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Abstract: West Nile virus (WNV) has consistently been reported to be associated with human
cases of illness in the region near Chicago, Illinois. However, the number of reported
cases of human illness varies across years, with intermittent outbreaks. Several
dynamic factors, including temperature, rainfall, and infection status of vector mosquito
populations, are responsible for much of these observed variations. However, local
landscape structure and human demographic characteristics also play a key role. The
geographic and temporal scales used to analyze such complex data affect the
observed associations. Here, we used spatial and statistical modeling approaches to
investigate the factors that drive the outcome of WNV human illness on fine temporal
and spatial scales. Our approach included multi-level modeling of long-term weekly
data from 2005 to 2016, with weekly measures of mosquito infection, human illness
and weather combined with more stable landscape and demographic factors on the
geographical scale of 1000m hexagons. We found that hot weather conditions, warm
winters, and higher MIR in earlier weeks increased the probability of an area of having
a WNV human case. Higher population and the proportion of urban light intensity in an
area also increased the probability of observing a WNV human case. A higher
proportion of open water sources, percentage of grass land, deciduous forests, and
housing built post 1990 decreased the probability of having a WNV case. Additionally,
we found that cumulative positive mosquito pools up to 31 weeks can strongly predict
the total annual human WNV cases in the Chicago region. This study helped us to
improve our understanding of the fine-scale drivers of spatiotemporal variability of
human WNV cases.
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Comments to Authors:

This manuscript analyzes the available long-term data of mosquito infection rates,
West Nile virus human cases and weather variables from 2005 to 2016 combined with
landscape and demographic characteristics of two Illinois counties of the Chicago
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region in order to evaluate relationships between the factors on fine temporal and
spatial scale and identify the drivers that potentially affect the presence of human WNV
illness and may act as early warning predictors.
The paper is well written with a well-organized text, the data were analyzed using multi-
level statistical modeling approaches and the findings are sufficiently documented and
the results are valuable for a better understanding of the fine-scale drivers of
spatiotemporal variability of WNV human case prevalence in an urban environment
such as in the study area.
Although numerous published studies that have shed light on factors that affect WNV
transmission in an area, the knowledge regarding the influence of climatic variables in
correlation with the data from the entomological surveillance and the number of WNV
human cases, is still limited.
For that reason, the paper makes a substantial contribution to the literature and is
therefore recommended for publication in PLOS-ONE after minor revision taking into
account the following general or specific comments.
•Thank you for your comments and your feedback!

General comments

The study uses and analyzes the 10-year data (2005 to 2014) from Cook and DuPage
counties in the Chicago, Illinois region and the accuracy of the predictions of the
developed model tested with the data of the same specific area.
However, according to the literature, it is well known that models predicting the WNV
transmission and human WNV infections do not always have the same accuracy when
applied to other areas with different mosquito fauna, weather conditions and/or
geomorphological and demographic characteristics. Therefore, we consider that the
study area should also be mentioned in the title.
•Thank you for the suggestion, we have made that change

Please comment and, if necessary, provide an adequate justification in the manuscript,
for the reason that in this work were note included data from passive or active
monitoring of WNV presence in birds and equids, which are considered by several
authors as important prediction factors of the presence and spread of WNV virus in an
area.
•We have added a statement (145-147) that the avian and equid surveillance programs
were not consistent across the time period, and added a discussion section (467-474)
about the point.

Specific comments

Line 170 of the manuscript: If available, please provide information on the species of
Culex mosquitoes that have been tested for WNV presence as the vectorial
competence of different species may vary significantly for WNV transmission to
humans.
•We agree that is an important point; we have added some information as to common
species in the region.

Line 179 of the manuscript: Please add a bibliographical reference in the reference
section for the MIR estimation tool by Biggerstaff, 2006.
•Thank you, corrected

Line 188 of the manuscript: Please provide a definition and some additional information
about the category of "probable cases of WNV" that were also included in the study
along with the "confirmed cases" because the symptoms of infection by the West Nile
vary in severity, with the mild forms can be easily confused with flu symptoms and
usually go unreported.
•We have added the information. The difference between probable and confirmed
cases is confirmatory testing by either IDPH or CDC; all cases had positive diagnostic
results and clinical signs during the likely transmission season.
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Lines 578-580 of the manuscript: Please, correct Reference no 39 by adding the name
of the journal, volume number and pages numbers.
Messina JP, Brown W, Amore G, Kitron UD, Ruiz MO. West Nile Virus in the Greater
Chicago Area: A Geographic Examination of Human Illness and Risk from 2002 to
2006. URISA Journal 2011;23: 5-18.
•Corrected

Reviewer #2: Dear authors,

This is a well written paper that deals with the determination of factors affecting the
spatiotemporal variability of WNV cases in humans through identification of the fine
scale drivers of WNV transmission in an urban area with a repeated history of WNV
outbreaks. The findings are very interesting since they include multi-level modeling of
weekly data from over a decade and they extend our knowledge in the correlation of
variables related to temperature, precipitation, mosquito infection, land cover, and
demographic characteristics with the probability of an area having a WNV case or not.
•Thank you

Further down please consider some comments of minor importance that may benefit
the manuscript.

It seems that the infection status of avian population, as primary reservoirs of WNV,
and equids, as dead-end hosts, were not included among the tested variables for
modeling structure. Please note that these are critical factors implicated in the WNV
transmission in order to develop predictive models.
As mentioned in the introduction, public health surveillance for WNV involves collection
and testing of dead birds suspected to have died of WNV, testing of sentinel chickens
or of wild birds captured for this purpose and reporting of cases of equine illness.
Could you please justify this data gap in the model structuring? Is there any
surveillance system for infected avian and equids population in the study area?
In the “Introduction” you may add any relevant literature data where bird and/or equine
infection rate were used for development of models predicting WNV transmission in
humans. Also, in lines 440-459 of the manuscript, you could mention the fact that avian
and equids infection status was not considered as a factor for prediction of WNV cases
in humans in the study area.
•We have added a statement as to the inconsistent application of avian and equid
surveillance in this region (145-147), and given more information about that
surveillance in the discussion (467-474), including references to models using these
data types.

According to the best multivariable model that was used, the proportion of open water
was negatively associated with the probability of WNV cases. Also, as mentioned in the
discussion, a negative association of precipitation and WNV cases was observed and
this indicates that dry and hot weather conditions would increase the probability of an
area being positive for a WNV case.
Instead, it is supposed that high rainfall and high percentage of water bodies in an area
may favor mosquito population by increasing their breeding sites, and therefore may
lead to increased WNV cases in humans. Hence, a positive correlation between
precipitation and water bodies with WNV cases in humans is anticipated. Please
comment.
•Open water is classified as areas in which any aquatic vegetation is submerged, as
opposed to woody or herbaceous wetlands. This is not likely to be stagnant water of
the type used by Culex mosquitoes for breeding. Therefore, the negative association
between proportion of open water and WNV cases is most likely due to the fact that
open water, as defined, does not favor the mosquito population. We have noted this in
the discussion (434-438).
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Abstract 13 

West Nile virus (WNV) has consistently been reported to be associated with human cases of 14 

illness in the region near Chicago, Illinois. However, the number of reported cases of human 15 

illness varies across years, with intermittent outbreaks. Several dynamic factors, including 16 

temperature, rainfall, and infection status of vector mosquito populations, are responsible for 17 

much of these observed variations. However, local landscape structure and human 18 

demographic characteristics also play a key role. The geographic and temporal scales used to 19 

analyze such complex data affect the observed associations. Here, we used spatial and 20 

statistical modeling approaches to investigate the factors that drive the outcome of WNV 21 

human illness on fine temporal and spatial scales. Our approach included multi-level 22 

modeling of long-term weekly data from 2005 to 2016, with weekly measures of mosquito 23 

infection, human illness and weather combined with more stable landscape and demographic 24 

factors on the geographical scale of 1000m hexagons. We found that hot weather conditions, 25 

warm winters, and higher MIR in earlier weeks increased the probability of an area of having 26 

a WNV human case. Higher population and the proportion of urban light intensity in an area 27 

also increased the probability of observing a WNV human case. A higher proportion of open 28 

water sources, percentage of grass land, deciduous forests, and housing built post 1990 29 

decreased the probability of having a WNV case. Additionally, we found that cumulative 30 

positive mosquito pools up to 31 weeks can strongly predict the total annual human WNV 31 

cases in the Chicago region. This study helped us to improve our understanding of the fine-32 

scale drivers of spatiotemporal variability of human WNV cases.  33 

 34 

Introduction 35 

West Nile virus (WNV), a mosquito-borne zoonotic disease, was first identified in the 36 

United States in the summer of 1999 in New York City [1]. The mosquitoes of several Culex 37 
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species are the primary enzootic and bridge vectors for the transmission of WNV, and several 38 

bird species are known to contribute in the amplification of the virus [2–4]. Since its first 39 

successful invasion in New York, WNV quickly adapted to the local populations of Culex 40 

vector mosquitoes and avian populations and rapidly spread throughout the conterminous 41 

United States [5,6]. The first major WNV outbreak in the United States was observed in 42 

2002, when more than 4,150 human cases and 284 deaths attributable to WNV infection were 43 

reported to the CDC from 40 states compared to only 149 cases and 19 deaths from 10 states 44 

cumulatively during the three years from 1999 to 2001 [7]. This stirred a prompt public 45 

health response from federal, state, and local public health agencies and led to the 46 

establishment of a more robust surveillance of mosquitoes and birds to monitor and control 47 

the spread of WNV [8].  48 

Public health surveillance for West Nile virus (WNV) involves collection and testing 49 

of Culex vector mosquitoes, collection and testing of dead birds suspected to have died of 50 

WNV, testing of sentinel chickens or of wild birds captured for this purpose, and reporting of 51 

cases of human and equine illness [9]. The ultimate goal of these surveillance data is to target 52 

mosquito control, and thereby reduce illness through the reduction of the number of infected 53 

vector mosquitoes, and to target educational messages to warn citizens to reduce individual 54 

exposure. One additional advantage of having a strong surveillance system in place is that the 55 

long-term data generated can be integrated with publicly available weather, landscape, and 56 

socioeconomic data and can be used effectively to identify the important drivers of WNV 57 

transmission and to develop predictive models [10,11].     58 

Several earlier studies have identified some of the important drivers of WNV 59 

transmission in humans. These factors include prior weather conditions and landscape 60 

structure that affect the mosquito’s biological responses, the abundance and infection status 61 

of the vector mosquitoes, demographic and social characteristic of population, individual 62 
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human behavior, and the level of public awareness [10–17]. For example, an analysis of 12 63 

years of mosquito testing and human illness data in Ontario, Canada showed that, while the 64 

mosquito infection rate of one week earlier was the strongest temporal predictor of human 65 

risk of WNV, an epidemic threshold based on the cumulative positive Culex pools up to mid-66 

August (week 34) can be successfully used to predict human WNV epidemics [16]. In Long 67 

Island, New York, more than 65% of forecast models based on past mosquito infection and 68 

human illness correctly predicted seasonal total human WNV cases up to 9 weeks before the 69 

first reported cases [18]. Similarly, the vector index, based on a combination of vector 70 

infection and abundance was found to be highly correlated with human WNV cases in studies 71 

conducted in Larimer County, Colorado  (Fauver et al., 2015), and Dallas, Texas [19].  72 

Weather factors are important drivers of WNV transmission due to their direct effect 73 

in mosquito biology. When compared with human WNV cases, higher than normal average 74 

annual temperatures are associated with an increased likelihood of higher WNV disease 75 

incidence, nationally and in most regions in the United States [17]. This relationship was true 76 

in Europe, too, where abnormally high July temperature was associated with higher incidence 77 

of human WNV cases [20]. The role of precipitation is often controversial and varies by 78 

study regions. For example, higher than normal precipitation was positively associated with 79 

higher human WNV cases in the eastern region of the United States, but this relationship was 80 

reversed for the western region [21]. Another study identified drought as an important driver 81 

of WNV epidemics in the United States [22]. Local landscape structures have also been 82 

associated with human WNV incidence. The important land cover variables associated with 83 

increased risks of human WNV include proximity to wetlands [23,24], higher tree density 84 

[24], irrigated and agricultural rural areas [25], urban areas characterized by higher 85 

impervious surfaces and storm sewer systems [26], and inner suburbs characterized by older 86 

houses, moderate vegetation and moderate population [27].  87 
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Apart from extrinsic factors, population structure, demographic characteristics, and 88 

individual variation also play roles in WNV epidemics [28]. As people age, especially when 89 

they have a history of hypertension and immunosuppression, their risk of WNV disease 90 

increases [29,30]. Community characteristics such as income level, the age of housing, 91 

management of sewer and drainage system, mosquito abatement practices, and public health 92 

infrastructure also determines the risk of WNV human infections [12,26].  93 

Different spatial scales have been used in geographical analyses to identify the drivers 94 

of human risk from WNV infections. The most commonly used spatial scale in the United 95 

States is counties [17,22,31], census tracts or Zip Code Tabulation Areas (ZCTA) [12,32], 96 

census block groups [33], and buffers of varying sizes around trap locations or human cases 97 

[24]. Each of these spatial scales has its own inherent biases, as these political boundaries do 98 

not necessarily correspond to the ecological processes of the disease in question [34]. 99 

Alternatively, dividing the area into equal spaces, such as rectangular bins or hexagons, has 100 

been used to reduce some of these biases (e.g. [35]). Hexagonal grids have an additional 101 

advantage in that they reduce the edge effects, better fit curved surfaces, and have identical 102 

neighbors [36,37]. 103 

In Illinois, WNV human infections have been endemic since 2002, with annual 104 

variability in the number of cases [38]. The majority of the human WNV cases have been 105 

reported from the northeastern region, where the largest number of people in the state is 106 

congregated. A census tract level analysis in this region using human WNV occurrence data 107 

from the 2002 outbreak year identified that census tracts with lower population density, 108 

relatively close WNV positive dead bird specimens, a higher percentage of older white 109 

residents, and housing built between 1950 and 1959 were more likely to be associated with 110 

spatial clusters of WNV cases [12]. A follow up expanded this study to look at annual 111 

incidence of WNV human illness in northeastern Illinois from 2002 to 2006, with additional 112 
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variables to assess the effects of rainfall, temperature and the WNV mosquito infection rate 113 

[39]. This analysis determined that white populations and housing from the 1950s were 114 

associated with increased illness in some years, but this was not consistent. Interestingly, 115 

census tracts with lower rainfall had higher rates of WNV illness, but the mosquito infection 116 

rate was not an important variable in any of the models [39].  117 

Despite the identification of some of these potential risk factors, accurate prediction 118 

of human illness cases from WNV remains elusive at the local scale, especially as it is related 119 

to dynamic weather and mosquito infection status. Using long-term data on human WNV 120 

illness and intensive mosquito surveillance for the Chicago region, we can identify the fine 121 

scale drivers of spatiotemporal variability of human WNV epidemic in an urban environment. 122 

The overall goal of this study is to determine factors affecting the spatiotemporal variability 123 

of clinical WNV incidence in people through identification of the fine scale drivers of WNV 124 

transmission in an urban area with a repeated history of WNV outbreaks. These potential 125 

drivers include dynamic mosquito infection and weather. Our specific objectives in this study 126 

are to (i) describe the fine-scale temporal and spatial patterns of human WNV illness in the 127 

Chicago region, (ii) evaluate the temporal relationships between mosquito infection and 128 

human WNV illness, and (iii) determine the fine-scale dynamic effects of weather, land 129 

cover, mosquito infection, and demographic factors on the presence of human West Nile 130 

virus illness across time and space.  131 

 132 

Materials and methods  133 

This project was approved by the Institutional Review Boards of the University of 134 

Illinois Urbana-Champaign and the Illinois Department of Public Health. 135 

The two Illinois counties of Cook and DuPage, comprising Chicago and its suburbs, 136 

were included in this study. The total area covered by these two counties is nearly 5,100 137 
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square kilometers, and the total population in 2010 was 6.1 million. These areas were 138 

selected because of the relatively high incidence of human West Nile virus illness reported 139 

from these two counties and the long-term intensive mosquito surveillance data available for 140 

this region. The temporal window included in this study was the 24-week time period from 141 

late May to late October (weeks 22 to 45), which corresponds to the timing of mosquito 142 

activity and human WNV illness, with data for the years from 2005 to 2016. The years from 143 

2002 to 2004, during which Illinois had its first invasion from WNV, were excluded in this 144 

analysis because of the absence of mosquito testing data. Data on avian and equid 145 

surveillance were not included as these programs were not consistently applied across the 146 

time period. 147 

We chose to summarize all variables into hexagons to provide a neutral spatial unit of 148 

consistent size and shape, which is not possible with political boundaries. For this, we 149 

overlaid hexagons measuring 1000 m in diameter on the outlines of Cook and DuPage 150 

counties to create a grid of 5,345 hexagons for the study area. Out of these, 328 were 151 

excluded after a comparison with fine scale population data from the 2010 U.S. Census 152 

indicated that there were no households on record within those hexagons. Thus, 5,017 153 

hexagons were included in the analysis. All independent variables related to weather, land 154 

cover, mosquito infection and demography were calculated for each hexagon, as described 155 

below.  156 

Mosquito data 157 

 Mosquito testing data from 2005 to 2016 were obtained from the Illinois Department 158 

of Public Health (IDPH) through a user agreement. The IDPH collates the data from local 159 

public health agencies and mosquito abatement districts across Illinois and maintains a 160 

statewide database for the results from WNV mosquito testing. The IDPH developed a 161 

mosquito surveillance protocol that local health and mosquito abatement districts are 162 
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expected to follow in order to standardize the mosquito collection and testing across the state. 163 

In general, the local agencies collect vector mosquitoes with gravid traps, identify the sex and 164 

species of the mosquitoes, and make pools of up to 50 mosquitoes of a single species from 165 

those captured in each trap to test for the presence of WNV infection. When fewer then 50 166 

mosquitoes are captured, a pool will consist of fewer than 50 mosquitoes. During the study 167 

period, the common tests used to identify WNV in mosquitoes included antigen assays, 168 

VecTest or the Rapid Analyte Measurement Platform (RAMP) test. Some pools were also 169 

tested by Real Time reverse transcriptase polymerase chain reaction (RT-PCR). In instances 170 

when a pool was tested using more than one type of test, only the RT-PCR results were used 171 

in the analysis. Our analysis used only the test results from pools of female Culex 172 

mosquitoes. Not all mosquitoes were identified to species prior to testing; however, the 173 

majority of Culex collected in this region belong to the species Cx. pipiens or Cx. restuans 174 

[3].  175 

To determine the location of the mosquito traps, we used the existing latitude and 176 

longitude recorded in the IDPH database. In cases where the spatial data were missing, we 177 

geocoded the trap locations based on the address provided. Our analysis used all the trap 178 

locations recorded from 2005 to 2016 from Cook and DuPage counties in addition to any 179 

traps located within a 10 km radius from their boundaries (located within Lake, McHenry, 180 

Kane, Kendall, and Will counties). For each trap, the mosquito infection rate (MIR) was 181 

calculated by week and by year using the formula 182 

number of positive pools
1000*

total number of mosquitos in pools tested
  [40].  183 

Using MIR calculations from all traps, we developed continuous surface maps for 184 

MIR for each week and year using the inverse distance weighting (IDW) interpolation 185 

technique in ArcGIS 10.1. From this interpolated surface map for each year and week, the 186 
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average, minimum, and maximum MIR for each hexagon was calculated using the zonal 187 

statistics as table function in ArcGIS 10.1. A model builder platform using iteration features 188 

in ArcGIS 10.1 was used to run these processes.     189 

Human illness data 190 

 Records of human WNV cases in Illinois were obtained from the IDPH through a user 191 

agreement. All confirmed and probable cases of WNV reported to the IDPH by medical and 192 

public health personnel for the study area were included in this study; the state of Illinois 193 

mandates reporting of WNV to local public health departments, which then report all cases to 194 

IDPH. Probable cases are those that meet clinical criteria during the season when 195 

transmission is likely to occur and meet laboratory criteria for West Nile virus by serology 196 

(IgM capture ELISA) or polymerase chain reaction, while confirmed cases are those with 197 

confirmatory test results from the IDPH or the Centers for Disease Control and Prevention. 198 

All the human WNV cases in Cook and DuPage counties reported from 2005 to 2016 were 199 

geocoded and aggregated by hexagons for each week and year. The data were converted into 200 

the binary form of presence or absence of a WNV case in a given hexagon and week.  201 

Demographic data  202 

The demographic variables included were total population, racial composition, 203 

housing age, and income level. The total population and racial composition included the 204 

number of White, African American, Asian, and Hispanic people at the census block level, as 205 

reported in the 2010 U.S. Census. The racial population data was converted to the percentage 206 

of White, African American, Asian, and Hispanic people in each hexagon. The income data 207 

for the block group level were obtained from the 2015 American Community Survey. 208 

Housing age was included as the proportions of housing built in different time periods, which 209 

was obtained at the block group level from the 2015 American Community Survey. We 210 

divided housing age into four different time-periods: pre-World War II houses (built before 211 
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1939), post-World War II houses (built between 1940 and 1969), houses built between 1970 212 

and 1989, and houses built after 1990. These demographic data were processed in ArcGIS 213 

using the intersection tool to calculate a parameter for each hexagon.     214 

Landcover data 215 

Landcover data for the entire United States was obtained from the national landcover 216 

database (NLCD) for the years 2006 and 2011. The NLCD database is a Landsat based 217 

landcover data available at a 30 m resolution (www.mrlc.gov). The landcover raster was 218 

clipped for Cook and DuPage counties, including a surrounding 1 km buffer. From this 219 

clipped raster, the total number of pixels for each land category within each hexagon was 220 

calculated using the tabulate as area tool in ArcGIS 10.1. The proportion of each land cover 221 

category for each hexagon was then calculated by dividing the number of pixels for that 222 

category by the total number of pixels for all categories. In Cook and DuPage counties, 15 223 

different types of landcover were available: urban areas (developed open space, developed 224 

low intensity, developed medium intensity, developed high intensity), forests (deciduous, 225 

evergreen and mixed), barren land, shrubs, grassland, pasture, cultivated crops, woody 226 

wetlands, herbaceous wetlands, and open water. The land cover data from 2006 was used to 227 

analyze the WNV cases for the years from 2006 to 2010, while the land cover data from 2011 228 

was used for 2011 to 2016.  229 

Weather data 230 

 Spatial weather data on daily mean temperature and precipitation from 2005 to 2016 231 

were obtained from the PRISM Climate Group (PRISM Climate Group, Oregon State 232 

University, http://prism.oregonstate.edu). The PRISM daily data are available as spatial grids 233 

of 4 km resolution, which are calculated through interpolation and statistical techniques using 234 

point data from weather monitoring networks across the country combined with topographic 235 

data. These daily data were used to calculate the weekly temperature and precipitation. For 236 
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our analysis, the weekly mean temperature was calculated by taking the average of the seven 237 

daily averages for that week, and the weekly precipitation was calculated as a sum of the 238 

daily precipitation for that week. Finally, the weekly temperature and precipitation for each 239 

year and week for each hexagon was calculated by using the zonal statistics as table function 240 

in ArcGIS 10.1. We also calculated average January temperature for each hexagon for each 241 

year from the daily data as a proxy for the winter temperature.  242 

Statistical methods 243 

To assess the temporal relationship between human illness and MIR, we calculated 244 

the Spearman rank correlation between the weekly MIR of 1-6 weeks lag and human cases. 245 

We repeated this analysis on the subsets of years with high numbers of WNV cases (more 246 

than 100 human cases; 2005, 2006, 2012 and 2016) and those with low numbers of WNV 247 

cases (less than 100 cases; 2007 - 2009, 2010, 2011, 2013 - 2015) to examine if the 248 

relationship between MIR and human cases varies in high and low years. We further 249 

examined the ability of the early summer (weeks 22- 27) and mid-summer (weeks 28- 33) 250 

average MIR to explain and predict the seasonal annual total WNV cases by using linear 251 

regression analysis. In addition, we assessed the ability of the cumulative positive mosquito 252 

pools up to week 28 and thereafter, added to each week’s data, to find a threshold that could 253 

best explain the annual total human WNV cases. In both of these calculations, data from 2005 254 

to 2014 were used to create a regression equation, and data from 2015 and 2016 was used to 255 

test the model. 256 

To visualize the spatial patterns of human illness over time, we first developed 257 

choropleth maps of WNV cases. Then, we used local Moran’s I method using an inclusive 258 

second order queen contiguity weight matrix in the spatial analysis software GeoDa to further 259 

identify the spatial clusters of cumulative human WNV cases from 2005 to 2016. We also 260 
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examined differences in results using neighboring cells and rook contiguity weight matrix, 261 

but the results did not vary.  262 

For the spatiotemporal statistical model, the outcome variable was the presence/ 263 

absence of a human WNV case in each hexagon for each year and week. The predictors 264 

included 32 variables related to weather, land cover, mosquito infection and demography 265 

(Table 1). The weather variables consisted of mean weekly temperature and precipitation 266 

with lags of one to four weeks. The land cover variables include 15 categories, the proportion 267 

for each hexagon of: developed open space; developed low, medium, and high intensity 268 

urban areas; deciduous, evergreen, and mixed forests; barren land; shrubs; grassland; pasture; 269 

cultivated crops; woody wetlands; herbaceous wetlands; and open water. The mosquito 270 

infection data included the average MIR with lags of one to four weeks for each hexagon for 271 

each year and week. Demographic variables for each hexagon included the proportion of 272 

White, African American, Asian, and Hispanic population and the average median household 273 

income. In total, there were 1.44 million rows of data (5017 hexagons * 12 years * 24 274 

weeks). A correlation matrix among all variables was created to evaluate multicollinearity 275 

before running the model. As our response variable was binary (presence or absence of WNV 276 

human cases), we used mixed effects multiple logistic regression with stepwise selection for 277 

the statistical analysis, with hexagons as a random variable. We used the PROC GLIMMIX 278 

procedure in the SAS statistical software. An Akaike information criterion (AIC) was used to 279 

choose the best model [41]. A receiver operating characteristics (ROC) curve was calculated 280 

using model predictions for 2015 and 2016 to evaluate model performance. All the statistical 281 

analyses were conducted in SAS 9.4 (SAS Institute Inc., Cary). 282 

283 
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Table 1. List of explanatory variables.  284 
Variables  Notation 

Land cover  

Proportion of developed open space  dospct 

Proportion of developed low intensity dlipct 

Proportion of developed medium intensity dmipct 

Proportion of developed high intensity dhipct 

Proportion of deciduous forests dfpct 

Proportion of evergreen forests efpct 

Proportion of mixed forests mfpct 

Proportion of barren land blpct 

Proportion of shrubs shrubspct 

Proportion of grassland glandpct 

Proportion of pasture pasturepct 

Proportion of cultivated land clpct 

Proportion of woody wetlands wwpct 

Proportion of herbaceous wetlands hwpct 

Proportion of open water owpct 

  

Mosquito infection rate  

Mosquito infection of one week before mirlag1 

Mosquito infection of two weeks before mirlag2 

Mosquito infection of three weeks before mirlag3 

Mosquito infection of four weeks before mirlag4 

  

Weather  
Temperature  

Average temperature of one week before templag1 
Average temperature of two weeks before templag2 

Average temperature of three weeks before templag3 

Average temperature of four weeks before templag4 

Precipitation  

Average precipitation of one week before precilag1 

Average precipitation of two weeks before precilag2 

Average precipitation of three weeks before precilag3 

Average precipitation of four weeks before precilag4 

  

Demographic factors  

Percentage of White population whitepct 

Percentage of African American blackpct 

Percentage of Asian population asianpct 

Percentage of Hispanic hispanicpct 

Median household income income 

 285 

Results 286 

There were 1,371 total human WNV cases reported in Illinois from 2005 to 2016. Out 287 

of these total reported cases, 906 cases (66%) were from the Chicago region (Cook and 288 
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DuPage Counties). The number of human WNV cases in the study region varied annually, 289 

with the year 2012 reporting the highest number of cases (229) and the lowest number of 290 

cases (1) reported in 2009 (Table 2).  The average annual MIR during the mosquito season 291 

was also highest in 2012 (7.34), with 31.3% of tested pools positive for WNV (Table 2). The 292 

number of mosquito pools tested annually ranged from about 6,000 pools in 2016 to over 293 

12,000 pools in 2007.  294 

 295 

Table 2. Annual human WNV cases, average seasonal mosquito infection rate (MIR), and 296 
mosquito testing from 2005 to 2016 in Cook and DuPage counties. 297 
Year Number of 

human cases 

Average 

MIR 

Number of 

pools tested 

Number of 

positive pools 

Total number of 

mosquitoes 

tested 

2005 181 5.33 7,165 1,939 271,235 

2006 129 5.35 9,428 1,984 318,386 

2007 43 2.65 12,131 1,259 375,520 

2008 10 1.91 9,024 587 298,995 

2009 1 1.14 9,450 298 311,220 

2010 47 5.19 11,491 2,086 393,279 

2011 24 3.10 8,911 939 287,774 

2012 229 7.35 10,162 3,182 323,497 

2013 66 4.26 11,078 1,967 407,326 

2014 31 2.97 9,273 990 333,489 

2015 36 3.57 7,725 1,046 314,363 

2016 108 6.34 6,144 1,687 219,909 

MIR= Mosquito infection rate; WNV= West Nile virus 298 

 299 

We found a strong temporal relationship between the MIR of previous weeks and 300 

human WNV cases in the study region (Table 3, Fig 1). The strongest correlation (r= 0.837) 301 

was with MIR at a one-week lag (Table 3). The strength of the correlation was stronger (r= 302 

0.884) in the subset of high infection years (2005, 2006, 2012, and 2016) and relatively lower 303 

(r= 0.737) in low years (Table 3). When evaluated for only 2012, when case counts were 304 

highest, the correlation between MIR and human WNV cases was also the highest (r= 0.899). 305 
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In both high and low years, the strength of the correlation gradually declined with the number 306 

of weeks lagged and there was almost no correlation with MIR after lags of four weeks.  307 

 308 

 309 
Table 3. Spearman correlation of weekly cumulative human WNV cases and lagged MIR 310 
for all years and selected subsets of years from 2005- 2016 in Cook and DuPage Counties. 311 
  Years with Human WNV cases 

MIR All years >100 <100 229 (Year 2012) 

     

Same week 0.776 0.775 0.671 0.818 

One week before 0.837 0.884 0.737 0.899 

Two weeks before 0.765 0.766 0.698 0.875 

Three weeks before 0.601 0.574 0.556 0.727 

Four weeks before 0.429 0.354 0.394 0.501 

Five weeks before 0.289 0.147 0.286 0.283 

Six weeks before 0.142 0.001 0.120 0.038 

MIR= Mosquito infection rate; WNV= West Nile virus 312 

 313 

Fig 1. Cumulative weekly human WNV cases (red bars) and mosquito infection rate (blue 314 

line) from 2005- 2016 in Cook and DuPage Counties, Illinois. 315 

 316 

We found that the MIR of mid-summer (weeks 28-33) was able to explain 93% of the 317 

variability in total annual human cases (Table 4, Fig 2). The model predicted 44.8 human 318 

cases for 2015, compared to 35 actual cases, and 142.7 human cases for 2016 compared to 319 

108 actual cases. Likewise, the cumulative number of positive pools also strongly explained 320 

and predicted the total annual human cases (Table 4, Fig 3); the cumulative number of 321 

positive mosquito pools by week 31 explained 93% of the variability in total annual human 322 

cases, similar to that explained by mid-summer MIR (Table 4). The model using cumulative 323 

positive pools by week 31 predicted 35.1 human cases (vs. 35 actual cases) for 2015 and 324 

102.8 human cases (vs. 108 actual cases) for 2016. The cumulative mosquito positive pools 325 

by week 31 thus better predicted the annual human cases than the mid-summer MIR. 326 
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 327 

Table 4. The regression equations of the relationship between a cumulative number of WNV 328 
positive pools, mosquito infection rate in a six-week period early and mid-summer and 329 
human West Nile virus illnesses for the year for Cook and DuPage Counties from 2004- 330 
2014. 331 
 Week Regression equation R-square 

28 30.1 + 0.445 * Number of positive pools 0.721 

29 21.2 + 0.278 * Number of positive pools 0.825 

30 11.8 + 0.194 * Number of positive pools 0.895 

31  2.33 + 0.144 * Number of positive pools 0.931 

32 - 6.0 + 0.118 * Number of positive pools 0.917 

33 - 16.5 + 0.103 * Number of positive pools 0.901 

34 - 23.7 + 0.0938 * Number of positive pools 0.863 

35 - 29.5 + 0.0861 * Number of positive pools 0.813 

Early summer (22- 27) 13.7 + 162 * average MIR of week 22- 27 0.833 

Mid-summer (28- 33) - 16.7 + 14.7 * average MIR of week 28- 33 0.936 

 332 

Fig 2. The relationship between annual human WNV infections and mid-summer mosquito 333 

infection rate from 2005- 2014 in Cook and DuPage Counties, Illinois. 334 

 335 

Fig 3. The relationship between annual human WNV infections and a cumulative number of 336 

WNV positive mosquito pools from 2005- 2014 in Cook and DuPage Counties, Illinois. 337 

 338 

The spatial pattern of human WNV cases in Cook and DuPage counties showed that 339 

cases were distributed throughout most areas of the study region at some point during the 340 

study period, with some pockets of higher numbers of cases (Fig 4). Out of the total 5,345 341 

hexagons in the study area, 750 hexagons had experienced at least one case of human WNV 342 

case during the years 2005 to 2016. Cumulatively, 123 hexagons had more than one human 343 

WNV case, with the maximum number of cases in a hexagon being five (Fig 4). The local 344 

Moran’s I identified some spatial clusters of human WNV cases in Cook and DuPage 345 

Highlight
Give the regression line,  and what the gray area shows.

Highlight
Give the regression line,  and what the gray area indicates.



   17 

 

counties (Fig 5): 92 hexagons with higher numbers of cases were also near to others with 346 

higher numbers of cases.  347 

 348 

Fig 4. The spatial distribution of the cumulative number of human WNV infections from 349 

2005- 2016 in Cook and DuPage Counties, Illinois.  350 

 351 

Fig 5. The local Moran’s I result showing the spatial clustering of cumulative human WNV 352 

infections from 2005- 2016 in Cook and DuPage Counties, Illinois. 353 

 354 

The results of the mixed-effects regression analysis showed that temperature, 355 

precipitation, land cover, mosquito infection, and demographic characteristics are all 356 

associated with the probability of an area having a case of WNV human illness. The AIC 357 

criteria used to compare the 10 best competing models showed that a model consisting of 15 358 

variables that included temperature, MIR, land cover, and demographic characteristics was 359 

the best model (Table 5). The final multivariable model indicated that higher temperatures 360 

two, three, and four weeks earlier and warmer average January temperature were associated 361 

with a higher probability of a hexagon being positive for human WNV case (Table 6). The 362 

lagged mosquito infection rates of one to four weeks earlier were also positively associated 363 

with the outcome variable (Table 6). Among the land cover variables, the proportion of open 364 

water, grassland, and deciduous forests were negatively associated with the probability of a 365 

WNV case while the proportion of low intensity developed areas was positively associated 366 

(Table 6). Among the demographic variable, total population was found to be positively 367 

associated with the probability of a WNV case, while the proportion of housing built after 368 

1990 was negatively associated (Table 6). The area under the ROC curve was 0.948, which 369 

indicates that model performance was excellent (Fig 6). 370 

Highlight
Give details on the range of Moran'I and its relation to hexagon color. 

Highlight
Describe what different color indicate



   18 

 

 371 

Table 5. Candidate models for predicting the probability of human WNV occurrence using 372 
weather, land cover, mosquito infection, and demographic factors in Chicago region. 373 
Model Variables included K -2 log 

likelihoods 

AIC ΔAIC 

1 Yr + templag2- 4 + precilag2 + mirlag1- 4 

+ whitepct + owpct + dmipct + dhipct 

14 12480.5 12530.5 0 

2 Yr + templag2- 4 + precilag2 and 4 + 

mirlag1- 4 + whitepct + owpct + dmipct + 

dhipct 

15 12484.1 12536.1 5.6 

3 Yr + templag2- 4 + mirlag1- 4 + whitepct 

+ owpct + dmipct + dhipct 

13 12489.3 12537.3 6.8 

4 Yr + templag2- 4 + precilag2 + mirlag1- 4 

+ whitepct + dmipct + dhipct 

13 12490.8 12538.8 8.3 

5 Yr + templag2- 4 + precilag2 and 4 + 

mirlag1- 4 + whitepct + income + owpct 

+ dmipct + dhipct 

16 12488.7 12542.7 12.2 

6 Yr + templag1- 4 + precilag2 and 4 + 

mirlag1- 4 + income + whitepct + owpct 

+ dmipct + dhipct 

17 12503.5 12559.5 29 

7 Yr + templag1- 4 + precilag1-2 and 4 + 

mirlag1- 4 + income + whitepct + owpct 

+ dmipct + dhipct 

18 12502.6 12560.6 30.1 

8 Yr + templag1- 4 + precilag1- 4 + 

mirlag1- 4 + income + whitepct + owpct 

+ dmipct + dhipct + mfpct + glandpct + 

wwpct 

22 12502.6 12560.6 30.1 

9 Global model (all predictor variable 

included) 

33 12476.47 12566.5 36 

10 Null model 1 14210.7 14214.7 1684.2 

 374 

375 
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Table 6. Model parameters for the best model using weather, land cover, mosquito infection, 376 
and demographic factors to predict the occurrence of WNV human cases in Chicago region. 377 
Variable Parameter 

estimate 

F-value P-Value Odds ratio 

(95% CI) 

Fixed effects     

Year - 17.33 <0.001 - 

Temperature of two weeks before 0.06963 22.36 <0.001 1.08 

(1.049 -1.112) 

Temperature of three weeks before 0.1085 42.99 <0.001 1.128 

(1.092- 1.165) 

Temperature of four weeks before 0.1628 116.47 <0.001 1.197 

(1.162- 1.234) 

Average January temperature  0.3613 16.65 <0.001  

Mosquito infection rate of one 

week before 

0.003199 21.53 <0.001 1.003 

(1.002- 1.004) 

Mosquito infection rate of two 

weeks before 
0.003938 38.79 <0.001 1.004 

(1.002- 1.005) 

Mosquito infection rate of three 

weeks before 
0.004003 37.83 <0.001 1.004 

(1.002- 1.005) 

Mosquito infection rate of four 

weeks before 
0.003958 34.63 <0.001 1.004 

(1.002- 1.005) 

Total population 0.000225 Infinity <0.001 1.009 

(1.006- 1.012) 

Open water percentage -0.05527 9.58 0.002 0.954 

(0.921- 0.988) 

Developed light intensity 

percentage 

0.01848 80.65 <0.001 0.990 

(0.985- 0.994) 

Deciduous forest percentage -0.02401 4.66 0.0309 0.985 

(0.980- 0.991) 

Grassland percentage -0.04603 3.14 0.0763  

Post 1990 built housing percentage -0.00546 4.28 0.0386  

Random effect     

Subject Estimate Standard 

error 

Z-value P-value 

Hexagon ID 1.1769 0.1636 7.19 <0.0001 

 378 

 379 

Fig 6. The receiver operating characteristics (ROC) curve for the final model. 380 

 381 

Discussion 382 
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We identified important fine-scale drivers of spatiotemporal variability in the human 383 

WNV cases in Chicago region, Illinois, an area of ongoing WNV transmission. Our analysis 384 

used long-term data on human illness, mosquito surveillance, weather, landscape, and 385 

demographic data. We found significant spatial clusters of human WNV cases within this 386 

urban environment. We also found a strong correlation between the weekly MIR of earlier 387 

weeks and weekly human WNV cases, and further developed predictive temporal models 388 

using mid-summer average MIR and cumulative positive mosquito pools which can be used 389 

to estimate the total annual human WNV cases.  390 

The temporal variation in the weekly human WNV cases was strongly correlated with 391 

MIR of one to four weeks earlier, with a correlation of one week earlier being the strongest. 392 

This finding was similar to our earlier model based on Illinois climate divisions, in which 393 

Division 2 includes our current study area [42]. The similarity in the correlation may be due 394 

to the fact that the data for Climate Division 2 were dominated by the data from Cook and 395 

DuPage, as these counties have more intensive surveillance compared to other Illinois 396 

counties. However, similar observations were also found in Ontario, Canada, where MIR of 397 

one week earlier was most strongly correlated with the weekly variation in human WNV 398 

cases [16]. In our study, we also found that the correlations between weekly MIR and human 399 

cases increased in high WNV years, which was also observed in a study conducted in Long 400 

Island, New York [18]. This is understandable, as stochastic variability decreases with 401 

increased numbers of cases, allowing for more precise estimation. 402 

The temporal models we developed using mid-summer average MIR and cumulative 403 

mosquito positive pools were both able to explain more than 90% of the variability in the 404 

annual number of human cases. This similarity of the results was not surprising, as positive 405 

mosquito pools are used to calculate the MIR.  However, the cumulative positive pools up to 406 

week 31 better predicted the annual human cases compared to mid-summer average MIR for 407 
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2015 and 2016. The difference observed between the two approaches may reflect the 408 

variability of the MIR calculation depending on the mosquito pool size [43,44]. Taking the 409 

most extreme possibility, when there was only one mosquito in a pool and it tested positive, 410 

this would yield a MIR of 1000 in contrast to MIR of 20 when a pool with 50 mosquitoes was 411 

tested positive. In Ontario, Canada, the cumulative number of positive mosquito pools up to 412 

week 34 was suggested as an action threshold potential to estimate the total annual human 413 

cases [16]. In Chicago, we obtained this signal three weeks earlier, which can be crucial to 414 

the ability to intervene in the upcoming potential human WNV outbreak.  415 

 We found spatial clustering of human WNV cases within the study area, indicating 416 

that some areas were more likely than others to have a WNV human case. A spatial clustering 417 

pattern of human WNV cases in Chicago area was also observed in the 2002 WNV outbreak 418 

year [12]. Several factors might play a role in the observed spatial clustering pattern, 419 

including differences in the fine-scale variation in the local landscape structure that affects 420 

mosquito population, fine-scale weather variation, demographic characteristics, access of 421 

people to health care system, and spatially variable mosquito abatement practices 422 

[12,39,45,46]. 423 

In this study, through multilevel modeling, we identified several dynamic factors that 424 

are possibly driving the fine scale spatiotemporal variation in the human WNV cases 425 

occurrence in the Chicago region. We found that the higher temperature in the previous 426 

weeks increases the probability of an area being positive for a WNV case. The association 427 

between higher temperature and WNV human illness has also been observed in other studies 428 

conducted at different spatial scales [15,17,20]. This is possibly due to the dynamic effect of 429 

higher temperature on mosquito breeding and virus replication [35,47–49]. The unique 430 

feature of our study is that by considering the dynamic nature of weather, we allowed the 431 

temperature and precipitation to vary both temporally and spatially to capture the better role 432 
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of weather in the spatiotemporal variability of human WNV cases. The precipitation of earlier 433 

weeks was not as important as the temperature of the preceding weeks but still was 434 

moderately important. The negative association of precipitation observed indicated that dry 435 

and hot weather conditions would increase the probability of an area being positive for a 436 

WNV case. Some other studies have also indicated that hot dry weather conditions are 437 

conducive for WNV transmission [50,51]. While it may seem counter-intuitive that the 438 

proportion of open water was negatively correlated with WNV cases, given Culex 439 

populations would increase with an increase in breeding sites, the definition of open water 440 

(areas in which any aquatic vegetation is submerged) is such that it is unlikely to provide 441 

good breeding habitat for Culex. 442 

We also found increased MIR up to four weeks earlier will increase the probability of 443 

an area being positive for a WNV human case. The temporal association between lagged 444 

MIR and human WNV cases is relatively well established [10,16,52]. However, it was 445 

interesting to find the positive association of MIR when spatiotemporal variabilities of human 446 

cases were considered. In our current analysis, we found that areas with a higher percentage 447 

of white population had a higher probability of being positive for WNV, which has also been 448 

observed in a previous study of this [12]. This may be a function of access to the health care 449 

system and likelihood of seeking medical treatment and testing [12,27], or may simply be due 450 

to high proportions of white population in areas of the study region where environmental 451 

conditions are also conducive to increased mosquito activity.  452 

This study also found that the probability of a hexagon being a positive for WNV case 453 

decreased in developed medium and high-intensity urban areas and increased in developed 454 

low-intensity urban areas, indicating that the suburban areas of Chicago are more at risk than 455 

the highly developed urban centers. The lack of mosquito breeding grounds and bird activity 456 

in the high-intensity urban areas might be responsible for this. Previous studies conducted in 457 
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the same area have also indicated that sub-urban region in Chicago is at more risk from the 458 

WNV [12,27]. This is probably due to the poor sanitation system in the older houses 459 

compared to new houses.  460 

In this study, we did not consider prior seasonal differences in the weather conditions, 461 

which we recommend be incorporated in future studies. In addition, the calculation of MIR 462 

for hexagons may be biased as the IDW interpolation technique used to develop continuous 463 

surface maps is affected by the uneven distribution of mosquito traps across the study area. 464 

Alternatively, other interpolation methods such as kriging might be used to develop 465 

continuous surface maps for MIR, as this method takes into account spatial autocorrelation 466 

and also creates an error map. In this study, we did not distinguish between neuroinvasive 467 

and non-neuroinvasive WNV cases. Separate analysis for only neuroinvasive cases might 468 

help us to identify what conditions drive the occurrence of the severe form of WNV infection 469 

and should also help to reduce diagnostic bias. Also, in future studies, we might consider 470 

using different spatial scales to identify if the geographic scale has affected the results. We 471 

were also unable to use data from avian or equid surveillance in this study, despite its 472 

usefulness in other modeling approaches [53–55], due to the lack of consistent data across the 473 

time period. Bird surveillance in Illinois is limited to passive surveillance of a small number 474 

of dead birds tested in each county per year, and is generally suspended after WNV is known 475 

to be circulating in the area, while equid surveillance is based entirely on passive self-476 

reporting [56]. This lack of consistent data on avian mortality has been noticed by others 477 

[10], and remains an issue for the use of data on the primary host in WNV forecasting. 478 

In conclusion, our analysis helped to better understand the fine-scale dynamic drivers 479 

of WNV transmission in an urban environment. The dynamic interplay between temperature 480 

and precipitation, mosquito infection, land cover, and demographic characteristics determine 481 

the probability of an area having a WNV case or not. Additionally, we established an 482 
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important temporal relationship between cumulative mosquito positive pools and mid-483 

summer average MIR with the total annual human WNV cases. This information can be used 484 

as a guideline to develop a threshold for public health intervention. 485 
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Abstract 13 

West Nile virus (WNV) has consistently been reported to be associated with human cases of 14 

illness in the region near Chicago, Illinois. However, the number of reported cases of human 15 

illness varies across years, with intermittent outbreaks. Several dynamic factors, including 16 

temperature, rainfall, and infection status of vector mosquito populations, are responsible for 17 

much of these observed variations. However, local landscape structure and human 18 

demographic characteristics also play a key role. The geographic and temporal scales used to 19 

analyze such complex data affect the observed associations. Here, we used spatial and 20 

statistical modeling approaches to investigate the factors that drive the outcome of WNV 21 

human illness on fine temporal and spatial scales. Our approach included multi-level 22 

modeling of long-term weekly data from 2005 to 2016, with weekly measures of mosquito 23 

infection, human illness and weather combined with more stable landscape and demographic 24 

factors on the geographical scale of 1000m hexagons. We found that hot weather conditions, 25 

warm winters, and higher MIR in earlier weeks increased the probability of an area of having 26 

a WNV human case. Higher population and the proportion of urban light intensity in an area 27 

also increased the probability of observing a WNV human case. A higher proportion of open 28 

water sources, percentage of grass land, deciduous forests, and housing built post 1990 29 

decreased the probability of having a WNV case. Additionally, we found that cumulative 30 

positive mosquito pools up to 31 weeks can strongly predict the total annual human WNV 31 

cases in the Chicago region. This study helped us to improve our understanding of the fine-32 

scale drivers of spatiotemporal variability of human WNV cases.  33 

 34 

Introduction 35 

West Nile virus (WNV), a mosquito-borne zoonotic disease, was first identified in the 36 

United States in the summer of 1999 in New York City [1]. The mosquitoes of several Culex 37 
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species are the primary enzootic and bridge vectors for the transmission of WNV, and several 38 

bird species are known to contribute in the amplification of the virus [2–4]. Since its first 39 

successful invasion in New York, WNV quickly adapted to the local populations of Culex 40 

vector mosquitoes and avian populations and rapidly spread throughout the conterminous 41 

United States [5,6]. The first major WNV outbreak in the United States was observed in 42 

2002, when more than 4,150 human cases and 284 deaths attributable to WNV infection were 43 

reported to the CDC from 40 states compared to only 149 cases and 19 deaths from 10 states 44 

cumulatively during the three years from 1999 to 2001 [7]. This stirred a prompt public 45 

health response from federal, state, and local public health agencies and led to the 46 

establishment of a more robust surveillance of mosquitoes and birds to monitor and control 47 

the spread of WNV [8].  48 

Public health surveillance for West Nile virus (WNV) involves collection and testing 49 

of Culex vector mosquitoes, collection and testing of dead birds suspected to have died of 50 

WNV, testing of sentinel chickens or of wild birds captured for this purpose, and reporting of 51 

cases of human and equine illness [9]. The ultimate goal of these surveillance data is to target 52 

mosquito control, and thereby reduce illness through the reduction of the number of infected 53 

vector mosquitoes, and to target educational messages to warn citizens to reduce individual 54 

exposure. One additional advantage of having a strong surveillance system in place is that the 55 

long-term data generated can be integrated with publicly available weather, landscape, and 56 

socioeconomic data and can be used effectively to identify the important drivers of WNV 57 

transmission and to develop predictive models [10,11].     58 

Several earlier studies have identified some of the important drivers of WNV 59 

transmission in humans. These factors include prior weather conditions and landscape 60 

structure that affect the mosquito’s biological responses, the abundance and infection status 61 

of the vector mosquitoes, demographic and social characteristic of population, individual 62 
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human behavior, and the level of public awareness [10–17]. For example, an analysis of 12 63 

years of mosquito testing and human illness data in Ontario, Canada showed that, while the 64 

mosquito infection rate of one week earlier was the strongest temporal predictor of human 65 

risk of WNV, an epidemic threshold based on the cumulative positive Culex pools up to mid-66 

August (week 34) can be successfully used to predict human WNV epidemics [16]. In Long 67 

Island, New York, more than 65% of forecast models based on past mosquito infection and 68 

human illness correctly predicted seasonal total human WNV cases up to 9 weeks before the 69 

first reported cases [18]. Similarly, the vector index, based on a combination of vector 70 

infection and abundance was found to be highly correlated with human WNV cases in studies 71 

conducted in Larimer County, Colorado  (Fauver et al., 2015), and Dallas, Texas [19].  72 

Weather factors are important drivers of WNV transmission due to their direct effect 73 

in mosquito biology. When compared with human WNV cases, higher than normal average 74 

annual temperatures are associated with an increased likelihood of higher WNV disease 75 

incidence, nationally and in most regions in the United States [17]. This relationship was true 76 

in Europe, too, where abnormally high July temperature was associated with higher incidence 77 

of human WNV cases [20]. The role of precipitation is often controversial and varies by 78 

study regions. For example, higher than normal precipitation was positively associated with 79 

higher human WNV cases in the eastern region of the United States, but this relationship was 80 

reversed for the western region [21]. Another study identified drought as an important driver 81 

of WNV epidemics in the United States [22]. Local landscape structures have also been 82 

associated with human WNV incidence. The important land cover variables associated with 83 

increased risks of human WNV include proximity to wetlands [23,24], higher tree density 84 

[24], irrigated and agricultural rural areas [25], urban areas characterized by higher 85 

impervious surfaces and storm sewer systems [26], and inner suburbs characterized by older 86 

houses, moderate vegetation and moderate population [27].  87 
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Apart from extrinsic factors, population structure, demographic characteristics, and 88 

individual variation also play roles in WNV epidemics [28]. As people age, especially when 89 

they have a history of hypertension and immunosuppression, their risk of WNV disease 90 

increases [29,30]. Community characteristics such as income level, the age of housing, 91 

management of sewer and drainage system, mosquito abatement practices, and public health 92 

infrastructure also determines the risk of WNV human infections [12,26].  93 

Different spatial scales have been used in geographical analyses to identify the drivers 94 

of human risk from WNV infections. The most commonly used spatial scale in the United 95 

States is counties [17,22,31], census tracts or Zip Code Tabulation Areas (ZCTA) [12,32], 96 

census block groups [33], and buffers of varying sizes around trap locations or human cases 97 

[24]. Each of these spatial scales has its own inherent biases, as these political boundaries do 98 

not necessarily correspond to the ecological processes of the disease in question [34]. 99 

Alternatively, dividing the area into equal spaces, such as rectangular bins or hexagons, has 100 

been used to reduce some of these biases (e.g. [35]). Hexagonal grids have an additional 101 

advantage in that they reduce the edge effects, better fit curved surfaces, and have identical 102 

neighbors [36,37]. 103 

In Illinois, WNV human infections have been endemic since 2002, with annual 104 

variability in the number of cases [38]. The majority of the human WNV cases have been 105 

reported from the northeastern region, where the largest number of people in the state is 106 

congregated. A census tract level analysis in this region using human WNV occurrence data 107 

from the 2002 outbreak year identified that census tracts with lower population density, 108 

relatively close WNV positive dead bird specimens, a higher percentage of older white 109 

residents, and housing built between 1950 and 1959 were more likely to be associated with 110 

spatial clusters of WNV cases [12]. A follow up expanded this study to look at annual 111 

incidence of WNV human illness in northeastern Illinois from 2002 to 2006, with additional 112 



   6 

 

variables to assess the effects of rainfall, temperature and the WNV mosquito infection rate 113 

[39]. This analysis determined that white populations and housing from the 1950s were 114 

associated with increased illness in some years, but this was not consistent. Interestingly, 115 

census tracts with lower rainfall had higher rates of WNV illness, but the mosquito infection 116 

rate was not an important variable in any of the models [39].  117 

Despite the identification of some of these potential risk factors, accurate prediction 118 

of human illness cases from WNV remains elusive at the local scale, especially as it is related 119 

to dynamic weather and mosquito infection status. Using long-term data on human WNV 120 

illness and intensive mosquito surveillance for the Chicago region, we can identify the fine 121 

scale drivers of spatiotemporal variability of human WNV epidemic in an urban environment. 122 

The overall goal of this study is to determine factors affecting the spatiotemporal variability 123 

of clinical WNV incidence in people through identification of the fine scale drivers of WNV 124 

transmission in an urban area with a repeated history of WNV outbreaks. These potential 125 

drivers include dynamic mosquito infection and weather. Our specific objectives in this study 126 

are to (i) describe the fine-scale temporal and spatial patterns of human WNV illness in the 127 

Chicago region, (ii) evaluate the temporal relationships between mosquito infection and 128 

human WNV illness, and (iii) determine the fine-scale dynamic effects of weather, land 129 

cover, mosquito infection, and demographic factors on the presence of human West Nile 130 

virus illness across time and space.  131 

 132 

Materials and methods  133 

This project was approved by the Institutional Review Boards of the University of 134 

Illinois Urbana-Champaign and the Illinois Department of Public Health. 135 

The two Illinois counties of Cook and DuPage, comprising Chicago and its suburbs, 136 

were included in this study. The total area covered by these two counties is nearly 5,100 137 
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square kilometers, and the total population in 2010 was 6.1 million. These areas were 138 

selected because of the relatively high incidence of human West Nile virus illness reported 139 

from these two counties and the long-term intensive mosquito surveillance data available for 140 

this region. The temporal window included in this study was the 24-week time period from 141 

late May to late October (weeks 22 to 45), which corresponds to the timing of mosquito 142 

activity and human WNV illness, with data for the years from 2005 to 2016. The years from 143 

2002 to 2004, during which Illinois had its first invasion from WNV, were excluded in this 144 

analysis because of the absence of mosquito testing data. Data on avian and equid 145 

surveillance were not included as these programs were not consistently applied across the 146 

time period. 147 

We chose to summarize all variables into hexagons to provide a neutral spatial unit of 148 

consistent size and shape, which is not possible with political boundaries. For this, we 149 

overlaid hexagons measuring 1000 m in diameter on the outlines of Cook and DuPage 150 

counties to create a grid of 5,345 hexagons for the study area. Out of these, 328 were 151 

excluded after a comparison with fine scale population data from the 2010 U.S. Census 152 

indicated that there were no households on record within those hexagons. Thus, 5,017 153 

hexagons were included in the analysis. All independent variables related to weather, land 154 

cover, mosquito infection and demography were calculated for each hexagon, as described 155 

below.  156 

Mosquito data 157 

 Mosquito testing data from 2005 to 2016 were obtained from the Illinois Department 158 

of Public Health (IDPH) through a user agreement. The IDPH collates the data from local 159 

public health agencies and mosquito abatement districts across Illinois and maintains a 160 

statewide database for the results from WNV mosquito testing. The IDPH developed a 161 

mosquito surveillance protocol that local health and mosquito abatement districts are 162 
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expected to follow in order to standardize the mosquito collection and testing across the state. 163 

In general, the local agencies collect vector mosquitoes with gravid traps, identify the sex and 164 

species of the mosquitoes, and make pools of up to 50 mosquitoes of a single species from 165 

those captured in each trap to test for the presence of WNV infection. When fewer then 50 166 

mosquitoes are captured, a pool will consist of fewer than 50 mosquitoes. During the study 167 

period, the common tests used to identify WNV in mosquitoes included antigen assays, 168 

VecTest or the Rapid Analyte Measurement Platform (RAMP) test. Some pools were also 169 

tested by Real Time reverse transcriptase polymerase chain reaction (RT-PCR). In instances 170 

when a pool was tested using more than one type of test, only the RT-PCR results were used 171 

in the analysis. Our analysis used only the test results from pools of female Culex 172 

mosquitoes. Not all mosquitoes were identified to species prior to testing; however, the 173 

majority of Culex collected in this region belong to the species Cx. pipiens or Cx. restuans 174 

[3].  175 

To determine the location of the mosquito traps, we used the existing latitude and 176 

longitude recorded in the IDPH database. In cases where the spatial data were missing, we 177 

geocoded the trap locations based on the address provided. Our analysis used all the trap 178 

locations recorded from 2005 to 2016 from Cook and DuPage counties in addition to any 179 

traps located within a 10 km radius from their boundaries (located within Lake, McHenry, 180 

Kane, Kendall, and Will counties). For each trap, the mosquito infection rate (MIR) was 181 

calculated by week and by year using the formula 182 

number of positive pools
1000*

total number of mosquitos in pools tested
  [40](Biggerstaff, 2006).  183 

Using MIR calculations from all traps, we developed continuous surface maps for 184 

MIR for each week and year using the inverse distance weighting (IDW) interpolation 185 

technique in ArcGIS 10.1. From this interpolated surface map for each year and week, the 186 



   9 

 

average, minimum, and maximum MIR for each hexagon was calculated using the zonal 187 

statistics as table function in ArcGIS 10.1. A model builder platform using iteration features 188 

in ArcGIS 10.1 was used to run these processes.     189 

Human illness data 190 

 Records of human WNV cases in Illinois were obtained from the IDPH through a user 191 

agreement. All confirmed and probable cases of WNV reported to the IDPH by medical and 192 

public health personnel for the study area were included in this study; the state of Illinois 193 

mandates reporting of WNV to local public health departments, which then report all cases to 194 

IDPH. Probable cases are those that meet clinical criteria during the season when 195 

transmission is likely to occur and meet laboratory criteria for West Nile virus by serology 196 

(IgM capture ELISA) or polymerase chain reaction, while confirmed cases are those with 197 

confirmatory test results from the IDPH or the Centers for Disease Control and Prevention. 198 

All the human WNV cases in Cook and DuPage counties reported from 2005 to 2016 were 199 

geocoded and aggregated by hexagons for each week and year. The data were converted into 200 

the binary form of presence or absence of a WNV case in a given hexagon and week.  201 

Demographic data  202 

The demographic variables included were total population, racial composition, 203 

housing age, and income level. The total population and racial composition included the 204 

number of White, African American, Asian, and Hispanic people at the census block level, as 205 

reported in the 2010 U.S. Census. The racial population data was converted to the percentage 206 

of White, African American, Asian, and Hispanic people in each hexagon. The income data 207 

for the block group level were obtained from the 2015 American Community Survey. 208 

Housing age was included as the proportions of housing built in different time periods, which 209 

was obtained at the block group level from the 2015 American Community Survey. We 210 

divided housing age into four different time-periods: pre-World War II houses (built before 211 
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1939), post-World War II houses (built between 1940 and 1969), houses built between 1970 212 

and 1989, and houses built after 1990. These demographic data were processed in ArcGIS 213 

using the intersection tool to calculate a parameter for each hexagon.     214 

Landcover data 215 

Landcover data for the entire United States was obtained from the national landcover 216 

database (NLCD) for the years 2006 and 2011. The NLCD database is a Landsat based 217 

landcover data available at a 30 m resolution (www.mrlc.gov). The landcover raster was 218 

clipped for Cook and DuPage counties, including a surrounding 1 km buffer. From this 219 

clipped raster, the total number of pixels for each land category within each hexagon was 220 

calculated using the tabulate as area tool in ArcGIS 10.1. The proportion of each land cover 221 

category for each hexagon was then calculated by dividing the number of pixels for that 222 

category by the total number of pixels for all categories. In Cook and DuPage counties, 15 223 

different types of landcover were available: urban areas (developed open space, developed 224 

low intensity, developed medium intensity, developed high intensity), forests (deciduous, 225 

evergreen and mixed), barren land, shrubs, grassland, pasture, cultivated crops, woody 226 

wetlands, herbaceous wetlands, and open water. The land cover data from 2006 was used to 227 

analyze the WNV cases for the years from 2006 to 2010, while the land cover data from 2011 228 

was used for 2011 to 2016.  229 

Weather data 230 

 Spatial weather data on daily mean temperature and precipitation from 2005 to 2016 231 

were obtained from the PRISM Climate Group (PRISM Climate Group, Oregon State 232 

University, http://prism.oregonstate.edu). The PRISM daily data are available as spatial grids 233 

of 4 km resolution, which are calculated through interpolation and statistical techniques using 234 

point data from weather monitoring networks across the country combined with topographic 235 

data. These daily data were used to calculate the weekly temperature and precipitation. For 236 
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our analysis, the weekly mean temperature was calculated by taking the average of the seven 237 

daily averages for that week, and the weekly precipitation was calculated as a sum of the 238 

daily precipitation for that week. Finally, the weekly temperature and precipitation for each 239 

year and week for each hexagon was calculated by using the zonal statistics as table function 240 

in ArcGIS 10.1. We also calculated average January temperature for each hexagon for each 241 

year from the daily data as a proxy for the winter temperature.  242 

Statistical methods 243 

To assess the temporal relationship between human illness and MIR, we calculated 244 

the Spearman rank correlation between the weekly MIR of 1-6 weeks lag and human cases. 245 

We repeated this analysis on the subsets of years with high numbers of WNV cases (more 246 

than 100 human cases; 2005, 2006, 2012 and 2016) and those with low numbers of WNV 247 

cases (less than 100 cases; 2007 - 2009, 2010, 2011, 2013 - 2015) to examine if the 248 

relationship between MIR and human cases varies in high and low years. We further 249 

examined the ability of the early summer (weeks 22- 27) and mid-summer (weeks 28- 33) 250 

average MIR to explain and predict the seasonal annual total WNV cases by using linear 251 

regression analysis. In addition, we assessed the ability of the cumulative positive mosquito 252 

pools up to week 28 and thereafter, added to each week’s data, to find a threshold that could 253 

best explain the annual total human WNV cases. In both of these calculations, data from 2005 254 

to 2014 were used to create a regression equation, and data from 2015 and 2016 was used to 255 

test the model. 256 

To visualize the spatial patterns of human illness over time, we first developed 257 

choropleth maps of WNV cases. Then, we used local Moran’s I method using an inclusive 258 

second order queen contiguity weight matrix in the spatial analysis software GeoDa to further 259 

identify the spatial clusters of cumulative human WNV cases from 2005 to 2016. We also 260 
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examined differences in results using neighboring cells and rook contiguity weight matrix, 261 

but the results did not vary.  262 

For the spatiotemporal statistical model, the outcome variable was the presence/ 263 

absence of a human WNV case in each hexagon for each year and week. The predictors 264 

included 32 variables related to weather, land cover, mosquito infection and demography 265 

(Table 1). The weather variables consisted of mean weekly temperature and precipitation 266 

with lags of one to four weeks. The land cover variables include 15 categories, the proportion 267 

for each hexagon of: developed open space; developed low, medium, and high intensity 268 

urban areas; deciduous, evergreen, and mixed forests; barren land; shrubs; grassland; pasture; 269 

cultivated crops; woody wetlands; herbaceous wetlands; and open water. The mosquito 270 

infection data included the average MIR with lags of one to four weeks for each hexagon for 271 

each year and week. Demographic variables for each hexagon included the proportion of 272 

White, African American, Asian, and Hispanic population and the average median household 273 

income. In total, there were 1.44 million rows of data (5017 hexagons * 12 years * 24 274 

weeks). A correlation matrix among all variables was created to evaluate multicollinearity 275 

before running the model. As our response variable was binary (presence or absence of WNV 276 

human cases), we used mixed effects multiple logistic regression with stepwise selection for 277 

the statistical analysis, with hexagons as a random variable. We used the PROC GLIMMIX 278 

procedure in the SAS statistical software. An Akaike information criterion (AIC) was used to 279 

choose the best model [41]. A receiver operating characteristics (ROC) curve was calculated 280 

using model predictions for 2015 and 2016 to evaluate model performance. All the statistical 281 

analyses were conducted in SAS 9.4 (SAS Institute Inc., Cary). 282 

283 
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Table 1. List of explanatory variables.  284 
Variables  Notation 

Land cover  

Proportion of developed open space  dospct 

Proportion of developed low intensity dlipct 

Proportion of developed medium intensity dmipct 

Proportion of developed high intensity dhipct 

Proportion of deciduous forests dfpct 

Proportion of evergreen forests efpct 

Proportion of mixed forests mfpct 

Proportion of barren land blpct 

Proportion of shrubs shrubspct 

Proportion of grassland glandpct 

Proportion of pasture pasturepct 

Proportion of cultivated land clpct 

Proportion of woody wetlands wwpct 

Proportion of herbaceous wetlands hwpct 

Proportion of open water owpct 

  

Mosquito infection rate  

Mosquito infection of one week before mirlag1 

Mosquito infection of two weeks before mirlag2 

Mosquito infection of three weeks before mirlag3 

Mosquito infection of four weeks before mirlag4 

  

Weather  
Temperature  

Average temperature of one week before templag1 
Average temperature of two weeks before templag2 

Average temperature of three weeks before templag3 

Average temperature of four weeks before templag4 

Precipitation  

Average precipitation of one week before precilag1 

Average precipitation of two weeks before precilag2 

Average precipitation of three weeks before precilag3 

Average precipitation of four weeks before precilag4 

  

Demographic factors  

Percentage of White population whitepct 

Percentage of African American blackpct 

Percentage of Asian population asianpct 

Percentage of Hispanic hispanicpct 

Median household income income 

 285 

Results 286 

There were 1,371 total human WNV cases reported in Illinois from 2005 to 2016. Out 287 

of these total reported cases, 906 cases (66%) were from the Chicago region (Cook and 288 
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DuPage Counties). The number of human WNV cases in the study region varied annually, 289 

with the year 2012 reporting the highest number of cases (229) and the lowest number of 290 

cases (1) reported in 2009 (Table 2).  The average annual MIR during the mosquito season 291 

was also highest in 2012 (7.34), with 31.3% of tested pools positive for WNV (Table 2). The 292 

number of mosquito pools tested annually ranged from about 6,000 pools in 2016 to over 293 

12,000 pools in 2007.  294 

 295 

Table 2. Annual human WNV cases, average seasonal mosquito infection rate (MIR), and 296 
mosquito testing from 2005 to 2016 in Cook and DuPage counties. 297 
Year Number of 

human cases 

Average 

MIR 

Number of 

pools tested 

Number of 

positive pools 

Total number of 

mosquitoes 

tested 

2005 181 5.33 7,165 1,939 271,235 

2006 129 5.35 9,428 1,984 318,386 

2007 43 2.65 12,131 1,259 375,520 

2008 10 1.91 9,024 587 298,995 

2009 1 1.14 9,450 298 311,220 

2010 47 5.19 11,491 2,086 393,279 

2011 24 3.10 8,911 939 287,774 

2012 229 7.35 10,162 3,182 323,497 

2013 66 4.26 11,078 1,967 407,326 

2014 31 2.97 9,273 990 333,489 

2015 36 3.57 7,725 1,046 314,363 

2016 108 6.34 6,144 1,687 219,909 

MIR= Mosquito infection rate; WNV= West Nile virus 298 

 299 

We found a strong temporal relationship between the MIR of previous weeks and 300 

human WNV cases in the study region (Table 3, Fig 1). The strongest correlation (r= 0.837) 301 

was with MIR at a one-week lag (Table 3). The strength of the correlation was stronger (r= 302 

0.884) in the subset of high infection years (2005, 2006, 2012, and 2016) and relatively lower 303 

(r= 0.737) in low years (Table 3). When evaluated for only 2012, when case counts were 304 

highest, the correlation between MIR and human WNV cases was also the highest (r= 0.899). 305 
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In both high and low years, the strength of the correlation gradually declined with the number 306 

of weeks lagged and there was almost no correlation with MIR after lags of four weeks.  307 

 308 

 309 
Table 3. Spearman correlation of weekly cumulative human WNV cases and lagged MIR 310 
for all years and selected subsets of years from 2005- 2016 in Cook and DuPage Counties. 311 
  Years with Human WNV cases 

MIR All years >100 <100 229 (Year 2012) 

     

Same week 0.776 0.775 0.671 0.818 

One week before 0.837 0.884 0.737 0.899 

Two weeks before 0.765 0.766 0.698 0.875 

Three weeks before 0.601 0.574 0.556 0.727 

Four weeks before 0.429 0.354 0.394 0.501 

Five weeks before 0.289 0.147 0.286 0.283 

Six weeks before 0.142 0.001 0.120 0.038 

MIR= Mosquito infection rate; WNV= West Nile virus 312 

 313 

Fig 1. Cumulative weekly human WNV cases (red bars) and mosquito infection rate (blue 314 

line) from 2005- 2016 in Cook and DuPage Counties, Illinois. 315 

 316 

We found that the MIR of mid-summer (weeks 28-33) was able to explain 93% of the 317 

variability in total annual human cases (Table 4, Fig 2). The model predicted 44.8 human 318 

cases for 2015, compared to 35 actual cases, and 142.7 human cases for 2016 compared to 319 

108 actual cases. Likewise, the cumulative number of positive pools also strongly explained 320 

and predicted the total annual human cases (Table 4, Fig 3); the cumulative number of 321 

positive mosquito pools by week 31 explained 93% of the variability in total annual human 322 

cases, similar to that explained by mid-summer MIR (Table 4). The model using cumulative 323 

positive pools by week 31 predicted 35.1 human cases (vs. 35 actual cases) for 2015 and 324 

102.8 human cases (vs. 108 actual cases) for 2016. The cumulative mosquito positive pools 325 

by week 31 thus better predicted the annual human cases than the mid-summer MIR. 326 



   16 

 

 327 

Table 4. The regression equations of the relationship between a cumulative number of WNV 328 
positive pools, mosquito infection rate in a six-week period early and mid-summer and 329 
human West Nile virus illnesses for the year for Cook and DuPage Counties from 2004- 330 
2014. 331 
 Week Regression equation R-square 

28 30.1 + 0.445 * Number of positive pools 0.721 

29 21.2 + 0.278 * Number of positive pools 0.825 

30 11.8 + 0.194 * Number of positive pools 0.895 

31  2.33 + 0.144 * Number of positive pools 0.931 

32 - 6.0 + 0.118 * Number of positive pools 0.917 

33 - 16.5 + 0.103 * Number of positive pools 0.901 

34 - 23.7 + 0.0938 * Number of positive pools 0.863 

35 - 29.5 + 0.0861 * Number of positive pools 0.813 

Early summer (22- 27) 13.7 + 162 * average MIR of week 22- 27 0.833 

Mid-summer (28- 33) - 16.7 + 14.7 * average MIR of week 28- 33 0.936 

 332 

Fig 2. The relationship between annual human WNV infections and mid-summer mosquito 333 

infection rate from 2005- 2014 in Cook and DuPage Counties, Illinois. 334 

 335 

Fig 3. The relationship between annual human WNV infections and a cumulative number of 336 

WNV positive mosquito pools from 2005- 2014 in Cook and DuPage Counties, Illinois. 337 

 338 

The spatial pattern of human WNV cases in Cook and DuPage counties showed that 339 

cases were distributed throughout most areas of the study region at some point during the 340 

study period, with some pockets of higher numbers of cases (Fig 4). Out of the total 5,345 341 

hexagons in the study area, 750 hexagons had experienced at least one case of human WNV 342 

case during the years 2005 to 2016. Cumulatively, 123 hexagons had more than one human 343 

WNV case, with the maximum number of cases in a hexagon being five (Fig 4). The local 344 

Moran’s I identified some spatial clusters of human WNV cases in Cook and DuPage 345 
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counties (Fig 5): 92 hexagons with higher numbers of cases were also near to others with 346 

higher numbers of cases.  347 

 348 

Fig 4. The spatial distribution of the cumulative number of human WNV infections from 349 

2005- 2016 in Cook and DuPage Counties, Illinois.  350 

 351 

Fig 5. The local Moran’s I result showing the spatial clustering of cumulative human WNV 352 

infections from 2005- 2016 in Cook and DuPage Counties, Illinois. 353 

 354 

The results of the mixed-effects regression analysis showed that temperature, 355 

precipitation, land cover, mosquito infection, and demographic characteristics are all 356 

associated with the probability of an area having a case of WNV human illness. The AIC 357 

criteria used to compare the 10 best competing models showed that a model consisting of 15 358 

variables that included temperature, MIR, land cover, and demographic characteristics was 359 

the best model (Table 5). The final multivariable model indicated that higher temperatures 360 

two, three, and four weeks earlier and warmer average January temperature were associated 361 

with a higher probability of a hexagon being positive for human WNV case (Table 6). The 362 

lagged mosquito infection rates of one to four weeks earlier were also positively associated 363 

with the outcome variable (Table 6). Among the land cover variables, the proportion of open 364 

water, grassland, and deciduous forests were negatively associated with the probability of a 365 

WNV case while the proportion of low intensity developed areas was positively associated 366 

(Table 6). Among the demographic variable, total population was found to be positively 367 

associated with the probability of a WNV case, while the proportion of housing built after 368 

1990 was negatively associated (Table 6). The area under the ROC curve was 0.948, which 369 

indicates that model performance was excellent (Fig 6). 370 
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 371 

Table 5. Candidate models for predicting the probability of human WNV occurrence using 372 
weather, land cover, mosquito infection, and demographic factors in Chicago region. 373 
Model Variables included K -2 log 

likelihoods 

AIC ΔAIC 

1 Yr + templag2- 4 + precilag2 + mirlag1- 4 

+ whitepct + owpct + dmipct + dhipct 

14 12480.5 12530.5 0 

2 Yr + templag2- 4 + precilag2 and 4 + 

mirlag1- 4 + whitepct + owpct + dmipct + 

dhipct 

15 12484.1 12536.1 5.6 

3 Yr + templag2- 4 + mirlag1- 4 + whitepct 

+ owpct + dmipct + dhipct 

13 12489.3 12537.3 6.8 

4 Yr + templag2- 4 + precilag2 + mirlag1- 4 

+ whitepct + dmipct + dhipct 

13 12490.8 12538.8 8.3 

5 Yr + templag2- 4 + precilag2 and 4 + 

mirlag1- 4 + whitepct + income + owpct 

+ dmipct + dhipct 

16 12488.7 12542.7 12.2 

6 Yr + templag1- 4 + precilag2 and 4 + 

mirlag1- 4 + income + whitepct + owpct 

+ dmipct + dhipct 

17 12503.5 12559.5 29 

7 Yr + templag1- 4 + precilag1-2 and 4 + 

mirlag1- 4 + income + whitepct + owpct 

+ dmipct + dhipct 

18 12502.6 12560.6 30.1 

8 Yr + templag1- 4 + precilag1- 4 + 

mirlag1- 4 + income + whitepct + owpct 

+ dmipct + dhipct + mfpct + glandpct + 

wwpct 

22 12502.6 12560.6 30.1 

9 Global model (all predictor variable 

included) 

33 12476.47 12566.5 36 

10 Null model 1 14210.7 14214.7 1684.2 

 374 

375 
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Table 6. Model parameters for the best model using weather, land cover, mosquito infection, 376 
and demographic factors to predict the occurrence of WNV human cases in Chicago region. 377 
Variable Parameter 

estimate 

F-value P-Value Odds ratio 

(95% CI) 

Fixed effects     

Year - 17.33 <0.001 - 

Temperature of two weeks before 0.06963 22.36 <0.001 1.08 

(1.049 -1.112) 

Temperature of three weeks before 0.1085 42.99 <0.001 1.128 

(1.092- 1.165) 

Temperature of four weeks before 0.1628 116.47 <0.001 1.197 

(1.162- 1.234) 

Average January temperature  0.3613 16.65 <0.001  

Mosquito infection rate of one 

week before 

0.003199 21.53 <0.001 1.003 

(1.002- 1.004) 

Mosquito infection rate of two 

weeks before 
0.003938 38.79 <0.001 1.004 

(1.002- 1.005) 

Mosquito infection rate of three 

weeks before 
0.004003 37.83 <0.001 1.004 

(1.002- 1.005) 

Mosquito infection rate of four 

weeks before 
0.003958 34.63 <0.001 1.004 

(1.002- 1.005) 

Total population 0.000225 Infinity <0.001 1.009 

(1.006- 1.012) 

Open water percentage -0.05527 9.58 0.002 0.954 

(0.921- 0.988) 

Developed light intensity 

percentage 

0.01848 80.65 <0.001 0.990 

(0.985- 0.994) 

Deciduous forest percentage -0.02401 4.66 0.0309 0.985 

(0.980- 0.991) 

Grassland percentage -0.04603 3.14 0.0763  

Post 1990 built housing percentage -0.00546 4.28 0.0386  

Random effect     

Subject Estimate Standard 

error 

Z-value P-value 

Hexagon ID 1.1769 0.1636 7.19 <0.0001 

 378 

 379 

Fig 6. The receiver operating characteristics (ROC) curve for the final model. 380 

 381 

Discussion 382 
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We identified important fine-scale drivers of spatiotemporal variability in the human 383 

WNV cases in Chicago region, Illinois, an area of ongoing WNV transmission. Our analysis 384 

used long-term data on human illness, mosquito surveillance, weather, landscape, and 385 

demographic data. We found significant spatial clusters of human WNV cases within this 386 

urban environment. We also found a strong correlation between the weekly MIR of earlier 387 

weeks and weekly human WNV cases, and further developed predictive temporal models 388 

using mid-summer average MIR and cumulative positive mosquito pools which can be used 389 

to estimate the total annual human WNV cases.  390 

The temporal variation in the weekly human WNV cases was strongly correlated with 391 

MIR of one to four weeks earlier, with a correlation of one week earlier being the strongest. 392 

This finding was similar to our earlier model based on Illinois climate divisions, in which 393 

Division 2 includes our current study area [42]. The similarity in the correlation may be due 394 

to the fact that the data for Climate Division 2 were dominated by the data from Cook and 395 

DuPage, as these counties have more intensive surveillance compared to other Illinois 396 

counties. However, similar observations were also found in Ontario, Canada, where MIR of 397 

one week earlier was most strongly correlated with the weekly variation in human WNV 398 

cases [16]. In our study, we also found that the correlations between weekly MIR and human 399 

cases increased in high WNV years, which was also observed in a study conducted in Long 400 

Island, New York [18]. This is understandable, as stochastic variability decreases with 401 

increased numbers of cases, allowing for more precise estimation. 402 

The temporal models we developed using mid-summer average MIR and cumulative 403 

mosquito positive pools were both able to explain more than 90% of the variability in the 404 

annual number of human cases. This similarity of the results was not surprising, as positive 405 

mosquito pools are used to calculate the MIR.  However, the cumulative positive pools up to 406 

week 31 better predicted the annual human cases compared to mid-summer average MIR for 407 
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2015 and 2016. The difference observed between the two approaches may reflect the 408 

variability of the MIR calculation depending on the mosquito pool size [43,44]. Taking the 409 

most extreme possibility, when there was only one mosquito in a pool and it tested positive, 410 

this would yield a MIR of 1000 in contrast to MIR of 20 when a pool with 50 mosquitoes was 411 

tested positive. In Ontario, Canada, the cumulative number of positive mosquito pools up to 412 

week 34 was suggested as an action threshold potential to estimate the total annual human 413 

cases [16]. In Chicago, we obtained this signal three weeks earlier, which can be crucial to 414 

the ability to intervene in the upcoming potential human WNV outbreak.  415 

 We found spatial clustering of human WNV cases within the study area, indicating 416 

that some areas were more likely than others to have a WNV human case. A spatial clustering 417 

pattern of human WNV cases in Chicago area was also observed in the 2002 WNV outbreak 418 

year [12]. Several factors might play a role in the observed spatial clustering pattern, 419 

including differences in the fine-scale variation in the local landscape structure that affects 420 

mosquito population, fine-scale weather variation, demographic characteristics, access of 421 

people to health care system, and spatially variable mosquito abatement practices 422 

[12,39,45,46]. 423 

In this study, through multilevel modeling, we identified several dynamic factors that 424 

are possibly driving the fine scale spatiotemporal variation in the human WNV cases 425 

occurrence in the Chicago region. We found that the higher temperature in the previous 426 

weeks increases the probability of an area being positive for a WNV case. The association 427 

between higher temperature and WNV human illness has also been observed in other studies 428 

conducted at different spatial scales [15,17,20]. This is possibly due to the dynamic effect of 429 

higher temperature on mosquito breeding and virus replication [35,47–49]. The unique 430 

feature of our study is that by considering the dynamic nature of weather, we allowed the 431 

temperature and precipitation to vary both temporally and spatially to capture the better role 432 
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of weather in the spatiotemporal variability of human WNV cases. The precipitation of earlier 433 

weeks was not as important as the temperature of the preceding weeks but still was 434 

moderately important. The negative association of precipitation observed indicated that dry 435 

and hot weather conditions would increase the probability of an area being positive for a 436 

WNV case. Some other studies have also indicated that hot dry weather conditions are 437 

conducive for WNV transmission [50,51]. While it may seem counter-intuitive that the 438 

proportion of open water was negatively correlated with WNV cases, given Culex 439 

populations would increase with an increase in breeding sites, the definition of open water 440 

(areas in which any aquatic vegetation is submerged) is such that it is unlikely to provide 441 

good breeding habitat for Culex. 442 

We also found increased MIR up to four weeks earlier will increase the probability of 443 

an area being positive for a WNV human case. The temporal association between lagged 444 

MIR and human WNV cases is relatively well established [10,16,52]. However, it was 445 

interesting to find the positive association of MIR when spatiotemporal variabilities of human 446 

cases were considered. In our current analysis, we found that areas with a higher percentage 447 

of white population had a higher probability of being positive for WNV, which has also been 448 

observed in a previous study of this [12]. This may be a function of access to the health care 449 

system and likelihood of seeking medical treatment and testing [12,27], or may simply be due 450 

to high proportions of white population in areas of the study region where environmental 451 

conditions are also conducive to increased mosquito activity.  452 

This study also found that the probability of a hexagon being a positive for WNV case 453 

decreased in developed medium and high-intensity urban areas and increased in developed 454 

low-intensity urban areas, indicating that the suburban areas of Chicago are more at risk than 455 

the highly developed urban centers. The lack of mosquito breeding grounds and bird activity 456 

in the high-intensity urban areas might be responsible for this. Previous studies conducted in 457 
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the same area have also indicated that sub-urban region in Chicago is at more risk from the 458 

WNV [12,27]. This is probably due to the poor sanitation system in the older houses 459 

compared to new houses.  460 

In this study, we did not consider prior seasonal differences in the weather conditions, 461 

which we recommend be incorporated in future studies. In addition, the calculation of MIR 462 

for hexagons may be biased as the IDW interpolation technique used to develop continuous 463 

surface maps is affected by the uneven distribution of mosquito traps across the study area. 464 

Alternatively, other interpolation methods such as kriging might be used to develop 465 

continuous surface maps for MIR, as this method takes into account spatial autocorrelation 466 

and also creates an error map. In this study, we did not distinguish between neuroinvasive 467 

and non-neuroinvasive WNV cases. Separate analysis for only neuroinvasive cases might 468 

help us to identify what conditions drive the occurrence of the severe form of WNV infection 469 

and should also help to reduce diagnostic bias. Also, in future studies, we might consider 470 

using different spatial scales to identify if the geographic scale has affected the results. We 471 

were also unable to use data from avian or equid surveillance in this study, despite its 472 

usefulness in other modeling approaches [53–55], due to the lack of consistent data across the 473 

time period. Bird surveillance in Illinois is limited to passive surveillance of a small number 474 

of dead birds tested in each county per year, and is generally suspended after WNV is known 475 

to be circulating in the area, while equid surveillance is based entirely on passive self-476 

reporting [56]. This lack of consistent data on avian mortality has been noticed by others 477 

[10], and remains an issue for the use of data on the primary host in WNV forecasting.     478 

In conclusion, our analysis helped to better understand the fine-scale dynamic drivers 479 

of WNV transmission in an urban environment. The dynamic interplay between temperature 480 

and precipitation, mosquito infection, land cover, and demographic characteristics determine 481 

the probability of an area having a WNV case or not. Additionally, we established an 482 
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important temporal relationship between cumulative mosquito positive pools and mid-483 

summer average MIR with the total annual human WNV cases. This information can be used 484 

as a guideline to develop a threshold for public health intervention. 485 

 486 

ACKNOWLEDGEMENTS 487 

This publication was supported by Cooperative Agreement #U01 CK000505, funded by the 488 

Centers for Disease Control and Prevention.  Its contents are solely the responsibility of the 489 

authors and do not necessarily represent the official views of the Centers of Disease Control 490 

and Prevention or the Department of Health and Human Services. 491 

 492 
REFERENCES 493 
1.  Lanciotti R, Roehrig J, Deubel V, Smith J, Parker M, Steele K, et al. Origin of the 494 

West Nile virus responsible for an outbreak of encephalitis in the northeastern United 495 
States. Science (80- ). 1999;286: 2333–2337.  496 

2.  Kilpatrick AM, LaDeau SL, Marra PP. Ecology of West Nile virus transmission and its 497 
impact on birds in the western hemisphere. Auk. 2007;124: 1121–1136.  498 

3.  Hamer GL, Kitron UD, Brawn JD, Loss SR, Ruiz MO, Goldberg TL, et al. Culex 499 
pipiens (Diptera: Culicidae): a bridge vector of West Nile virus to humans. J Med 500 
Entomol. 2008;45: 125–128.  501 

4.  Hamer GL, Walker ED, Brawn JD, Loss SR, Ruiz MO, Goldberg TL, et al. Rapid 502 
amplification of West Nile virus: the role of hatch-year birds. Vector borne zoonotic 503 
Dis. 2008;8: 57–68.  504 

5.  Hayes EB, Gubler DJ. West Nile virus: Epidemiology and clinical features of an 505 
emerging epidemic in the United States. Annu Rev Med. 2006;57: 181–194.  506 

6.  Brault AC. Changing patterns of West Nile virus transmission: altered vector 507 
competence and host susceptibility. Vet Res. 2009;40: 1–19.  508 

7.  Centers for Disease Control and Prevention (CDC). West Nile virus [Internet]. 2017 509 
[cited 15 Oct 2016]. Available: https://www.cdc.gov/westnile/statsmaps/final.html 510 

8.  Marfin AA, Petersen LR, Eidson M, Miller J, Hadler J, Farello C, et al. Widespread 511 
West Nile virus activity, eastern United States, 2000. Emerg Infect Dis. 2000;7: 730.  512 

9.  Lindsey NP, Staples JE, Lehman JA, Fischer M. Surveillance for human west nile 513 
virus disease - United states, 1999-2008. MMWR Surveill Summ. 2010;59: 1–17.  514 

10.  Kilpatrick AM, Pape WJ. Predicting human West Nile virus infections with mosquito 515 
surveillance data. Am J Epidemiol. 2013;178: 829–835.  516 

11.  Manore CA, Davis J, Christofferson RC, Wesson D, Hyman JM, Mores CN. Towards 517 
an early warning system for forecasting human West Nile virus incidence. PLoS Curr. 518 
2014;6.  519 

12.  Ruiz MO, Tedesco C, McTighe TJ, Austin C, Kitron U. Environmental and social 520 
determinants of human risk during a West Nile virus outbreak in the greater Chicago 521 
area, 2002. Int J Health Geogr. 2004;3: 8–18.  522 



   25 

 

13.  Roiz D, Ruiz S, Soriguer R, Figuerola J. Climatic effects on mosquito abundance in 523 
Mediterranean wetlands. Parasit Vectors. 2014;7: 333.  524 

14.  Rosa R, Marini G, Bolzoni L, Neteler M, Metz M, Delucchi L, et al. Early warning of 525 
West Nile virus mosquito vector: climate and land use models successfully explain 526 
phenology and abundance of Culex pipiens mosquitoes in north-western Italy. 527 
Parasites Vectors 7 1. 2014;1: 269–280.  528 

15.  Wimberly MC, Lamsal A, Giacomo P, Chuang T-W. Regional Variation of Climatic 529 
Influences on West Nile Virus Outbreaks in the United States. Am J Trop Med Hyg. 530 
2014;91: 677–684.  531 

16.  Giordano B V, Kaur S, Hunter FF. West Nile virus in Ontario Canada: A twelve-year 532 
analysis of human case prevalence, mosquito surveillance, and climate data. PLoS 533 
One. 2017;12.  534 

17.  Hahn MB, Monaghan AJ, Hayden MH, Eisen RJ, Delorey MJ, Lindsey NP, et al. 535 
Meteorological conditions associated with increased incidence of West Nile virus 536 
disease in the United States, 2004-2012. Am J Trop Med Hyg. 2015;92: 1013–1022.  537 

18.  Defelice NB, Little E, Campbell SR, Shaman J. Ensemble forecast of human West 538 
Nile virus cases and mosquito infection rates. Nat Commun. 2017;8: 1–6. 539 
doi:10.1038/ncomms14592 540 

19.  Chung WM, Buseman CM, Joyner SN, Hughes SM, Fomby TB, Luby JP, et al. The 541 
2012 West Nile Encephalitis Epidemic in Dallas, Texas. JAMA. 2013;8874: 297–307. 542 
doi:10.1001/jama.2013.8267 543 

20.  Tran A, Sudre B, Paz S, Rossi M, Desbrosse A, Chevalier V, et al. Environmental 544 
predictors of West Nile fever risk in Europe. Int J Health Geogr. 2014;13: 26–36.  545 

21.  Landesman WJ, Allan BF, Langerhans RB, Knight TM, Chase JM. Inter-annual 546 
associations between precipitation and human incidence of West Nile virus in the 547 
United States. Vector borne zoonotic Dis. 2007;7: 337–343.  548 

22.  Paull SH, Kilpatrick AM, Horton DE, Diffenbaugh NS, Ashfaq M, Rastogi D, et al. 549 
Drought and immunity determine the intensity of west nile virus epidemics and climate 550 
change impacts. Proc R Soc B Biol Sci. 2017;284. doi:10.1098/rspb.2016.2078 551 

23.  Chuang T-W, Hockett CW, Kightlinger L, Wimberly MC. Landscape-level spatial 552 
patterns of West Nile virus risk in the Northern Great Plains. Am J Trop Med Hyg. 553 
2012; 724–731.  554 

24.  Sallam MF, Michaels SR, Riegel C, Pereira RM, Zipperer W, Lockaby BG, et al. 555 
Spatio-Temporal Distribution of Vector-Host Contact (VHC) Ratios and Ecological 556 
Niche Modeling of the West Nile Virus Mosquito Vector Culex quinquefasciatus, in 557 
the City of New Orleans, LA, USA. Int J Environ Res Public Health. 2017;14: 892–558 
911.  559 

25.  DeGroote JP, Sugumaran R. National and regional associations between human West 560 
Nile virus incidence and demographic landscape, and land use conditions in the 561 
coterminous United States. Vector borne zoonotic Dis. 2012;12: 657–665.  562 

26.  Liu H, Weng Q, Gaines D. Geographic incidence of human West Nile virus in 563 
northern Virginia USA, in relation to incidence in birds and variations in urban 564 
environment. Sci Total Environ. 2011;409: 4235–4241.  565 

27.  Ruiz M, Walker E, Foster E, Haramis L, Kitron U. Association of West Nile virus 566 
illness and urban landscapes in Chicago and Detroit. Int J Health Geogr. 2007;6: 10–567 
20.  568 

28.  Brinton MA. Host factors involved in West Nile virus replication. Ann N Y Acad Sci. 569 
2001;951: 207–219.  570 

29.  Nolan MS, Schuermann J, Murray KO. West Nile virus infection among humans in 571 



   26 

 

Texas, USA, 2002-2011. EmergInfectDis. 2013;19.1: 137.  572 
30.  Montgomery RR, Murray KO. Risk factors for West Nile virus infection and disease in 573 

populations and individuals. Expert Rev AntiInfect Ther. 2015;13: 317–325.  574 
31.  Davis JK, Vincent G, Hildreth MB, Kightlinger L, Carlson C, Wimberly MC. 575 

Integrating Environmental Monitoring and Mosquito Surveillance to Predict Vector-576 
borne Disease: Prospective Forecasts of a West Nile Virus Outbreak. PLoS Curr. 2017; 577 
1–23. doi:10.1371/currents.outbreaks.90e80717c4e67e1a830f17feeaaf85de 578 

32.  Wimberly MC, Giacomo P, Kightlinger L, Hildreth MB. Spatio-temporal 579 
epidemiology of human West Nile virus disease in South Dakota. Int J Environ Res 580 
Public Health. 2013;10: 5584–5602.  581 

33.  DeGroote JP, Sugumaran R, Brend S, Tucker B, Bartholomay L. Landscape 582 
demographic, entomological, and climatic associations with human disease incidence 583 
of West Nile virus in the state of Iowa, USA. Int J Health Geogr. 2008;7: 19.  584 

34.  Kwan M-P. The uncertain geographic context problem. Ann Assoc Am Geogr. 585 
2012;102: 958–968.  586 

35.  Ruiz MO, Chaves LF, Hamer GL, Sun T, Brown WM, Walker ED, et al. Local impact 587 
of temperature and precipitation on West Nile virus infection in Culex species 588 
mosquitoes in northeast Illinois, USA. Parasit Vectors. 2010;3: 19–34.  589 

36.  Birch CP, Oom SP, Beecham JA. Rectangular and hexagonal grids used for 590 
observation, experiment and simulation in ecology. Ecol Modell. 2007;206: 347–359.  591 

37.  Potter KM, Koch FH, Oswalt CM, Iannone B V. Data data everywhere: detecting 592 
spatial patterns in fine-scale ecological information collected across a continent. 593 
Landsc Ecol. 2016;31: 67–84.  594 

38.  IDPH. West Nile Virus [Internet]. 2016 [cited 15 Jan 2017]. Available: 595 
http://www.dph.illinois.gov/topics-services/diseases-and-conditions/west-nile-virus 596 

39.  Messina JP, Brown W, Amore G, Kitron UD, Ruiz MO. West Nile virus in the Greater 597 
Chicago area: A geographic examination of human illness and risk from 2002 to 2006. 598 
URISA J. 2011;23: 5–22.  599 

40.  Biggerstaff BJ. PooledInfRate. Division of Vector-Borne and Infectious Diseases, 600 
CDC; 2004.  601 

41.  Akaike H. Stochastic Theory of Minimal Realization. IEEE Trans Automat Contr. 602 
1974;19: 667–674. doi:10.1109/TAC.1974.1100707 603 

42.  Karki S, Westcott N, Muturi E, Brown W, Ruiz M. Assessing human risk of illness 604 
with West Nile virus mosquito surveillance data to improve public health 605 
preparedness. Zoonoses Public Health. 2017;65: 177–184.  606 

43.  Gu W, Lampman R, Novak R. Assessment of arbovirus vector infection rates using 607 
variable size pooling. Med Vet Entomol. 2004;18: 200–204.  608 

44.  Gu W, Lampman R, Novak RJ. Problems in estimating mosquito infection rates using 609 
minimum infection rate. J Med Entomol. 2003;40: 595–596.  610 

45.  Tedesco C, Ruiz M, McLafferty S. Mosquito politics: local vector control policies and 611 
the spread of West Nile Virus in the Chicago region. Heal Place. 2010;16: 1188–1195.  612 

46.  Hamer GL, Chaves LF, Anderson TK, Kitron UD, Brawn JD, Ruiz MO, et al. Fine-613 
scale variation in vector host use and force of infection drive localized patterns of West 614 
Nile virus transmission. PLoS One. 2011;6. doi:10.1371/journal.pone.0023767 615 

47.  Reisen WK, Fang Y, Martinez VM. Effects of temperature on the transmission of West 616 
Nile virus by Culex tarsalis (Diptera: Culicidae). J Med Entomol. 2006;43: 309–317.  617 

48.  Kilpatrick AM, Meola MA, Moudy RM, Kramer LD. Temperature, viral genetics, and 618 
the transmission of West Nile virus by Culex pipiens mosquitoes. PLoS Pathog. 619 
2008;4.  620 



   27 

 

49.  Shand L, Brown WM, Chaves LF, Goldberg TL, Hamer GL, Haramis L, et al. 621 
Predicting West Nile Virus Infection Risk From the Synergistic Effects of Rainfall and 622 
Temperature. J Med Entomol. 2016;53: 935–944. doi:10.1093/jme/tjw042 623 

50.  Epstein PR. Climate change and emerging infectious diseases. Microbes Infect. 624 
2001;3: 747–754. Available: 625 
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&DbFrom=pubmed&Cmd=Lin626 
k&LinkName=pubmed_pubmed&LinkReadableName=Related 627 
Articles&IdsFromResult=11489423&ordinalpos=3&itool=EntrezSystem2.PEntrez.Pu628 
bmed.Pubmed_ResultsPanel.Pubmed_RVDocSum 629 

51.  Morin CW, Comrie AC. Regional and seasonal response of a West Nile virus vector to 630 
climate change. Proc Natl Acad Sci U S A. 2013;11: 15620–15625.  631 

52.  Mulatti P, Ferguson HM, Bonfanti L, Montarsi F, Capelli G, Marangon S. 632 
Determinants of the population growth of the West Nile virus mosquito vector Culex 633 
pipiens in a repeatedly affected area in Italy. Parasit Vectors. 2014;7.1: 26.  634 

53.  Johnson GD, Eidson M, Schmit K, Ellis A, Kulldorff M. Geographic prediction of 635 
human onset of West Nile virus using dead crow clusters: An evaluation of year 2002 636 
data in New York State. Am J Epidemiol. 2006;163: 171–180. doi:10.1093/aje/kwj023 637 

54.  Valiakos G, Papaspyropoulos K, Giannakopoulos A, Birtsas P, Tsiodras S, Hutchings 638 
MR, et al. Use of wild bird surveillance, human case data and GIS spatial analysis for 639 
predicting spatial distributions of West Nile virus in Greece. PLoS One. 2014;9. 640 
doi:10.1371/journal.pone.0096935 641 

55.  Roberts RS, Foppa IM. Prediction of Equine Risk of West Nile Virus Infection Based 642 
on Dead Bird Surveillance. Vector-Borne Zoonotic Dis. 2006;6: 1–6. 643 
doi:10.1089/vbz.2006.6.1 644 

56.  Illinois Department of Public Health. West Nile Virus [Internet]. 2020. Available: 645 
http://www.dph.illinois.gov/topics-services/diseases-and-conditions/west-nile-virus 646 

 647 
 648 



Reviewer #1: Peer review report on PLOS ONE manuscript " The drivers of West Nile virus human illness: 

fine scale dynamic effects of weather, mosquito infection, social, and biological conditions", (Manuscript 

number PONE-D-19-34216). 

 

Recommendation: Minor Revision 

 

 

Comments to Authors: 

 

This manuscript analyzes the available long-term data of mosquito infection rates, West Nile virus 

human cases and weather variables from 2005 to 2016 combined with landscape and demographic 

characteristics of two Illinois counties of the Chicago region in order to evaluate relationships between 

the factors on fine temporal and spatial scale and identify the drivers that potentially affect the 

presence of human WNV illness and may act as early warning predictors. 

The paper is well written with a well-organized text, the data were analyzed using multi-level statistical 

modeling approaches and the findings are sufficiently documented and the results are valuable for a 

better understanding of the fine-scale drivers of spatiotemporal variability of WNV human case 

prevalence in an urban environment such as in the study area. 

Although numerous published studies that have shed light on factors that affect WNV transmission in an 

area, the knowledge regarding the influence of climatic variables in correlation with the data from the 

entomological surveillance and the number of WNV human cases, is still limited. 

For that reason, the paper makes a substantial contribution to the literature and is therefore 

recommended for publication in PLOS-ONE after minor revision taking into account the following 

general or specific comments. 

 Thank you for your comments and your feedback! 

 

 

General comments 

 

The study uses and analyzes the 10-year data (2005 to 2014) from Cook and DuPage counties in the 

Chicago, Illinois region and the accuracy of the predictions of the developed model tested with the data 

of the same specific area. 

However, according to the literature, it is well known that models predicting the WNV transmission and 

human WNV infections do not always have the same accuracy when applied to other areas with 

different mosquito fauna, weather conditions and/or geomorphological and demographic 

characteristics. Therefore, we consider that the study area should also be mentioned in the title. 

 Thank you for the suggestion, we have made that change 

 

 

Please comment and, if necessary, provide an adequate justification in the manuscript, for the reason 

that in this work were note included data from passive or active monitoring of WNV presence in birds 

Response to Reviewers



and equids, which are considered by several authors as important prediction factors of the presence and 

spread of WNV virus in an area. 

 We have added a statement (145-147) that the avian and equid surveillance programs were not 

consistent across the time period, and added a discussion section (467-474) about the point. 

 

 

Specific comments 

 

Line 170 of the manuscript: If available, please provide information on the species of Culex mosquitoes 

that have been tested for WNV presence as the vectorial competence of different species may vary 

significantly for WNV transmission to humans. 

 We agree that is an important point; we have added some information as to common species in 

the region. 

 

 

Line 179 of the manuscript: Please add a bibliographical reference in the reference section for the MIR 

estimation tool by Biggerstaff, 2006. 

 Thank you, corrected 

 

 

Line 188 of the manuscript: Please provide a definition and some additional information about the 

category of "probable cases of WNV" that were also included in the study along with the "confirmed 

cases" because the symptoms of infection by the West Nile vary in severity, with the mild forms can be 

easily confused with flu symptoms and usually go unreported. 

 We have added the information. The difference between probable and confirmed cases is 

confirmatory testing by either IDPH or CDC; all cases had positive diagnostic results and clinical 

signs during the likely transmission season. 

 

 

Lines 578-580 of the manuscript: Please, correct Reference no 39 by adding the name of the journal, 

volume number and pages numbers. 

Messina JP, Brown W, Amore G, Kitron UD, Ruiz MO. West Nile Virus in the Greater Chicago Area : A 

Geographic Examination of Human Illness and Risk from 2002 to 2006. URISA Journal 2011;23: 5-18. 

 Corrected 

 

 

Reviewer #2: Dear authors, 

 

This is a well written paper that deals with the determination of factors affecting the spatiotemporal 



variability of WNV cases in humans through identification of the fine scale drivers of WNV transmission 

in an urban area with a repeated history of WNV outbreaks. The findings are very interesting since they 

include multi-level modeling of weekly data from over a decade and they extend our knowledge in the 

correlation of variables related to temperature, precipitation, mosquito infection, land cover, and 

demographic characteristics with the probability of an area having a WNV case or not. 

 Thank you 

 

 

Further down please consider some comments of minor importance that may benefit the manuscript. 

 

It seems that the infection status of avian population, as primary reservoirs of WNV, and equids, as 

dead-end hosts, were not included among the tested variables for modeling structure. Please note that 

these are critical factors implicated in the WNV transmission in order to develop predictive models. 

As mentioned in the introduction, public health surveillance for WNV involves collection and testing of 

dead birds suspected to have died of WNV, testing of sentinel chickens or of wild birds captured for this 

purpose and reporting of cases of equine illness. 

Could you please justify this data gap in the model structuring? Is there any surveillance system for 

infected avian and equids population in the study area? 

In the “Introduction” you may add any relevant literature data where bird and/or equine infection rate 

were used for development of models predicting WNV transmission in humans. Also, in lines 440-459 of 

the manuscript, you could mention the fact that avian and equids infection status was not considered as 

a factor for prediction of WNV cases in humans in the study area. 

 We have added a statement as to the inconsistent application of avian and equid surveillance in 

this region (145-147), and given more information about that surveillance in the discussion (467-

474), including references to models using these data types. 

 

 

According to the best multivariable model that was used, the proportion of open water was negatively 

associated with the probability of WNV cases. Also, as mentioned in the discussion, a negative 

association of precipitation and WNV cases was observed and this indicates that dry and hot weather 

conditions would increase the probability of an area being positive for a WNV case. 

Instead, it is supposed that high rainfall and high percentage of water bodies in an area may favor 

mosquito population by increasing their breeding sites, and therefore may lead to increased WNV cases 

in humans. Hence, a positive correlation between precipitation and water bodies with WNV cases in 

humans is anticipated. Please comment. 

 Open water is classified as areas in which any aquatic vegetation is submerged, as opposed to 

woody or herbaceous wetlands. This is not likely to be stagnant water of the type used by Culex 

mosquitoes for breeding. Therefore, the negative association between proportion of open water 

and WNV cases is most likely due to the fact that open water, as defined, does not favor the 

mosquito population. We have noted this in the discussion (434-438). 

 




