any_drug.html
https://www.eecs.tufts.edu/~mhughes/research/htmlviz/v20190920/rank_words_by=proba_word_given_topic/MODEL_NAME=general-FEAT_NAME=dem+words-CLF_NAME=extreme_random_trees-LABEL_NAME=any_drug.html
https://www.eecs.tufts.edu/~mhughes/research/htmlviz/v20190920/rank_words_by=proba_word_given_topic/MODEL_NAME=general-FEAT_NAME=dem+words-CLF_NAME=extreme_random_trees-LABEL_NAME=any_drug.html
https://www.eecs.tufts.edu/~mhughes/research/htmlviz/v20190920/rank_words_by=proba_word_given_topic/MODEL_NAME=general-FEAT_NAME=dem+words-CLF_NAME=logistic_regr_l2-LABEL_NAME=any_drug.html
https://www.eecs.tufts.edu/~mhughes/research/htmlviz/v20190920/rank_words_by=proba_word_given_topic/MODEL_NAME=general-FEAT_NAME=dem+words-CLF_NAME=logistic_regr_l2-LABEL_NAME=any_drug.html
https://www.eecs.tufts.edu/~mhughes/research/htmlviz/v20190920/rank_words_by=proba_word_given_topic/MODEL_NAME=specific-FEAT_NAME=dem+words-CLF_NAME=logistic_regr_l2-LABEL_NAME=bupropion.html
https://www.eecs.tufts.edu/~mhughes/research/htmlviz/v20190920/rank_words_by=proba_word_given_topic/MODEL_NAME=specific-FEAT_NAME=dem+words-CLF_NAME=logistic_regr_l2-LABEL_NAME=bupropion.html
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eResults 2. Stability Outcomes for Patients at Site A and Site B 
 

Site A. Overall at Site A (n=53,643), we observed that 16,850 (31%) patients were never stable, 25,141 (47%) of 

patients reached stability on the index prescription, and 11,652 (22%) reached stability eventually. 

 

For psychiatrist-treated patients (n=11,985 at Site A), we observed that 2,642 (22%) never reached stability, 5,274 

(44%) reached stability on the index prescription, and 4,069 (34%) reached stability eventually. In contrast, for 

primary care patients (n=14208 at Site A), 14,208 (34%) never reached stability, 19,867 (48%) were stable 

following index prescription, and 7,583 (18%) were eventually stable.  

 

Site B. Overall at Site B (n=27,987), we observed that 9,477 (34%) patients were never stable, 13,018 (47%) of 

subjects reached stability on the index prescription, and 5,492 (20%) reached stability eventually. 

 

For psychiatrist-treated patients (n=5,267 at Site B), we observed that 1,163 (22%) never reached stability, 2,502 

(48%) were stable on the index prescription, and 1,602 (30%) eventually reached stability. In contrast, for non-

psychiatrist-treated patients (n=22,720 at Site B), 8,314 (37%) never reached stability, 10,516 (46%) were stable 

following index prescription, and 3,890 (17%) were eventually stable. 
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eMethods 1. Procedures for Study Design, Outcome Definition, and Prediction Task 

Formulation 
 

In light of space constraints in the main manuscript, in this supplemental section we provide a more detailed 

description of our cohort derivation, outcome definition, and formulation as a prediction task. 

 

Our study’s goal is to build and evaluate prediction models that can take as input a patient’s history (as represented 

in diagnostic codes, procedural codes, medications, and demographics) and produce predictions of stable 

antidepressant treatment (either in general or with a specific target drug). To build and assess a stability prediction 

system from an observational dataset required several carefully considered steps described in the subsections below. 

First, we defined an initial patient cohort (see “Initial Cohort Definition”) based on EHR records from our two major 

hospital systems (Site A and Site B). Next, we identified antidepressant treatments of interest and divided each 

patient’s record into segments of constant prescription (see “Dividing Patient Record into Segments of 

Antidepressant Treatment”). We then developed an outcome defining for each segment whether it was stable or not 

stable (see “Determining Stability Outcome for each Segment of Antidepressant Treatment”). Finally, we formulated 

the task of stability prediction as a supervised machine learning problem and developed an approach to train and 

evaluate prediction models. This required for each patient determining specific dates within the observed treatment 

history at which we want to provide and evaluate stability predictions (see “Selecting Specific Dates in Patient 

Record when Predictions are Performed”). It further required dividing Site A patients into training, validation, and 

test populations and well as a Site B testing population (see “Forming Experimental Cohorts for Training and 

Evaluating Stability Prediction”). 

 

Initial Cohort Definition 

 

Inclusion Criteria. The study cohort included individuals with at least one diagnosis of major depressive disorder 

(MDD, ICD9 codes 296.2x, 296.3x) or depressive disorder not otherwise specified (ICD9 code 311) who received 

psychiatric care between December 1 1997, and December 31, 2017, across the inpatient and outpatient networks of 

two large academic medical centers in New England ( “Site A” and “Site B”). Patients were excluded if age was less 

than 18 or greater than 80, if the total observation period was less than 90 days, or if there were fewer than 3 total 

documented visits (of any type, psychiatric or otherwise) in the EHR. 

 

Available Data. For each matching individual in the preliminary dataset, we extracted a deidentified patient-specific 

EHR using the i2b2 server software (i2b2, Boston, MA, USA). Available patient data includes sociodemographic 

information (age, sex, race/ethnicity), all diagnostic and procedure codes (each associated with a specific visit date), 

and detailed information about inpatient and outpatient medication prescriptions. Each prescription record indicates 

the ingredient, the start date, the source (inpatient or outpatient), and (if available) the prescribed number of units per 

day, total units dispensed, total duration in days, number of refills, and the stop date. 

 

Responsible Data Use. The Partners HealthCare institutional review board approved the study protocol, waiving the 

requirement for informed consent as only deidentified data was utilized and no human subjects contact was required. 

 

Dividing Patient Record into Segments of Antidepressant Treatment 

 

Active Care Intervals. We define an active care interval for antidepressant treatment as beginning at an index 

prescription date (i.e. treatment initiation, prior to which there was no antidepressant prescription for at least 13 

months (390 days)) and continuing to include all later antidepressant prescriptions until there is a gap of over 390 

days during which no prescriptions occur. Given the large number of available observations, we elected to include 

for each patient only the first observed interval that meets relevant index visit criteria and sufficient follow-up 

criteria. 

 

27 Possible Drugs Considered for Stability. During an active care interval, several different antidepressants might 

be prescribed, whether in combination or in sequence. We consider prescriptions for any of 27 antidepressant 
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medications approved in the United States (see Supplemental eTable 1), selected based on a recent systematic 

review of antidepressants1. Any treatment regimen that includes any of these drugs is rated as stable or not stable. 

 

11 Target Drugs Evaluated for Prediction. To later build and assess drug-specific models of stability, we 

narrowed focus to only the 11 most commonly-prescribed drugs (see Supplemental eTable 1). This filtering ensures 

sufficient representation of each treatment in the available data. These 11 target drugs were all prescribed at least 

once to over 1000 patients in the Site A training set; others were far more infrequent and thus set aside. We only 

build drug-specific models for these target drugs, and only evaluated on subpopulations that were prescribed one of 

these drugs. However, we emphasize that the larger set of 27 possible drugs is still considered. For example, a 

patient in the test set might have first used a target drug, then later been stable on a non-target drug. 

 

Index Visit Criteria. For each patient, we define possible index visits (the start of an active care interval) as visit 

dates where the patient begins any prescription for one or more of the possible 27 antidepressants. Before this index 

visit, they must have no recent history of treatment (no recorded prescriptions for any of the 27 antidepressants for at 

least the previous 390 days). Index visits occurred after April 1, 2008. 

 

Sufficient Follow-up Criteria. To be eligible for inclusion, an active care interval must also have met sufficient 

follow-up criteria. First, in addition to the index visit, there must have been at least one additional antidepressant 

prescription (for any of the 27 possible drugs) dated between 30 and 390 days after the index visit. Second, the care 

interval’s total duration (measured by using duration information from the prescription records) must be at least 90 

days. 

 

Segments of Antidepressant Treatment. For each patient, we divided the active care interval into segments: 

contiguous periods where the subject was repeatedly prescribed either one single antidepressant or one consistent 

combination of antidepressants. Each segment lasts from its initial prescription date until the end of its duration 

(using prescription durations available in the records). 

 

In summary, for each eligible patient, we included exactly one active care interval that meets all of the following 

requirements: it includes at least 2 prescriptions events, has total duration of at least 90 days, and contains no gap 

between prescriptions of longer than 390 days. We evaluated each segment within this active care interval for 

stability, using the criteria below. 

 

Determining Stability Outcome for each Segment of Antidepressant Treatment 

 

Rationale. Recognizing that traditional clinical trial outcomes such as response and remission are difficult to define 

reliably for all individuals using solely coded clinical data, we instead sought to identify individuals who achieved a 

period of stable treatment, as a proxy for ample clinical benefit and tolerability. We applied a simplifying but face-

valid assumption that successful treatments continue uninterrupted over time with repeated prescriptions, while 

unsuccessful treatments are either discontinued or require addition of further medication. 

 

Stability Criteria. Given each patient’s eligible active care interval, we divided the record into non-overlapping 

treatment segments. We then defined a treatment segment as stable if it contained at least two prescriptions for the 

same antidepressant(s) on two distinct dates, the total duration was at least 90 days, the calculated medication 

possession ratio (fraction of days in segment where the patient possessed a valid, non-expired prescription)2 was at 

least 80%, and the largest gap between the start dates of any two prescriptions in the segment was between 30 days 

and 390 days. The 30-day minimum between prescription dates ensures that enough time has elapsed for the patient 

to acclimate to the medication and exhibit all long-term side effects. Any segments within an eligible active care 

interval that did not meet all stability criteria were considered non-stable. 

 

To illustrate clinical course, example patient trajectories showing various treatment segments over time that satisfy 

(or do not satisfy) stability criteria are illustrated in Supplemental eFigure 2 and eFigure 3. As expected, a subset of 

patients never reach stability despite multiple different attempted treatments. 
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Selecting Specific Dates in Patient Record when Predictions are Performed 

 

Evaluation Dates. To select evaluation dates (events in the historical record where we’d like to make and evaluate 

predictions), we chose to focus on supporting stability prediction specifically for patient-clinician encounters where 

the clinician believes a medication change may be required. That is, we would like to be able to make a prediction at 

each date in the patient record corresponding to a prescribed change in antidepressant treatment. We naturally 

limited evaluation dates to periods where the patient met active care criteria (defined above), so we could better 

distinguish stability (or lack thereof) from issues related to patients not receiving any follow-up care. 

 

Ensuring Reliability of EHR Prescription Records. Because electronic prescribing across our two health systems 

was only mandated starting October 1, 2007, we restricted possible evaluation visits to those occurring after a 

minimum calendar date of April 1, 2008. This 6-month lead-in enabled treatment that has just begun to be 

distinguished from treatment continued from the period prior to e-prescribing. This ensures that any event we 

consider an index prescription is reliable. While this restriction limits the dates at which we evaluate predictions of 

stable treatment, we emphasize that patient history can still contain features from any time prior to the index 

prescription, even those before 2008. This should better reflect real-world data.  

 

Evaluation focused on index visits only. To train and evaluate prediction models in this work, we consider only the 

antidepressant prescription segment corresponding to the index visit (first visit) of the eligible active care interval. 

We leave evaluation of models that account for multiple segments in series to future work. We did assess stability at 

both index and later visits, but did not make predictions or evaluate them at later dates. 

 

Forming Experimental Cohorts for Training and Evaluating Stability Prediction 

 

Sufficient history criterion. We further excluded data from individuals who lack sufficient history for prediction - 

i.e., individuals without any prior diagnostic codes, procedures, or prescriptions (psychiatric or otherwise) at the 

index visit of the earliest eligible active care interval. We cannot make useful personalized predictions for these 

subjects, so we exclude them from impacting our evaluation. 

 

Training and testing cohort. After applying all inclusion and sufficient history criteria, a total of 51048 patients 

from Site A and 26176 patients from Site B were included. The Site A patients were randomly assigned to different 

subsets labeled training (50%, 25524 patients), validation (25%, 12762 patients), and test (25%, 12762 patients). 

Using a significant fraction (25% of subjects) for validation and testing ensures better accuracy of held-out 

performance estimates. Validation and test splits were sampled in a stratified fashion, so that each patient’s data 

belongs in exactly one split and that each target antidepressant’s stability outcome label frequency was balanced 

across splits. Only patients from Site A’s training set were used to train any prediction models, while Site B was 

held-out as an external validation set. 

 

In summary, prediction model training and evaluation included only patients that meet all of our initial inclusion 

criteria (age 18-80, diagnosis for MDD, at least 3 visits for any reason over at least 90 days), active care eligibility 

criteria (index antidepressant preceded by 13 months of no antidepressant prescriptions, sufficient follow-up), and 

sufficient history criteria (at least one code available before index visit). Each such patient from Site A is 

represented in either the training, validation, or testing set. Each such patient from Site B is represented in that site’s 

testing set. For all such patients, available covariate and outcome data includes the input features and stability 

outcomes relevant for exactly one evaluation date (the index visit of their active care interval). 
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eMethods 2. Procedures for Classifier Training and Hyperparameter Selection 
 

Here we outline in detail the steps and rationale used for training probabilistic classifiers for general and drug-

specific stability, given different possible feature representations (e.g. demographics “dem”, codewords “words”, 

and “topics”). For scripts necessary to reproduce our analyses, see our public code base online: 

https://github.com/dtak/prediction-constrained-topic-models/ 

 

Outcome Definition and Representation 

 

For training and evaluating stable treatment classifiers, we focused on the index antidepressant treatment segment as 

the only evaluation date in each patient’s record. Thus, each subject had exactly one feature vector, binary label pair 

included in evaluation. If the first segment met stability criteria, we associated a positive outcome label with all 

antidepressants prescribed therein. If the segment was not stable, we associated a negative label for the prescribed 

antidepressants. Otherwise, if an antidepressant was not used, the associated outcome label was treated as 

unobserved (stored numerically as not-a-number or “nan”. When training each drug’s specific prediction model, we 

ignored any subjects which were “unobserved” for that drug. Illustrations of positive, negative, and unobserved 

(nan) labels were provided in Supplemental Figure 2. We leave the consideration of prediction models for multiple 

segments in series to future work. 

 

Feature Representations 

 

We considered three possible feature representations of a patient’s history which could be provided as input to 

personalize predictions at a specified evaluation date X: 

 

“dem”: Sociodemographics and other static features 

• Produces a 10-dimensional feature vector concatenating sociodemographics known for all patients 

• Includes Patient Gender (one-hot encoded vector of size 3, Male/Female/Undefined) 

• Includes Patient Race (one-hot encoded vector of size 5, White/Black/Asian/Hispanic/Other) 

• Patient Age at the evaluation date X (as a floating-point numerical value, in units of years) 

• Calendar Date of the evaluation date X (as a floating-point numerical value, in units of years since 1970) 

 

“words”: EHR codeword counts of diagnoses, procedures, and prescribed drugs 

• Produces a 9256-dimensional count vector of non-negative integers 

• Most entries will be exactly zero (sparse). 

o Fraction of non-zero entries: 0.0143 on Site A train and 0.0146 on Site A validation. 

• When making predictions at date X, will only include codewords that occur before X 

 

“topics”: Topic membership features summarizing each patient’s EHR codeword counts 

• Produces a K-dimensional feature vector of membership probabilities 

• Dimension was selected to K=10 for all final experiments. Preliminary experiments considered several 

possible K values (see eMethods 3: “Topic Model Training and Hyperparameter Selection” below) 

• Each entry of the feature vector will be a scalar between 0 and 1; the entire vector sums to one 

• The k-th entry can be interpreted as “fraction of patient history explained by topic k” 

• Computed by performing inference for the latent membership vector given the patient’s “words” vector and 

a pretrained topic model with K topics. Performs a fast, iterative maximum a-posteriori (MAP) 

optimization procedure (see Hughes et al.2 for details) 

• When making predictions at date X, will only include codewords that occur before X in computation 

 

Details of topic model training and hyperparameter selection can be found in a later section of this supplement. 

Here, we focus on simply using the covariates produced using pretrained topic models to make predictions. Our 

proposed topic models are trained in a supervised fashion. However, we still fit a second stage classifier to these 

features in the same manner as with baseline features to be sure we have a fair comparison; by using the same 

protocol for all cases. 

 

https://github.com/dtak/prediction-constrained-topic-models/
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We also considered several combinations of the feature representations listed here (e.g. “dem+words” or 

``dem+topics’’). In these cases, the relevant individual feature vectors were simply concatenated into a longer 

feature vector.  

 

Classifier Training, Hyperparameter Selection, and Evaluation 

 

As baselines for our binary classification task, we considered two standard probabilistic classifiers, logistic 

regression (LR) and extremely randomized trees (XRT)3. These two baselines were selected because they are 

representative of two common best-in-class prediction approaches: generalized linear models and random forests. 

Both methods have been widely used for our data types of interest: tabular data (our “demographics” features) or 

high- dimensional count data (our “words” features). 

 

Classifier training and model selection details. Using each classifier (LR and XRT), a separate drug-specific 

classifier for each of the 11 target drugs as well as a general stability classifier (aggregating information from all 

drugs) was trained on the Site A training set. Hyperparameters were tuned on the Site A validation set, using grid 

search to find the parameter combination that performed best on the area-under-the-ROC-curve (AUC) 

discriminative metric. Finally, model performance was compared using AUC for each of the 11 drug prediction 

tasks in the held-out testing set from Site A, then in the independent Site B. 

 

To indicate uncertainty, we show error bars with 95% confidence intervals of the AUC (i.e. scores at 2.5 and 97.5 

percentiles) computed from 5000 bootstrap samples of the test set. 

 

Extremely randomized tree (XRT) details. We used the ensemble.ExtraTreesClassifier (https://scikit-

learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html) implementation available in the 

Scikit Learn toolkit4. We fixed the total number of trees (independent estimators) to 512, which provided a good 

tradeoff between generalization capability (reduced variance) and computational speed. We then tuned two 

remaining hyperparameters: the fraction of features used in each tree (max features, possible values = {0.04, 0.16, 

0.64}), and the minimum number of samples at leaf nodes (min samples leaf, possible values = {4, 16, 64, 256, 0.1, 

0.2, 0.4}). Fractional values for min samples leaf set the leaf size as a fraction of the total training set size. We 

overcame class imbalance issues by using the provided class weight=‘balanced’ option. 

 

Logistic regression (LR) details. We used the linear model.logisticregression (https://scikit-

learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) implementation in the open-

source Scikit Learn toolkit4. We elected to control overfitting with an L2 norm penalty on the weight coefficients, 

but no such penalty on the intercept term). We used the built-in L-BFGS solver (solver=‘lbfgs’), running until the 

default convergence threshold was achieved (no warnings indicated this threshold was not met). We overcame class 

imbalance issues by using the provided class weight=‘balanced’ option. The regularization strength hyperparameter 

“C” (a positive scalar) that controls the L2 penalty was set via grid searched on a logarithmically spaced grid from 

10−12 to 106 with 37 possible values. 

 

We emphasize that we use the L2 sum of squares penalty for simplicity. Additional experiments with an alternative 

sum of absolute values penalty (known as the least absolute shrinkage and selection operator (LASSO)) did not 

indicate any improved prediction quality. For the dem+words features on the Site A test set, we find L2-regularized 

logistic regression trained to predict general stability achieves an AUROC averaged across 11 medications of 0.628 

(95% bootstrap CI: 0.614 - 0.639), while the L1-regularized method achieves almost the same score of 0.631 (95% 

bootstrap CI: 0.618 - 0.643). Furthermore, when trained to predict the drug-specific stability, we find that L2-

regularized method achieves an average AUROC of 0.627 (95% bootstrap CI: 0.614-0.638), while the L1-

regularized method achieves an ever-so-slightly worse test-set score of 0.616 (95% bootstrap CI: 0.603 - 0.627).  

Because performance differences between L1 and L2 methods differed by at most 0.01 on the AUROC scale, we 

choose to only report L2-regularized results.

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
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eMethods 3. Procedures for Topic Model Training and Hyperparameter Selection 
 

Here we outline in detail the steps and rationale used for training our proposed topic models. For scripts necessary to 

reproduce our analyses, see our public code base online: https://github.com/dtak/prediction-constrained-topic-

models/ 

 

Training Duration and Snapshot Selection. All topic modeling methods were allowed to train for 5000 complete 

passes through the Site A training dataset, or up to 48 hours, whichever came first. Throughout training, each 

separately initialized training run recorded point estimates of the key parameters (topic-word probabilities and 

regression coefficients) at regular intervals. After training, we looked across all saved snapshots and selected the 

single best parameter snapshot according to a score function that balanced discriminative performance (as measured 

by AUC) and generative performance (as measured by a variational bound on the log likelihood) on the held-out 

validation set from Site A.  The mathematical details of this score function are fully described in our published paper 

on PC-sLDA5. This select-the-best-snapshot-on-validation process can be interpreted as “early stopping,” a common 

machine learning technique to avoid overfitting. 

 

LDA Topic Model Training. As a baseline, we first trained unsupervised Latent Dirichlet Allocation topic models 

using the collapsed Gibbs sampler implemented in Java via the open-source Mallet toolbox6. The relevant 

hyperparameters specified in advance included the number of topics K (a positive integer), the document-topic 

Dirichlet prior concentration hyperparameter (a positive scalar), and the topic-word Dirichlet hyperparameter (a 

positive scalar). We set these parameters via grid search maximizing the score function described above on 

validation data. For the number of topics, we considered 10, 25, 50, and 100. For the document-topic 

hyperparameter we tested the scalar values of 0.01 and 0.1, while for the topic-word hyperparameter we tested 

0.0033 and 0.0333 (lower values encourage more sparsity). For the LDA Gibbs sampler, at each hyperparameter 

setting we took the best of 3 separate random initializations, each one using a different random seed and drawing 

topic-word distribution parameters from a smooth “background” distributions so that no values are too extreme (all 

words have non-zero probability in all topics) yet each initial topic was distinct enough from others that effective 

learning could occur. See our public code repository for further details. 

 

PC sLDA Topic Model Training. Our preferred topic modeling approach is the supervised Latent Dirichlet 

Allocation model fit to data via prediction-constrained (PC) training. This PC-sLDA approach is fully described as a 

statistical learning algorithm in Hughes et al5. Briefly, this method improved over classic unsupervised topic 

modeling by directly informing the learned topic-word parameters via the intended prediction task (in this case, 

predict stable antidepressants given patient history). The training process set up an optimization problem for key 

parameters (topic-word probabilities and logistic regression coefficients) to maximize an objective function that 

favored both generative performance (as measured by the likelihood of observing EHR codeword count history 

under the topic model) and discriminative performance (as measured by the log of the conditional probability of 

binary drug stability outcomes when predicted from the observed patient EHR codeword count history via the topic 

model). 

 

In addition to the sharing all the concentration hyperparameters of the LDA model, our proposed PC-sLDA method 

also required specifying a tradeoff scalar Lagrange multiplier λ to upweight the discriminative term in the 

optimization objective. Following best practices5, we grid searched for λ values over the fixed possible values of 1, 

100, 5000, 10000. For each number of topics K considered (10, 25, 50, and 100), we used the Dirichlet 

concentration parameters that were selected for the corresponding unsupervised LDA method. 

 

For the stochastic gradient descent (SGD) optimization of PC-sLDA models, we divided all 25,524 patients from the 

Site A training data into 20 batches of (roughly) equal size. Like the unsupervised topic model, we ran several 

random initializations from the smooth background distributions.  Because the SGD approach is particularly 

vulnerable to poor exploration  of the non-convex energy landscape, we also included additional runs of PC-sLDA 

which were started at the best-performing parameter snapshots produced by the unsupervised Gibbs sampler at each 

hyperparameter configuration (number of topics K, document-topic hyperparameter, etc.). We found that this from-

best-Gibbs-run initialization yielded the best performance on validation data according to our hybrid discriminative-

generative score function, so all results used this initialization. 

https://github.com/dtak/prediction-constrained-topic-models/
https://github.com/dtak/prediction-constrained-topic-models/
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We show results for K=10 topics throughout, because using more topics did not visibly improve heldout predictions. 

 

End-to-end Training of PC-sLDA. When training all topic models, including the topic model illustrated in the 

main manuscript’s Figure 3, we train the topic model (estimating the parameters of the topics) as well as a predictor 

that uses the topics (estimating the logistic regression weight coefficients on each topic feature) jointly via a 

gradient-descent optimization procedure. This can be considered “one-stage” or “end-to-end” training. 

 

After end-to-end supervised training, we can then additionally train a (non-linear) classifier. This leads to a “two-

stage” approach, where stage one trains topics with a generalized linear model for supervision. Stage two then fixes 

the resulting features and trains any classifier such as LR or XRT given those features. We report “two-stage” 

performance numbers in practice throughout the manuscript (e.g. in Figure 1 or Figure 2), because in these cases we 

can be sure the classifier training and hyperparameter selection are done consistently and fairly whenever we 

compare “topics” features with “words” features. Overall the computational cost of this second stage is quite 

affordable (because there are very few topic covariates). 

 

We emphasize that it would be possible to perform “one stage” or “end-to-end” training with any other non-linear 

classifier that can be trained via gradient descent (e.g. any neural network). Ensembles of decision trees (such as our 

XRT classifier) are trained via greedy combinatorial optimization algorithms (not gradient descent), so developing 

one-stage methods for these would require research effort. However, for our proposed approach, we focus on linear 

predictors because this forces the topics themselves to be directly interpretable as features that are monotonically 

related with predictions. Given our focus on interpretability, we would rather invest in training better topics (better 

feature extractors) than in more complicated predictions given topic features.
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