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Supplementary Figures 
Figure	S1.	Schematic	view	of	the	model	as	described	in	Methods.	The	whole	model	is	shown	

in	(a)	and	the	chromosome	instability	model	is	shown	in	(b).	

	 	



Viability
Selection 3D growth

Daughter Cell 1

Daughter Cell 2

Somatic Cell

Changing TME
Survived Cell

 Fitness
Phenotype/
Genotype

 Fitness
Mutation

Asexual Reproduction

CIN, 

Somatic cell with new mutations

L loci
1
2
3

L
L-1

L loci
1
2
3

L
L-1

Chromosome instability, rc

M P

rc 1-rc

L loci
1
2
3

L
L-1

L loci
1
2
3

L
L-1

M M

New M New P

L loci
1
2
3

L
L-1

L loci
1
2
3

L
L-1

M P

New M New P

L loci
1
2
3

L
L-1

L loci
1
2
3

L
L-1

PP

New M New P

L loci
1
2
3

L
L-1

L loci
1
2
3

L
L-1

P M

New M New P

Possible combinations in daughter cells
1 2 3 4

a

b

Model Scheme

Symbols and Abbreviations:

Tumour microenvironment (TME) changing dynamics

Mutation rate

Chromosome instability (CIN) rate

M Maternal chromosome
P Paternal chromosome



	 3	

	

Figure	S2.	Examples	of	the	adaptive	cancer	fitness	landscapes	used	in	this	study.		

	

These	examples	illustrate	how	the	fitness	landscapes	look	like	when	different	

parameters	are	used.	a-d,	four	different	selection	intensities	are	used	in	this	study:	

σ 2 = 10 	(a),		σ 2 = 40 	(b),	σ 2 = 70 (c)	and	σ 2 = 100 (d).	e-f,	to	illustrate	how	selections	

are	correlated	along	traits	in	the	fitness	landscape	two	selection	correlations	are	used	

(see	equations	(9)	and	Methods	for	more	details):	σ 2 = 10 ,	 ρS = 0.9 (e)	and		σ
2 = 10 ,	

ρS = 0.5(f).		
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Figure	S3.	Cancer	evolutionary	trajectories	with	a	static	TME	optimum	and	different	initial	

conditions.	

	

These	results	demonstrate	that	under	a	static	TME	optimum	the	initial	fitness	of	cancer	

cell	determines	whether	subsequent	new	driver	mutations	could	be	observed.		If	the	

initial	fitness	is	high	(w0 = 1)	there	is	no	observation	of	any	new	driver	mutation	(a).	If	a	

lower	fitness	is	assumed	(w0 <1),	there	is	a	maximum	of	three	driver	mutations	

observed	(b).	However,	if	we	assume	the	mutational	variance	m2 = 1×10−5 	and	the	

selection	intensity	σ 2 = 1 ,	the	cancer	with	an	initial	fitness	w0 = 0.9 	can	adapt	to	the	

static	TME	optimum	(c)	by	many	“mini	driver”	mutations	(d).	

	

	 	



a b

c d

step
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

-0.002

-0.001

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

S
el

ec
tio

n 
co

ef
fic

ie
nt

, s

0.9Initial fitness

,

0 2000 4000 6000 8000 1000012000 14000 16000 1800020000 22000 24000 2600028000 30000 32000 3400036000

0.900

0.905

0.910

0.915

0.920

0.925

0.930

0.935

0.940

0.945

0.950

0.955

0.960

0.965

0.970

0.975

0.980

0.985

0.990

Initial fitness

0.9

F
itn

es
s,

 

generation

step
1 2 3

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.9
0.8
0.7
0.6

Initial fitness

,

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000 24000 26000 28000 30000 32000 34000 36000

0.60

0.62

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

F
itn

es
s,

 

generation

1
0.9
0.8
0.7
0.6

Initial fitness



	 5	

Figure	S4.	Mean	cancer	cell	population	size	under	various	selection	intensities	and	

phenotypic	optimum	change	rates.	

	

Cancer	populations	evolve	under	four	different	rates	of	phenotypic	optimum	change	(

v1 = 0.05 ,	 v1 = 5×10
−3 ,	 v1 = 5×10

−4 	and	 v1 = 5×10
−5 )	with	σ 2 = 10 	(a),	σ 2 = 40 (b),	

σ 2 = 70 (c)	and	σ 2 = 100 (d).	Error	bars	are	s.e.m.	and	each	point	represents	100	

independent	simulations.	The	dash	line	represents	population	size	at	 N = 1×106 .	
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Figure	S5.	Mean	cancer	cell	fitness	under	various	selection	intensities	and	TME	conditions.		

	

These	results	indicate	that	selection	intensity	and	phenotypic	optimum	change	speed	

can	significantly	affect	the	evolutionary	trajectories	of	a	cancer.	Cancer	populations	

evolve	under	four	different	rates	of	phenotypic	optimum	change	( v1 = 0.05 ,	 v1 = 5×10
−3

,	

v1 = 0.05 ,	 v1 = 5×10
−4 	and	 v1 = 5×10

−5 )	with	σ 2 = 10 	(a),	σ 2 = 40 (b),	σ 2 = 70 (c)	and	

σ 2 = 100 (d).	Error	bars	are	s.e.m.	and	each	point	represents	100	independent	

simulations.	The	line	represents	a	simple	linear	regression	fit.		Due	to	immediate	

population	extinction	data	are	not	shown	for	 v1 = 0.5 .	The	dash	line	represents	mean	

fitness	0.5.	When	mean	population	fitness	reaches	this	value	it	is	destined	to	be	extinct.	
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Figure	S6.	Mean	selection	coefficients	of	adaptive	mutations	as	per	figure	S5.	

	

These	results	indicate	the	selection	intensity	and	phenotypic	optimum	changing	speed	

play	a	significant	role	in	cancer	adaptive	evolution.	
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Figure	S7.	Effect	of	chromosome	instability	on	cancer	adaptation.	

	

The	two	plots	show	that	too	much	chromosome	instability	is	deleterious	for	cancer	

while	the	right	amount	can	facilitate	cancer	adaptation	when	the	TME	selective	pressure	

is	high	(e.g.,	high	rate	of	phenotypic	optimum	change).	The	relation	between	

chromosome	instability	rate	and	selection	coefficient	of	selected	driver	mutations	is	

shown	in	a.	The	relation	between	chromosome	instability	rate	and	mean	population	

fitness	is	shown	in	b.	
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Figure	S8.	Effect	of	mutation	rate	on	cancer	adaptation.	

	

These	results	show	that	when	the	phenotypic	optimum	changes	increasing	mutation	

rate	can	be	beneficial	to	cancer	as	this	can	provide	more	beneficial	mutations	for	

selection	to	act	on.	Indeed,	as	the	TME	slows	down	this	benefit	becomes	rather	limited.	

The	effect	of	two	different	mutation	rates	( µ = 4×10−6 	and	µ = 4×10−4 )	on	adaptation	is	

shown	for	selection	coefficient	of	selected	driver	mutations	in	a	and	mean	population	

fitness	in	b.	Due	to	immediate	population	extinction	data	are	not	shown	for	 v1 = 0.5 .	
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Figure	S9.	Cancer	adaptive	evolution	with	different	rates	of	selection	correlation	between	

traits.	 ρS = 0.75 	

	

In	a	slowly	changing	TME	the	phenotypic	effects	of	fixed	mutations	faithfully	capture	the	

selection	correlation,	which	is	defined	by	the	fitness	function	(see	equation	(2)	and	

Figure	S2	for	different	shapes	of	the	fitness	landscape	due	different	selection	correlation	

values,	defined	by	 ρS ).	We	have	two	traits	here.	The	first	trait,	α1 ,	is	the	trait	that	has	a	

changing	optimum,	while	the	second	trait,	α 2 ,	has	a	contant	phenotypic	optium.	

Populations	evolve	under	four	different	selection	correlations	and	phenotypic	optimum	

change	rates.	a,	e,	i	and	m,	 ρS = 0.25 .	b,	f,	j	and	n,	 ρS = 0.5 .	c,	g,	k	and	o,	.		d,	h,	l	and	p,	

ρS = 0.9 .	
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Figure	S10.		Modulating	TME	selection	through	cancer	cell-TME	interaction.	

	

TME	selection	is	modulated	by	modeling	selection	intensity	as	a	robustness	parameter	

with	a	cost	to	the	cancer	cell.	These	simulations	are	performed	in	a	directionally	

changing	TME	with	 v1 = 5×10
−3 ,	 v1 = 5×10

−4 	and	 v1 = 5×10
−5 ,	respectively.	The	relation	

between	mean	population	fitness	and	robustness	is	fitted	with	a	simple	linear	model.	

The	population	is	evolved	under	low	( N = 1×106 ,	blue	line)	and	high	(N = 1×103 ,	red	

line)	genetic	drift,	respectively.	
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Figure	S11.	Mean	fitness	and	selection	coefficient	of	cancer	adaptation	in	a	randomly	

changing	TME.		

	

These	results	show	that	the	increased	variance	in	random	changes	of	the	TME	acts	

against	adaptive	cancer	evolution,	which	leads	to	decreased	mean	population	fitness	

and	increased	selection	coefficients	of	fixed	mutations.	The	mean	fitness	(a)	and	

selection	coefficient	(b)	are	plotted	against	different	standard	deviations	(SD)	of	the	

random	phenotypic	optimum	change.	Error	bars	are	the	standard	error	of	the	mean	

(s.e.m.),	and	each	point	represents	100	independent	simulations.		
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Figure	S12.	Mean	fitness	and	selection	coefficient	of	cancer	adaptation	in	a	directionally	

changing	TME	with	a	random	component.		

	

Here	it	is	similar	to	Figure	S11	that	increased	variance	in	the	directionally	changing	TME	

acts	against	adaptive	cancer	evolution.	The	mean	fitness	(a)	and	selection	coefficient	(b)	

are	plotted	against	different	standard	deviations	(SD)	of	the	random	change.	Different	

colours	represent	different	speed	of	the	directional	change.	Error	bars	are	the	standard	

error	of	the	mean	(s.e.m.),	and	each	point	represents	100	independent	simulations.		
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Figure	S13.	Mean	fitness	and	selection	coefficient	of	cancer	adaptation	in	a	cyclically	

changing	TME.	

	

These	results	suggest	that	when	the	period	of	the	cyclically	changing	TME	is	fixed	the	

increased	amplitude	can	decrease	mean	population	fitness	and	increase	the	selection	

coefficients	of	fixed	mutations,	which	act	against	adaptive	cancer	evolution.	The	mean	

fitness	(a)	and	selection	coefficient	(b)	are	plotted	against	different	amplitudes	of	the	

phenotypic	optimum	change.	The	period	is	set	at	 P = 360 .	Error	bars	are	the	standard	

error	of	the	mean	(s.e.m.),	and	each	point	represents	100	independent	simulations.		
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Figure	S14.	Variance	in	population	fitness	of	cancer	adaptation	in	a	cyclically	changing	

TME.	

	

The	summary	of	the	simulations	shows	that	the	variance	of	the	population	fitness	can	be	

lower	when	the	phenotypic	optimum	in	the	TME	has	high	fluctuations.	The	period	is	set	

at	 P = 15 ,	 P = 90 ,	 P = 180 ,	 P = 270 	and	 P = 360 ,	repsectively.	For	each	given	period	 P ,	
we	simulated	five	different	amplitudes,	namely,	 A = 0.5 ,	 A = 2 ,	 A = 4 ,	 A = 6 	and	 A = 8 ,	

respectively.		Error	bars	are	the	standard	error	of	the	mean	(s.e.m.),	and	100	

independent	simulations	were	performed	for	each	parameter	combination.		
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Figure	S15.		Sub-clonal	competition	initiated	by	mini	drivers	in	a	directionally	changing	

TME.	

	

The	ancestral	clone	is	initiated	with	10	cells,	while	the	two	sub-clones	are	both	started	

with	2	cells.	Each	parameter	combination	(a-c)	is	performed	100	times	and	sampled	

every	10	generations.	The	two	neutral	mutant	sub-clones	are	shown	in	(a)	for	easy	

comparison.	The	two	sub-clones	initiated	by	two	driver	mutations	with	equal	

competition	are	shown	in	(b),	while	the	two	sub-clones	with	stronger	competition	are	

shown	in	(c).	Three	different	summary	statistics	are	shown,	namely,	mean	population	

size	(N),	mean	population	fitness	(w),	and	variance	of	the	mean	fitness	(w-var).	
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Figure	S16.	Sub-clonal	competition	initiated	by	intermediate	drivers	in	a	

directionally	changing	TME	as	per Figure S15.	
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Figure	S17.	Sub-clonal	competition	initiated	by	classic	major	drivers	in	a	

directionally	changing	TME	as	per Figure S15.	
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Figure	S18.	Sub-clonal	competition	initiated	by	mini	drivers	in	a	randomly	changing	

TME	as	per Figure S15.	
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Figure	S19.	Sub-clonal	competition	initiated	by	intermediate	drivers	in	a	

randomly	changing	TME	as	per Figure S15.	
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Figure	S20.	Sub-clonal	competition	initiated	by	classic	major	drivers	in	a	

randomly	changing	TME	as	per Figure S15.	
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Figure	S21.	Sub-clonal	competition	initiated	by	mini	drivers	in	a	cyclically	changing	

TME	as	per Figure S15.	
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Figure	S22.	Sub-clonal	competition	initiated	by	intermediate	drivers	in	a	

cyclically	changing	TME	as	per Figure S15.	
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Figure	S23.	Sub-clonal	competition	initiated	by	classic	major	drivers	in	a	

cyclically	changing	TME	as	per Figure S15.	
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Figure	S24.	Properties	of	genotypic	landscapes	generated	from	Fisher’s	phenotypic	

landscapes	with	a	changing	TME.	

The	simulations	are	performed	in	a	changing	TME	with	three	different	rates	of	the	

phenotypic	optimum	( v1 = 5×10
−3 ,	 v1 = 5×10

−4 	and	 v1 = 5×10
−5 )	using	three	ancestral	

fitness,	0.1	(a),	0.5	(b)	and	0.9	(c),	respectively.	Each	parameter	combination	is	

simulated	100	times.	In	each	simulation	we	calculated	the	epistasis	among	selected	

driver	mutations,	the	fraction	of	sign	epistasis	and	the	roughness	to	slope	ratio	with	

different	rates	of	phenotypic	optimum	change	following	Methods.	We	fitted	the	results	

with	linear	models	to	show	the	general	rations	between	these	parameters	and	

phenotypic	optimum	change	rates.		
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Figure	S25.	Relation	between	roughness	to	slop	ratio,	epistasis	and	the	fraction	of	sign	

epistasis	as	per	Figure	S24.	

We	use	the	same	simulations	as	in	Figure	S24	to	demonstrate	the	simple	relation	

between	the	fraction	of	sign	epistasis	and	roughness	to	slope	ratio.	Both	can	be	used	to	

characterize	the	ruggedness	of	the	underlying	genotypic	landscapes	generated	from	

Fisher’s	phenotypic	landscape.	
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Figure	S26.	Cancer	phylogenies	under	randomly	and	cyclically	changing	TME	selection	

dynamics	

Example	phylogenetic	trees	are	shown	for	simulated	cancers	under	two	different	TME	

selective	dynamics.	a-d,	four	phylogenetic	trees	are	shown	for	a	randomly	changing	TME	

with	four	different	standard	deviations:	δ = 0.5 (a),	δ = 1(b),	δ = 1.5(c)	and	δ = 2 (d).	e-

h,	four	phylogenetic	trees	are	shown	for	a	cycling	TME	with	four	different	amplitudes:	

A = 0.5(e),	 A = 2 (f),	 A = 4 (g)	and	 A = 6 (h).	All	cancers	were	longitudinally	sampled	for	

every	100	generations	for	a	fixed	period	of	time	of	10000	generations.	The	maximum	

population	size	is	set	at	 N = 105 .	The	scale	bar	represents	the	number	of	cell	divisions.	
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Figure	S27.	Cancer	adaptation	with	different	spatial	constraints	and	changing	TMEs.	

These	results	show	that	increasing	the	3D	space	size	of	the	TME	can	facilitate	adaptation	

especially	when	the	phenotypic	optimum	changes	fast.	These	simulations	are	performed	

with	three	different	optimum	changing	dynamics:	directional	(a,	d),	random	(b,	e)	and	

cyclic	(c,	f).	The	maximum	population	size	is	set	at	 N = 1×105 	for	all	simulations.	The	3D	

space	size	for	spatial	constraints	is	set	at	3003	(green),	2003	(red)	and	1003	(blue),	

respectively	
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Figure	S28.	Quantifying	phylogeny	asymmetry	under	different	spatial	constraints	and	

changing	TMEs.	

The	measure	of	phylogeny	asymmetry	with	the	number	of	cherries	and	the	normalized	

Sackin’s	index	can	clearly	reflect	the	tumour’s	underlying	evolutionary	dynamics.	When	

the	phenotypic	optimum	changes	fast,	the	increased	number	of	cherries	in	larger	TME	

space	indicate	large	population	size	during	each	sampling	interval	(a-c),	which	could	

make	selection	more	effective.	The	increased	normalized	Sackin’s	index	further	

support	this	(d-f).	These	simulations	are	performed	as	per	Figure	S27.	
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Figure	S29.	Illustration	of	the	fitness	landscape	shifts	due	to	different	anti-cancer	

treatment	strategies.		

These	figures	illustrate	how	the	optimum	of	a	fitness	landscape	moves	quantitatively	

and	how	the	reduced	selection	intensity	leads	to	a	“flatter”	fitness	landscape	in	cancer	

treatments.	a,	fitness	landscape	changes	with	different	(constant)	TME	optimum	due	to	

different	treatments.	b,	the	optimum	of	the	fitness	landscape	changes	from	 z0
opt = 0 	to	

z1
opt = 5 .	c,	fitness	landscape	optimum	changes	from	 z0

opt = 0 	to	 z1
opt = 8 .	d,	fitness	

landscape	optimum	changes	from	 z0
opt = 0 	to	 z1

opt = 8 	and	selection	intensity	from	

σ 2 = 10 	to	σ 2 = 40 .	Clearly,	the	shorter	distance	that	an	optimum	travels	gives	a	less

“steep”	valley	for	the	cancer	cells	to	cross	(evolve	resistance).	Similarly,	the	reduced

selection	intensity	(a	“flatter”	fitness	landscape)	also	gives	the	cancer	cells	a	less	“steep”

valley	to	cross	from	the	original	fitness	landscape	to	the	new	one	(compare	c	and	d).
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Figure	S30.	Cancer	evolution	under	different	anti-cancer	treatment	strategies.		

	

Example	3D	snapshots	are	taken	sequentially	after	sudden	change	of	the	TME	optimum	

due	to	treatments	(a-o).	Four	different	treatments	maintaining	four	different	levels	of	

TME	optimum	are	shown:	 z1
opt = 5 (a-e),	 z1

opt = 6 (f-j),	 z1
opt = 7 (k-o)	and	 z1

opt = 8 	(no	3D	

snapshots	are	taken	due	to	immediate	population	extinction	after	treatment),	

respectively.	For	understanding	clonality	of	cancer	cells	after	treatments,	e,	j	and	o	show	

the	clonal	expansion	of	cancer	cells	after	treatments	for	 z1
opt = 5 ,	 z1

opt = 6 	and	 z1
opt = 7 ,	

respectively.	In	order	to	track	the	precise	fitness	status	of	the	population	the	sample	is	

taken	for	every	generation.	The	population	fitness	plotted	against	generation	time	is	

summarized	for	each	treatment	(p),	and	the	dashed	line	indicates	when	the	treatment	

starts	(after	generation	100).	We	first	assume	that	the	cancer	has	evolved	to	a	constant	

TME	optimum	 z0
opt = 0 	and	allow	it	100	generations	to	accumulate	genetic	variation	and	

reach	maximum	tumour	size	( N = 1×107 ).		We	then	assess	four	different	TME	optima	to	

represent	different	treatment	strategies	( z1
opt = 5,6,7,8 ,	see	equation	(17),	

Supplementary	Movies	S22-S25)	that	treat	the	cancer	for	about	33	months	or	more	(e.g.,	

1000	generations),	reducing	mean	population	fitness	below	w = 0.1 .	We	illustrate	how	

the	optimum	of	the	fitness	landscape	changes	from z0
opt 	to	 z1

opt 	under	each	treatment	

(Supplementary	Figure	S29).	All	treatments	reduce	the	fitness	of	all	cancers	below	

w = 0.1(a-o)	and	at	 z1
opt = 8 	the	cancer	is	successfully	cured	and	the	population	is	extinct	

(p),	but	due	to	mutation	and	smaller	phenotypic	change	(e.g.,	because	of	smaller	dose	or	

effectiveness	of	the	delivery)	the	cancers	survive	at	 z1
opt = 5,6,7 and	quickly	relapse	in	

less	than	two	months	(p).		
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Figure	S31.	Cancer	adaptation	with	different	resistance	mechanisms	under	treatment	

strategies	maintaining	a	constant	TME	optimum.		

	

Different	resistance	mechanisms	lead	to	different	3D	spatio-temporal	patterns	of	sub-

clonal	evolution.	Example	3D	snapshots	are	taken	sequentially	after	the	sudden	change	

of	TME	optimum	( z1
opt = 8 ,σ 2 = 10 )	due	to	treatments	(a-d),	however,	the	population	has	

three	different	resistance	mechanisms	to	avoid	population	extinction.	a,	the	cancer	cells	

have	more	loci	contributing	to	adaptation	( L = 50 	).	We	find	two	adaptive	mutations	at	
generation	113	and	generation	1033,	which	are	born	in	generation	101	and	228	with	

s = 38.281	and		 s = 0.5976 ,	respectively.	b,	the	cancer	cells	have	higher	mutation	rates	

(µ = 4×10−4 	).	In	this	case	we	find	one	adaptive	mutation	at	generation	977	born	at	

generation	101	with	a	very	large	selection	coefficient,	 s = 57.3361 ,	indicating	very	strong	

selection	leading	to	the	fixation	of	this	mutation	with	very	large	fitness	effect.	c,	the	

cancer	cells	evolve	in	a	fitness	landscape	with	lower	selection	intensity	(σ 2 = 40 	).	The	

population	fitness	is	summarized	in	d	for	each	treatment	strategy.	
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Figure	S32.	Cancer	adaptation	under	treatment	strategies	that	continuously	change	the	

TME	optimum.		

	

Treatment	strategies	continuously	modify	the	TME	optimum	leading	to	different	3D	

patterns	of	spatio-temporal	patterns	of	sub-clonal	evolution	and	evolutionary	

trajectories.	Example	3D	snapshots	are	taken	sequentially	after	treatments	(a-d).	Three	

different	treatments	maintaining	three	different	rates	of	phenotypic	optimum	change:	

v1 = 0.5 (a),	 v1 = 0.05 	(b)	and	 v1 = 0.005 	(c),	respectively.	The	population	fitness	plotted	

against	generation	time	is	summarized	in	d	for	each	treatment	strategy.	Note	that	the	

sample	is	taken	for	every	generation,	and	the	dashed	line	indicates	when	the	treatment	

starts	(after	generation	100).	

	 	





	 35	

Supplementary Movies 
	

Movie	S1.	A	simulation	movie	showing	3D	cancer	adaptation	under	a	static	TME	with	

v1 = 0 .	

	

Movie	S2.	A	simulation	movie	showing	3D	cancer	adaptation	under	a	phenotypic	

optimum	change	rate	 v1 = 0.5 .	

	

Movie	S3.	A	simulation	movie	showing	3D	cancer	adaptation	under	a	phenotypic	

optimum	change	rate	 v1 = 0.05 .	

	

Movie	S4.	A	simulation	movie	showing	3D	cancer	adaptation	under	a	phenotypic	

optimum	change	rate	 v1 = 5×10
−3 .	

	

Movie	S5.	A	simulation	movie	showing	3D	cancer	adaptation	under	a	phenotypic	

optimum	change	rate	 v1 = 5×10
−4 .	

	

Movie	S6.	A	simulation	movie	showing	3D	cancer	adaptation	under	a	phenotypic	

optimum	change	rate	 v1 = 5×10
−5 .	

	

Movie	S7.	A	simulation	movie	showing	3D	cancer	adaptation	under	a	phenotypic	

optimum	change	rate	 v1 = 5×10
−5 .	In	this	simulation	we	have	initial	fitness	w = 0.1 ,	

initial	population	size	 N = 104 .	

	

Movie	S8.	A	simulation	movie	showing	3D	cancer	adaptation	under	a	phenotypic	

optimum	change	rate	 v1 = 0.05 ,	initial	fitness	w = 0.1 ,	initial	population	size	 N = 107 .	

	

Movie	S9.	A	simulation	movie	showing	3D	cancer	adaptation	under	a	phenotypic	

optimum	change	rate	 v1 = 5×10
−3 ,	initial	fitness	w = 0.1 ,	initial	population	size	 N = 107 .	
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Movie	S10.	A	simulation	movie	showing	3D	cancer	adaptation	under	a	phenotypic	

optimum	change	rate	  v1 = 5×10−4 ,	initial	fitness	w = 0.1 ,	initial	population	size	 N = 107 .	

	

Movie	S11.	A	simulation	movie	showing	3D	cancer	adaptation	under	a	phenotypic	

optimum	change	rate	 v1 = 5×10
−5 ,	initial	fitness	w = 0.1 ,	initial	population	size	 N = 107 .	

	

Movie	S12.	A	simulation	movie	showing	3D	cancer	adaptation	under	a	phenotypic	

optimum	change	rate	 v1 = 0.05 ,	initial	fitness	w = 0.5 ,	initial	population	size	 N = 107 .	

	

Movie	S13.	A	simulation	movie	showing	3D	cancer	adaptation	under	a	phenotypic	

optimum	change	rate	 v1 = 5×10
−3 ,	initial	fitness	w = 0.5 ,	initial	population	size	 N = 107 .	

	

Movie	S14.	A	simulation	movie	showing	3D	cancer	adaptation	under	a	phenotypic	

optimum	change	rate	 v1 = 5×10
−4 ,	initial	fitness	w = 0.5 ,	initial	population	size	 N = 107 .	

	

Movie	S15.	A	simulation	movie	showing	3D	cancer	adaptation	under	a	phenotypic	

optimum	change	rate	 v1 = 5×10
−5 ,	initial	fitness	w = 0.5 ,	initial	population	size	 N = 107 .	

	

Movie	S16.	A	simulation	movie	showing	3D	cancer	adaptation	under	a	cyclically	

changing	TME.	The	amplitude	is	set	at	 A = 4 	with	period	 P = 360 .	

	

Movie	S17.	A	simulation	movie	showing	3D	cancer	adaptation	under	a	cyclically	

changing	phenotypic	optimum.	The	amplitude	is	set	at	 A = 6 	with	period	 P = 360 .	

	

Movie	S18.	A	simulation	movie	showing	3D	sub-clonal	competition	under	a	randomly	

changing	TME.		The	two	mutant	sub-clones	are	initiated	by	two	neutral	mutations	(red	

and	yellow),	respectively.	This	simulation	shows	that	a	neutral	mutant	sub-clone	can	

dominate	the	tumour	and	become	fixed,	which	suggests	the	changing	TME	dynamics	

plays	an	important	role	in	determining	the	evolutionary	trajectories	of	sub-clones.	The	

standard	deviation	of	the	randomly	changing	TME	is	set	at	δ = 1.5 .	
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Movie	S19.	A	simulation	movie	showing	3D	sub-clonal	competition	under	a	cyclically	

changing	TME.	The	two	mutant	sub-clones	are	initiated	by	two	mini	drivers	(red	with	

1%	selective	advantage	and	yellow	with	5%	selective	advantage),	respectively.	This	

simulation	shows	that	one	of	the	sub-clones	is	lost	due	to	clonal	competition	while	the	

other	sub-clone	becomes	dominant	and	fixed.	The	TME	amplitude	is	set	at	 	with	

period	 P = 360 .	

	

Movie	S20.	A	simulation	movie	showing	3D	sub-clonal	competition	under	a	randomly	

changing	TME.	The	two	mutant	sub-clones	are	initiated	by	two	intermediate	drivers	

both	with	10%	selective	advantage	(red	and	yellow),	respectively.	This	simulation	

shows	that	the	two	sub-clones	can	coexist	for	an	extremely	long	period	of	time.	The	

standard	deviation	of	the	changing	TME	is	set	at	δ = 1.5 .	

	

Movie	S21.	A	simulation	movie	showing	3D	sub-clonal	competition	under	a	randomly	

changing	TME.	The	two	mutant	sub-clones	are	initiated	by	two	major	classic	drivers	

both	with	20%	selective	advantage	(red	and	yellow),	respectively.	This	simulation	

shows	that	although	the	two	sub-clones	have	large	selective	advantage,	due	to	strong	

competition	and	a	random	TME	both	sub-clones	went	extinct	eventually.	The	standard	

deviation	of	the	changing	TME	is	set	at	δ = 1 .	

	

Movie	S22.	A	simulation	movie	showing	3D	cancer	adaptation	under	a	treatment	

strategy	maintaining	a	constant	TME	optimum	 z1
opt = 5 .		

	

Movie	S23.	A	simulation	movie	showing	3D	cancer	adaptation	under	a	treatment	

strategy	maintaining	a	constant	TME	optimum	 z1
opt = 6 .		

	

Movie	S24.	A	simulation	movie	showing	3D	cancer	adaptation	under	a	treatment	

strategy	maintaining	a	constant	TME	optimum	 z1
opt = 7 .		

	

Movie	S25.	A	simulation	movie	showing	3D	cancer	adaptation	under	a	treatment	

strategy	maintaining	a	constant	TME	optimum	 z1
opt = 8 .		Note	that	in	this	simulation	the	

cancer	population	went	extinct.	

A = 2
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Movie	S26.	A	simulation	movie	showing	3D	cancer	adaptation	with	a	resistance	

mechanism	under	a	treatment	strategy	maintaining	a	constant	TME	optimum	at	 z1
opt = 8 .		

The	resistance	mechanism	here	is	the	number	of	loci	contributing	to	adaptation	is	

increased	to	 L = 50 	from	 L = 5 .	Comparing	to	Movie	S25,	the	population	extinction	is	
avoided.	

	

Movie	S27.	A	simulation	movie	showing	3D	cancer	adaptation	with	a	resistance	

mechanism	under	a	treatment	strategy	maintaining	a	constant	TME	optimum	at	 z1
opt = 8 .		

The	resistance	mechanism	here	is	increased	mutation	rate	from	µ = 4×10−5 	to	

µ = 4×10−4 .	Comparing	to	Movie	S25,	the	population	extinction	is	also	avoided.	

	

Movie	S28.	A	simulation	movie	showing	3D	cancer	adaptation	with	a	resistance	

mechanism	under	a	treatment	strategy	maintaining	a	constant	TME	optimum	at	 z1
opt = 8 .		

The	resistance	mechanism	here	is	that	the	TME	selection	intensity	is	reduced	from	

σ 2 = 10 	to	σ 2 = 40 	(the	width	is	increased	see	Supplementary	Figure	S2a	and	2b).	

Comparing	to	Movie	S25,	the	population	extinction	is	also	avoided.	
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Supplementary Notes 
In	the	Supplementary	Notes	1-3,	we	investigate	how	other	five	model	parameters	could	

have	affected	cancer	adaptation.	First,	we	find	that	different	chromosome	instability,	

mutation	rate	and	number	of	cancer	traits	can	affect	cancer	adaptation	to	various	

degrees	(Supplementary	Figures	S7-S8,	Supplementary	Note	1).	Particularly,	we	show	

that	only	the	right	amount	of	chromosome	instability,	the	“just-right”	model,	can	

facilitate	cancer	adaption	when	the	TME	selection	is	harsh	and	too	much	chromosome	

instability	is	indeed	deleterious.	Second,	we	demonstrate	that	the	pleiotropic	driver	

mutations	and	selection	correlation	can	lead	to	systematic	maladaptation	among	cancer	

traits	and	therefore	hamper	cancer	adaptation	(Supplementary	Figure	S9,	

Supplementary	Note	2),	which	could	be	exploited	for	treatment	purposes.	Third,	our	

further	model	extension	shows	that	TME	selection	could	be	modulated	through	cancer	

cell-TME	interaction	with	an	adjustable	fitness	cost	(Supplementary	Figure	S10,	

Supplementary	Note	3).	

	

Supplementary	Note	1	

Potential	effects	of	chromosome	instability,	mutation	and	number	of	cancer	traits	on	

cancer	adaptation	in	a	changing	TME	

We	seek	to	understand	how	chromosome	instability	rate,	mutation	rate	and	the	number	

of	cancer	traits	affect	cancer	adaptation.	First,	for	simplicity	we	only	performed	the	

same	simulations	shown	in	the	results	section,	where	the	cancer	cell	population	starts	

from	an	optimum	phenotype	with	seven	different	chromosome	instability	rates.	The	

results	are	consistent	with	the	notion	that	too	much	chromosome	instability	is	

deleterious	and	the	right	amount	can	help	tumour’s	adaptation	when	the	environmental	

selective	pressure	is	strong(1).	This	pattern	can	be	clearly	shown	when	the	chromosome	

instability	rate	increases	there	is	a	clear	decrease	of	mean	tumour	fitness	when	the	TME	

selective	pressure	is	strong	(v=0.05,	Supplementary	Figure	S7).		Second,	when	the	per	

locus	mutation	rate	is	increased	from		 4×10−6 	to	4×10−4 ,	there	is	indeed	an	increase	of	

mean	cancer	cell	population	fitness,	accompanied	by	a	reduction	in	mean	selective	

advantage	of	driver	mutations	(Supplementary	Figure	S8).	Third,	as	we	increase	the	

number	of	cancer	cell	traits	(from	1	dimension	to	8	dimensions,	see	Methods),	we	find	

that	there	is	a	cost	of	complexity	associated	with	adaptive	cancer	evolution.	In	
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particular,	the	mean	fitness	of	the	population	decreases	and	the	mean	selective	

advantage	increases	during	adaptation	when	the	cancer	cell	has	an	increased	number	of	

traits	and	changing	TME	(Figure	2d-e).	This	observation	could	be	understood	in	terms	of	

the	hallmark	traits	of	cancer	cells(2).	With	increase	number	of	hallmark	traits,	the	rate	

of	cancer	population	adaptation	could	be	reduced.	However,	if	some	of	the	eight	

hallmark	traits	act	in	the	same	dimension	through	modularity	the	cost	could	be	reduced	

but	can	not	be	eliminated(3).	As	a	result,	the	cancer	with	lower	phenotypic	complexity	

may	persist	for	longer	period	of	time	and	it	is	more	likely	to	establish	a	clinically	

significant	cancer.	
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Supplementary	Note	2	

Effects	of	selection	correlation	and	maladaptation	among	cancer	traits	

In	cancer	evolution,	most	master	driver	mutations	have	pleiotropic	effects,	a	single	

genotype	affecting	multiple	pathways	and	several	cancer	traits.	Although	we	assumed	

that	each	mutation	affects	all	traits	(universal	pleiotropy),	its	fitness	effect	on	each	trait	

may	be	different.	In	other	words,	the	driver	mutations	may	have	different	fitness	effects	

on	different	traits	and	the	selection	is	therefore	correlated	(equation	(2)),	which	can	be	

illustrated	by	the	shapes	of	the	fitness	landscapes	with	different	levels	of	correlation	

(see	Supplementary	Figure	S2).	Similarly,	a	mutation	(genotype)	may	have	different	

phenotypic	effects	on	each	trait.	So,	the	mutational	effects	on	traits	can	be	independent	

or	correlated	(similar	to	equation	(2)).	Indeed,	we	find	that	when	the	phenotypic	

optimum	changes	slowly,	the	fitness	effects	of	driver	mutations	along	traits	indeed	

correlate	(Supplementary	Figure	S9).	When	adapting	to	the	first	trait	with	a	changing	

optimum	selection	correlation	causes	systematic	maladaptation	of	cancer	population	in	

the	second	trait	(this	trait	has	a	constant	optimum	at	the	origin),	which	can	be	clearly	

seen	in	a	linear	fasion	(Supplementary	Figure	S9).	Moreover,	we	find	that	when	the	

phenotypic	optimum	changes	fast	the	phenotypic	effects	of	driver	mutations	along	traits	

have	similar	levels	of	correlation	as	correlations	of	mutational	effects	(data	not	shown).	

Although	in	clinical	settings	the	effects	of	selectional	and	mutational	correlations	on	

cancer	progression	are	unclear,	an	example	may	be	multiple	mutations	with	pleiotropic	

effect	on	multiple	cancer	phenotypic	traits	in	Wnt	signalling	pathway	genes	(APC,	

TCF7L2,	SOX9)	in	colorectal	cancer,	or	multiple	pleiotropic	mutations	in	Pi3K	genes	(e.g.	

KRAS	and	PIK3CA)	in	several	cancers.		
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Supplementary	Note	3	

Modulating	TME	selection	through	cancer	cell-TME	interaction	

As	shown	above	we	did	not	consider	cancer	cell-TME	interactions.	However,	there	might	

be	a	feedback/interplay	between	cancer	cells	and	their	TME	affecting	a	cancer’s	

evolutionary	trajectory.	We	therefore	model	the	TME	selection	intensity	as	the	genetic	

robustness	of	cancer	cells	with	a	fitness	cost	(4),	where	lowering	TME	selection	intensity	

and/or	increasing	the	robustness	of	the	cancer	cell’s	response	will	come	at	a	fitness	cost	

to	the	cancer	cells.	Briefly,	we	introduce	a	cost	parameter	in	the	fitness	function	in	the	

simple	form	of		

	

w z,t( ) = 1
C(r 2 )

exp − z − zopt t( )( )T R−1 z − zopt t( )( )⎡
⎣⎢

⎤
⎦⎥
.	

	

Here	C r 2( ) 	is	a	cost	function	and	 r 2 	is	the	robustness	( r 2 ≥1).	The	matrix	R 	is	a	real
n× n 	positive	definite	and	symmetrical	matrix	and	can	be	defined	similarly	as	S 	in	

equation	(2).		To	understand	the	effect	of	robustness,	we	perform	simulations	under	

different	rates	of	phenotypic	optimum	changes.	Moreover,	we	consider	whether	the	

cancer	cells	evolving	under	low	or	high	genetic	drift	would	make	a	difference	(Drift	is	

generally	linked	to	population	size).	In	general,	high	robustness	is	deleterious	to	cancer	

cells	as	this	can	lead	to	high	cost	to	the	cancer	cells	(Supplementary	Figure	S10),	so	

there	is	a	trade-off	here.	However,	it	is	more	deleterious	to	cancer	cells	evolving	in	a	

slowly	changing	TME	than	in	a	fast	changing	TME.	Interestingly,	when	the	phenotypic	

optimum	change	speed	is	low,	increasing	robustness	can	be	more	deleterious	under	low	

genetic	drift	(Supplementary	Figure	S10).	

	

	 	



	 43	

Supplementary	Note	4	

Cancer	adaptation	in	randomly	and	cyclically	changing	TMEs	

First,	when	the	phenotypic	optimum	changes	randomly,	the	resulting	increase	in	its	

variance	at	different	time	points	always	acts	against	cancer	adaptation	(equations	(6)-

(8)),	leading	to	reduced	mean	population	fitness	and	a	requirement	for	driver	mutations	

with	higher	mean	fitness	effect	(Supplementary	Figure	S11).	Second,	when	we	add	a	

random	component	into	a	directionally	changing	TME	(equations	(9)-(11)),	the	

increased	variance	caused	by	the	random	component	also	acts	against	cancer	

adaptation,	producing	similar	results	to	a	purely	randomly	changing	TME	

(Supplementary	Figure	S12).	Third,	when	the	phenotypic	optimum	changes	cyclically	

(equations	(12)-(14)),	with	increased	amplitude,	the	cycling	TME	optimum	also	acts	

against	cancer	adaptation	(Supplementary	Figure	S13).	However,	interestingly,	although	

the	mean	population	fitness	decreases	and	mean	selective	advantage	of	selected	driver	

mutations	increase	when	the	amplitude	increases,	there	are	more	selected	driver	

mutations	recorded	than	under	any	other	phenotypic	optimum	change	dynamics	(full	

data	not	shown,	amplitude	 A = 4 ,	see	Supplementary	Figure	S13	and	Supplementary	

Movies	S16-S17).	Moreover,	there	are	also	more	complex	spatio-temporal	patterns	of	

sub-clonal	fitness	and	mixing,	in	which	birth	and	death	of	large	and	small	sub-clones	

with	diverse	fitness	values	occur	frequently	through	time	and	space	(Supplementary	

Movies	S16-S17).	This	indicates	that	a	cycling	TME	at	intermediate	level	may	be	

particularly	capable	of	promoting	cancer	adaptation	and	allow	cancer	cells	to	reach	their	

phonotypic	optimum	by	periodically	fixing	more	driver	mutations	than	TMEs	that	

change	directionally	and/or	randomly.		 	
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Supplementary	Note	5	

Sub-clonal	competition	initiated	by	driver	mutations	with	various	selective	

advantages	in	a	changing	TME	

We	have	shown	that	due	to	clonal	interference	there	are	multiple	beneficial	mutant	sub-

clones	competing	in	the	population	in	a	changing	TME.	Moreover,	neutral	mutant	sub-

clones	may	become	fixed	and	dominate	the	population.	To	understand	these	sub-clonal	

evolutionary	dynamics	in	a	changing	TME,	we	have	extended	our	model	to	address	sub-

clonal	evolution	explicitly,	based	on	one	ancestral	clone	and	two	mutant	sub-clones	

competing	with	each	other.	We	model	four	types	sub-clonal	competitions	in	three	types	

of	changing	TME,	namely,	directional	(Supplementary	Figures	S15-S17),	random	

(Supplementary	Figures	S18-S20)	and	cycling	TME	(Supplementary	Figures	S21-S23).	

We	first	simulate	the	evolution	of	neutral	mutants	(sub-clones	initiated	by	mutations	

with	no	selective	advantage,	 s = 0 )	and	use	neutrality	as	a	baseline,	and	then	we	
compare	this	to	the	sub-clones	initiated	by	three	different	types	of	driver	mutations	we	

show	above:	mini	( s = 1% ),	intermediate	( s = 10% )	and	classic	( s = 20% )(5).	The	two	

mutant	sub-clones	can	have	equal	initial	fitness	advantage	(initiated	by	driver	mutations	

of	the	same	selective	advantage)	or	one	of	the	sub-clones	can	be	a	competitor	initiated	

by	a	driver	mutation	with	a	relatively	higher	fitness	advantage.	We	set	these	sub-clonal	

competitors	with	initial	driver	mutations	of	selective	advantage	at:	mini	(sub-clone	1,	

s1 = 1% 	vs	sub-clone	2,	 s2 = 5% ),	intermediate	(sub-clone	1,	 s1 = 5% 	vs	sub-clone	2,	

s2 = 10% )	and	classic	(	sub-clone	1, s1 = 20% 	vs	sub-clone	2,	 s2 = 30% ).	In	all	cases,	we	

show	clonal	interference	to	various	degrees	leading	to	the	loss	of	one	of	the	

advantageous	sub-clones.	But	their	evolutionary	trajectories	are	still	determined	by	how	

their	phenotypic	optimum	changes,	which	follow	similar	evolutionary	dynamics	in	a	

changing	TME	as	shown	above.	However,	we	reveal	the	details	of	sub-clonal	competition	

not	seen	above.	First,	we	find	that	neutral	mutants	generally	become	extinct	quickly.	

Nevertheless,	due	to	the	stochastic	nature	of	a	random	TME,	neutral	mutant	sub-clones	

could	become	fixed	and	dominate	the	tumour	(Supplementary	Movie	S18).	Second,	

mutant	sub-clones	initiated	by	mini	drivers	can	also	become	fixed	(Supplementary	

Movie	S19),	although	not	necessarily	dominating	early	cancer.	Third,	sub-clones	with	

intermediate	drivers	can	easily	dominate	early	cancer	and	become	fixed.	Interestingly,	a	

randomly	changing	TME	can	maintain	the	coexistence	of	two	advantageous	sub-clones	
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for	a	long	period	of	time	(Supplementary	Movie	S20).		Finally,	sub-clones	with	classic	

major	drivers	can	both	dominate	and	become	fixed	in	early	cancer.	Strikingly,	due	to	

strong	competition,	occasionally	both	advantageous	sub-clones	can	become	extinct	

(Supplementary	Movie	S21).	

	

Understanding	how	caner	evolution	and	ecology	couples	to	affect	cancer	dynamics	is	of	

paramount	importance	to	develop	next-generation	cancer	therapies(6-8).		Here,	our	

modelling	framework	attempts	to	offer	an	integrated	view.	We	show	that	the	sub-clonal	

evolutionary	trajectories	initiated	by	cell-autonomous	driver	mutations	in	early	

tumours	are	generally	consistent	with	the	size	of	their	fitness	effect	and	relative	

population	size(9).	However,	the	competitions	between	multiple	advantageous	sub-

clones	could	weaken	the	efficiency	of	selection	and	alter	these	trajectories.	Moreover,	

the	changing	TME	dynamics	can	also	play	a	critical	role	in	this	process.	For	instance,	a	

randomly	changing	TME	can	lead	to	complete	disappearance	of	two	advantageous	sub-

clones	with	a	selective	advantage	as	high	as	20%.	Moreover,	it	can	maintain	the	

coexistence	of	two	intermediately	advantageous	sub-clones	for	a	long	period	of	time.	A	

random	TME	can	also	lead	a	neutral	mutant	sub-clone	to	dominate	the	tumour	and	

become	fixed.	Nevertheless,	the	non-cell	autonomous	role	of	these	constantly	changing	

TME	selective	dynamics	in	determining	the	sub-clonal	evolutionary	trajectories	are	

generally	not	considered	in	previous	studies(9-12),	which	may	lead	to	considerable	

biases	in	inferring	the	underlying	cancer	dynamics.		
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Supplementary	Note	6	

Properties	of	genotypic	fitness	landscapes	of	selected	driver	mutations	generated	by	

Fisher’s	phenotypic	fitness	landscape	with	a	changing	phenotypic	optimum	

	

To	show	that	Fisher’s	phenotypic	landscape	can	generate	various	genotypic	landscapes,	

we	use	our	modelling	framework	with	two	types	of	changing	TME	(directional	and	

cyclic)	to	generate	genotypic	landscapes	of	selected	driver	mutations	(we	use	four	

driver	mutations,	see	Methods).	We	first	calculate	all	pairwise	epistasis	coefficients	

among	selected	driver	mutations	and	find	that	all	epistasis	coefficients	are	generally	

negative	indicating	the	combined	effect	of	driver	mutations	is	smaller	than	their	

independent	effects.	Negative	epistasis	is	important	in	explaining	why	driver	mutations	

may	acquire	early,	which	is	consistent	with	previous	studies	in	microbial	evolution	

experiments	that	the	rate	of	adaptation	tends	to	slow	down	over	time	(13).	We	then	

calculate	the	fraction	of	sign	epistasis	(simple	and/or	complex	sign	epistasis	wherever	

possible)	and	roughness	to	slope	ratio	(see	Methods).	Interestingly,	all	changing	TMEs	

lead	to	extensive	sign	epistasis	and	roughness	of	the	underlying	genotypic	landscapes	of	

driver	mutations.	For	instance,	we	show	that	increasing	the	rate	of	directionally	

changing	TME	can	increase	the	ruggedness	of	the	underlying	genotypic	landscapes,	

which	is	manifested	as	the	increased	fraction	of	sign	epistasis	and	roughness	to	slope	

ratio	(Supplementary	Figures	24-25).	The	rate	of	phenotypic	optimum	change	can	also	

have	a	negative	impact	on	the	epistasis	coefficient	of	selected	driver	mutations	

(Supplementary	Figure	25).		These	results	suggest	the	rather	smooth	Fisher’s	

phenotypic	landscape	with	a	changing	TME	can	generate	Wright’s	genotypic	landscapes	

of	selected	driver	mutations	with	various	degrees	of	ruggedness.	

	

It	was	suggested	that	the	ruggedness	of	landscapes	determines	the	repeatability	and	

predictability	of	adaptation(13).	Importantly,	the	ability	to	predict	cancer	progression	

using	genomic	data	is	an	important	goal	in	precision	cancer	medicine.	Although	we	show	

that	when	the	dynamics	of	the	changing	TME	optimum	is	known/predetermined	cancer	

adaptations	may	be	predictable,	previous	studies	that	failed	to	consider	a	changing	TME	

can	significantly	undermine	the	un-predictability	of	cancer	evolution.	Our	results	show	

that	changing	TMEs	of	any	kind	with	Fisher’s	phenotypic	fitness	landscape	can	generate	

Sewall	Wright’s	genotypic	landscapes	of	selected	driver	mutations	with	considerable	
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sign	epistasis	and	ruggedness,	which	makes	predicting	cancer	adaptation	from	

genotypes	alone	in	a	changing	TME	challenging(14).	It	is	remarkable	that	simple	

phenotypic	landscapes	such	as	Fisher’s	can	generate	genotypic	landscapes	with	such	

complexity(15).	Recent	studies	suggest	even	without	a	changing	environment	Fisher’s	

phenotypic	landscape	can	already	generate	complex	genotypic	landscapes	with	

significant	ruggedness(13,	16).		However,	under	the	classical	assumptions,	e.g.,	strong	

selection	weak	mutation-SSWM	(per	generation	mutation	is	far	less	than	1	and	the	fate	

of	a	mutation	can	be	determined),	it	may	be	possible	to	make	predictions	about	the	

underlying	adaptive	evolution	and	give	analytical	results(17-22),	which	unfortunately	

does	not	apply	to	cancer	evolution.	

	

The	requirement	to	track	and	sample	the	genotypes	and	phenotypes	of	cancer	cell	

populations	under	selection	in	a	time-dependent	manner	further	makes	predicting	

cancer	evolution	challenging(23),	as	these	data	are	generally	not	accessible	in	clinical	

settings.	Moreover,	adaptive	cancer	evolution	in	individuals	may	have	several	

evolutionary	tempos	and	modes	mixed	across	cancer	types	in	humans,	which	can	be	

further	complicated	by	the	heterogeneity	of	the	TME	and	its	varying	optimum.	On	one	

hand,	cancer	cells	may	frequently	go	to	extinction	due	to	strong	stabilizing	selection	

from	the	normal	TME.	On	the	other	hand,	an	extremely	slow-changing	or	constant	TME	

may	lead,	in	effect,	to	limited	cancer	cell	adaptation	in	which	neutral/nearly	neutral	

mutations	accumulate,	as	might	be	the	case	for	cancers	that	apparently	carry	no	or	few	

classical	driver	mutations.	Of	course,	the	TME	may	determine	the	phenotypic	effect	of	a	

mutation	as	well	as	determine	the	fitness	landscape,	so	a	changing	TME	might	alter	both	

a	phenotype	and	its	selective	advantage.	Furthermore,	cancer	growth	and	progression	

(e.g.	acquisition	of	new	mutations)	will	also	affect	the	TME;	and	the	cancer	itself	may	

create	or	modify	a	TME	optimum	leading	to	non-cell-autonomous	cancer	evolution.	

Therefore,	quantitative	understanding	of	these	basic	components	and	phenotypic	

optimum	change	dynamics	in	individual	patients	is	crucial	for	developing	future	

predictive	cancer	medicine.	For	instance,	we	show	that	a	cycling	TME	may	be	

particularly	capable	of	promoting	cancer	adaptation	(see	Supplementary	Movies	S16-

S17	for	its	unusual	long-term	sub-clonal	dynamics	and	a	large	number	of	recorded	

adaptive	steps),	while	stochasticity	and	fast	changes	in	the	TME	optimum	may	act	

against	cancer	adaptation	and	cause	extinction.	TME	dynamics	need	to	be	considered	
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alongside	other	factors,	such	as	phenotypic	and	genetic	factors,	in	studies	that	aim	to	

provide	a	complete	picture	of	the	underlying	cancer	evolutionary	dynamics.	Finally,	

cancer	research	must	consider	the	significance	of	a	changing	tumour	microenvironment	

in	cancer	progression	and	treatment.	
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Supplementary	Note	7	

Changing	phenotypic	optimum	and	spatial	constraints	affect	cancer	phylogenies	and	

adaptation	

Here	we	further	describe	the	characteristics	of	phylogeny	shape	from	the	evolving	

cancer	under	randomly	or	cyclically	changing	phenotypic	optimum.		In	randomly	

changing	TMEs	(Supplementary	Figure	S26	a-d),	the	higher	optimum	change	variance	

leads	to	shorter	side	branches	indicating	higher	rates	of	stochastic	death	of	these	cancer	

cell	lineages,	which	disfavours	adaptive	evolution,	as	evidenced	by	the	lack	of	obvious	

asymmetric	(imbalanced)	trees.	In	a	cycling	TME	(Supplementary	Figure	S26e-h),	a	low	

peak	of	the	optimum	changing	cycle	(equation	(13))	leads	to	a	phylogeny	showing	

recent	clonal	expansion	(Supplementary	Figure	S26e),	whereas	an	intermediate	

amplitude	promotes	adaptive	evolution	(Supplementary	Figure	S26j),	as	evident	from	

the	phylogenies’	ladder-like	and	spindly	tree	topology	(strongly	imbalanced	and	

asymmetric).	The	temporal	signals	in	the	phylogeny	also	reflect	a	cycling	pattern,	where	

long	branches	and	ladder-like	shorter	branches	appear	in	tandem	(Supplementary	

Figure	S26f).	

	
We	then	quantify	the	adaptation	and	phylogeny	shapes	(using	the	normalised	Sackin’s	

index	and	the	number	of	cherries)	of	the	evolving	cancer	under	the	three	different	

(directional,	cyclic	and	random)	phenotypic	optimum	change	dynamics	with	different	

levels	of	spatial	constraints.	In	all	three	types,	increasing	the	changing	speed	of	the	

phenotypic	optimum	reduces	mean	population	fitness	and	selects	for	driver	mutations	

with	large	selective	advantage.	However,	stronger	spatial	constraints	on	population	size	

(smaller	space)	further	select	for	driver	mutations	with	increased	selective	advantage	in	

both	directionally	and	randomly	changing	TMEs	(Supplementary	Figure	S27a-c)	but	

with	decreased	mean	population	fitness	for	all	three	types	of	TMEs	(Supplementary	

Figure	S27d-f).		Complementarily,	the	two	phylogeny	shape	measures	also	reveal	the	

underlying	evolutionary	processes	(Supplementary	Figure	S28).	When	the	phenotypic	

optimum	changes	fast,	the	two	measures	of	phylogeny	shape	suggest	there	is	an	

increase	in	selection-induced	phylogeny	shape	asymmetry	at	both	global	and	local	levels.		

However,	lifting	spatial	constraints	on	population	size	(increasing	space	size)	leads	to	

increases	in	both	the	number	of	cherries	(Supplementary	Figure	S28a-c)	and	normalised	

Sackin’s	index	(Supplementary	Figure	S28d-f).	Interestingly,	when	the	space	size	has	
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reached	certain	level	in	this	strong	selection	regime,	space	increase	only	leads	to	a	

marginal	increase	in	the	number	of	cherries	indicating	recent	asymmetry	at	each	

sampling	point	is	less	affected	(Supplementary	Figure	S28a-c).	All	these	results	suggest	

the	spatial	effect	on	tree	asymmetry	and	cancer	adaptation	is	more	profound	when	the	

phenotypic	optimum	changes	fast.	
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