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Supplementary Note 1: Raw THz pulses
In supplementary figure 1 we show the raw THz pulses as
measured by our system (Menlo K15 THz spectrometer), with
the colour of the line indicating the optical pump fluence and
the black lines being our reference THz pulses without any
optical excitation. This is the raw data used to create the
experimental results in figure 1. The top, middle and bottom
set of pulses being respectively measured in the transmission,
TIR and reflection geometries shown in figure 1 of the main
work. Note that the transmission and reflection data sets have
been vertically offset for visual clarity. As briefly discussed
in the main work, the reflection geometry creates a big pre-
liminary pulse that is not modulated by the photoexcitation
of the silicon. Only the pulses that reach the top wafer in-
terface are modulated. The TIR geometry also has a small
pre-pulse, which is caused by the fact that we placed a silicon
wafer on top of the silicon prism. This creates a small air-gap
in between the silicon-silicon interface which generates this
small pre-pulse. For a fair a comparison, we placed the same
wafer in the transmission and reflection measurements since
our silicon prism had a different carrier life-time giving a very
different modulation depth.

Supplementary Note 2: Drude modelling
The dielectric response of photoexcited silicon can be ade-
quately described by the Drude model1–3:

ε(ω) = εb −
ω2

p

(ω2 − iω/τc)
, ω

2
p =

Ne2

m
(1)

where εb = 11.9 is the background dielectric constant of sili-
con due to the bound electrons, ωp is the plasma frequency,
N is the density of free charge-carriers, m is their effective
mass (m = 0.26me

4) and e is the electric charge and τc is the
average carrier collision time (160 f s for undoped silicon4).
We modulate our THz via optical excitation and only consid-
ering the free carrier generation and linear recombination in
the wafer, the number of charge carriers in the equilibrium
state at depth z is be given by

Nsi(z) =
I0(1−R)τle−z/d

2h̄ωlV
, (2)

where I0 is the incident intensity, R is reflectivity of silicon at
the pump wavelength, taul is the carrier lifetime (estimated to

be 60µs from figure 2a), V is the volume where the carriers
are confined within, h̄ωl is the pump-photon energy and d is
the diffusion length of the charge-carriers. We photoexcite an
area much larger than the THz-beam thus V = Ad, where A is
the area of our THz-beam. The charge carriers diffuse inside
the wafer as described by the 3D diffusion equation, hence
their mean square displacement is

< x2 >= 6Dτc, (3)

where D is the diffusion coefficient given by the Einstein-
Smoluchowski relation D = µqkBT/q = τckBT/m∗ for carrier
mobility µq = qτc/m∗. supplementary equation 3 gives val-
ues around 0.5mm which are lengths comparable in size to
the THz-wavelengths, especially inside the silicon, therefore
we need a stratified multi-layered model to account for the
depth distribution of the charge carriers. To this end, we
use the transfer matrix method2, 5. This theory states that the
transmission and reflection functions of our system is2, 5

t =
2qi

qiM11 +q f M22 +qiq f M12 +M21
(4a)

r =
qiM11 −q f M22 +qiq f M12 −M21

qiM11 +q f M22 +qiq f M12 +M21
(4b)

where qi, f = ni, f cosθi, f for ni, f being the refractive indices
of the initial and final media, respectively with incident and
final angles θi, f , enclosing the multilayer system and M is a
2×2 matrix associated with the propagation through the entire
multilayer system. This matrix is given by the product of the
individual layer matrices, M ≡ M1M2M3...MN , describing the
propagation through each layer. The characteristic matrix of
the jth layer, M j, with thickness l j and dielectric function ε j
is given by

M j =

[
cosβ j

i
q j

sinβ j

iq j sinβ j cosβ j

]
, (5)

where β j = ωl jn j cosθ j/c is the phase delay associated with
light propagation inside the jth layer.

When using this multilayer approach, this means that in
supplementary equation 2 V = Al j when calculating the car-
rier densities in each layer. After knowing the carrier densities
one can calculate the permittivities of each layer via supple-
mentary equation 1 and then calculate the final transmission
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Supplementary Figure 1. Raw THz pulses These are our THz pulses. The Transmission and Reflection data have been
vertically offset for visual clarity.

and reflection coefficients of the system. Note: attention is
needed to account for the losses at the first interface in the re-
flection geometry (we assume that only the power transmitted
into the wafer is modulated).

Supplementary Note 3: Fast estimation of
mask values

As mentioned in the main work, we continuously measure
a THz signal whilst changing the projected mask at regular
period Tp and the temporal response of each individual mask
is given by eq. 3. This means that our total signal is given by

y(t) =
N−1

∑
j=0

B j+1(1− e−(t− jTp)/τ)+B je−(t− jTp)/τ , (6)

where N is the number of masks we have projected. Our job
is to find all the B values that describe the amplitude of each
temporal segment describing each displayed mask, where B0
is the amplitude before projecting the masks. To calculate
the first two constants, B0 and B1, we need to select the time
values from y(t) for which the first mask was projected. This
is expressed as a column vector T1 = (t1; t2; ...; tp−1; tp) where
p is the number of samples during each period. Then we have
that y(T1) = B1(1− e−T1/τl )+B0e−T1/τl , which can also be
expressed in matrix notation as

y(T1) = [ f1(T1) f0(T1)]×
[

B1
B0

]
(7)

where f1(t) = 1− e−(t− jTp)/τl and f0(t) = e−(t− jTp)/τl with
j = 0 for the first period. Then one can just use the least-
squares solution to find B1 and B0 from this matrix equation.

However, one can further find the rest of B values in a single
matrix operation. This is based on the fact that f1(T1) =
f1(T2) = ...= f1(Tn) which can be seen from the − jTp factor
that shifts the exponential in the time domain for each each
mask. With this in mind, then we have that

[y(T1) ... y(TN)] = [ f1(T1) f0(T1)]×
[

B1 ... BN
B0 ... BN−1

]
, (8)

where T1,2,...,N are column vectors. This is just linear system
of equations for which many efficient calculation techniques
exists.

In MATLAB this is can be solved using the mldivide func-
tion, and doing this for the 32×32 images in figure 3 takes
less than 30ms using MATLAB R2016a on an Intel Core
i3-4160 3.6GHz CPU running Ubuntu 19.10 with 12GB of
RAM.

Supplementary Note 4: Signal to noise
definition

The definition of signal to noise used in section 1.2 of the
main work is defined as the mean value of an image area with
signal divided by the standard deviation of an area without
signal,

SNR =
Mean(Xsignal)

Std(Xnoise)
. (9)

In supplementary figure 2 we show the regions that we have
defined as ‘Signal’ (‘Noise’) in the red (green) rectangles.
These same regions have been used to evaluate the SNRs
shown in the figure 3 of the main work.
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Supplementary Figure 2. The Signal-to-noise in figure
3 of the main work is defined as the mean of the pixels in
the red-region (labelled as ‘Signal’) divided by the standard
deviation of the green region (labeled as ‘Noise’)

Supplementary Note 5: Sine-wave carrier
modulation

Noise reduction is of the utmost importance in regards to fast
acquisition of good quality images. In THz-TDS systems
lock-in amplifiers are routinely used for noise-reduction, how-
ever this might result in adding great complexity and cost
without improving the image acquisition rate. Most notably,
if the slowest component of the THz system is the detector
response time, then a lock-in would require a bias-modulation
with a frequency slower than the detector-response time thus
adding extra measurement time. In the case that the mask
modulation is the slowest component of the system, as is the
case in this work, then it is conceivable to use a lock-in ampli-
fier. However, the readout rate would have to be ∼ 10 times
quicker than the slowest component, for accurate fitting esti-
mates, which in turn requires a source modulation rate 5−10
times quicker than the readout rate, since lock-in amplifiers
multiply the input by a reference sine-wave and integrate over
a few periods. This, even at 20kHz mask modulation-rate
already places a stringent requirement of a >1MHz source
modulation-rate which is accompanied by extra electrical de-
sign considerations.

Accounting for a carrier-wave modulation can be done in
post-processing. This would still grant the benefits of carrier-
wave whilst adding minimal computational and electrical com-
plexity. Most notably, supplementary equation 6 is multiplied
by a sine wave sin(ωt +φ), or a square-wave, of a known fre-
quency ω and phase φ . In principle, this carrier frequency can
be slower than our mask switch-rate; however, if it is quicker
then we can account for low-frequency noise sources since our
sine-wave should oscillate around a central zero-value. Any

deviation from the central value can be due to source noise
and/or temperature fluctuations in electronics, for example,
and is easily accounted for by subtracting the offset from the
central oscillation value. Further, it needs to be mentioned
that the period of the carrier-wave should be a multiple of the
mask switch-period since this reduces computational times
and is now discussed.

To mathematically describe the application of a carrier-
wave in the context described in section Supplementary Note
3:, we have multiplied the right-hand side of supplemen-
tary equation 6 by sin(ωt + φ). Therefore, f1(t) and f0(t)
become f1(t) = sin(ωt + φ)(1 − e−(t− jTp)/τl ) and f0(t) =
sin(ωt + φ)e−(t− jTp)/τl . If the period of the carrier wave is
a multiple of a mask switching period, then sin(ωt + φ) =
sin(ωt +φ + jTp) for any integer j, thus in this case we still
have f1(T1) = f1(T2) = ...= f1(Tn) holding true, allowing us
to simply solve supplementary equation 8 with our modified
definitions of f1(t) and f0(t). Adding this sine-wave term to
the mathematics only adds about 10ms to the computational
times in our system. If, however, one cannot apply the correct
carrier-wave frequency then it is still possible to obtain all
the B values, but one needs to implement a loop and solve
supplementary equation 7 for each segment which doubles
the computational time on our system. Finally, as mentioned
in the previous paragraph, since the carrier-wave oscillates
around a zero-central value then one needs to subtract out any
low-frequency fluctuations from the raw signals in advance.

In supplementary figure 3a we plot the measured signals
when applying a sine-wave carrier modulation (red-crosses)
and a DC bias (blue-dots) to our THz emitter and the solid
lines are the fitted signals. We switch our masks with a pe-
riod of 1ms. The images resultant from both methods are
shown in fig. 3b-c, where the numbers in the top-right corner
indicate the SNR. The sine-wave (DC) bias has a SNR of
40.1(18.9), and the reason for this increase is the following:
we use a photoconductive THz emitter and detector pair which
is a polarization-sensitive system measuring both positive and
negative electric field values. Therefore, applying a positive
and negative bias to the emitter will cause a reversal of the
detected electric-fields. When this effect is exploited, it re-
sults in the measurement of positive and negative amplitudes
compared to only the positive and zero values achieved by our
modulator. As mentioned in the paragraph above, the sine-
wave bias also allows for the subtraction of any low-frequency
noise offsets caused by laser instability or temperature fluc-
tuations of electronics. The combination of these two effects
explains the factor of 2.2 increase in SNR when comparing
the images obtained in figs. 3b and 3c. With increased SNR
one can introduce further reductions in acquisition time.

Supplementary Note 6: Hadamard Masks
As stated in the main text, there exist multiple ways of con-
structing an orthogonal Hadamard matrix. The most common
method is called Sylvester’s construction and it is as follows.
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Supplementary Figure 3. a: Measured signals when applying a DC (sine-wave) bias to the THz emitter in blue-dots
(red-crosses). Lines are the fitted signals with mask switch rate of 1kHz. b, c: The resultant images when using applying a
Sine-wave and DC bias, respectively, with the SNR shown in the top-right corner. Note, the signals were acquired by fixing the
optical delay line at the maximum of the electric field cycle.

Let Hn be a Hadamard matrix of order n, then

H2n =

[
Hn Hn
Hn −Hn

]
. (10)

Since the lowest Hadamard matrix is H1 = [1], then this con-
struction can only construct matrices of order 2k for k integer.
Whilst this is restrictive on the number of image pixels one can
obtain, this is not of big concern to us since many images are
of 2k ×2k size anyways. For us, a bigger concern is that when
using this construction technique, the masks appear to have
different spatial frequencies as can been in supplementary fig-
ure 4. When undersampling, one has to choose which masks
to omit and removing the low frequency masks can have detri-
mental effects on the image. Selecting only the low-frequency
masks has similar effects to just downsampling6.

Fortunately, other construction techniques do exist. Namely,
the Paley type I Hadamard construction technique7. Let q be
a prime power congruent to 3( mod 4). Then one constructs
a vector, V , of length q in which the ith entry equals χ(i−1),
where

χ(x) =


0 if x = 0
1 if x is a quadratic residue of q

−1 if x is a quadratic non-residue of q.
(11)

Then one constructs a q×q matrix, Q, where the jth row is
obtained by cyclically permuting V to the right j− 1 times.
Finally,

Hq+1 = I +
[

0 JT

−J Q

]
, (12)

where J is a column vector of length q where every entry
equals 1 and I is the identity matrix. This construction of-
fers masks that are cyclical in nature, in other words mask
j + 1 is just mask j but shifted to the right as can be seen

in supplementary figure 4. This means that these masks all
have similar spatial frequencies and hence there is no need to
pay attention to which masks one omits in the undersampling
process. However, we need to mention that, for a 50% sam-
pling ratios, selecting every odd mask number will give better
results compared to selecting the first 50% of the masks. This
is true for all sampling ratios.

Supplementary Note 7: Hyperspectral
imaging

The culmination of the ideas in this work, namely the modula-
tion geometry, software processing and undersampling, pave
the way for a rapid THz spectroscopic imaging system with-
out incurring great cost or complexity. We demonstrate this
by taking a THz movie with 32×32 resolution and 10 frames-
per-second, shown in supplementary video 1, where we use [1
0] Paley-Hadamard masks switched at a 4kHz rate with 40%
sampling ratio. The imaged object consists of 4 materials:
air, metal, 210µm and 420µm thick plastic, and the movie
shows how the THz pulse arrives at different points in time
depending on which material the THz has propagated through.
Five frames taken at different points in time are shown in
supplementary figure 5a, and it can be seen that the different
materials have different temporal and transmission effects on
the THz radiation. As is customary with THz-TDS systems,
with a reference measurement and Fourier transformation one
can calculate the transmission and phase delay through each
material2 and these are shown in figs. 5b and 5c respectively.
As expected in fig. 5b it can be seen that metal and air re-
gions have a transmittance of around 0 and 1, respectively,
whereas the two plastic regions have similar values, around
0.7. Further, the temporal delays through each region are 0,
1.1 and 2.2ps, for the air, 210µm and 420µm-thick plastic, re-
spectively, whereas the metallic region has inconsistent phase
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Supplementary Figure 4. Hadamard masks constructed
by the Sylvester construction on the left, where we display
mask numbers 5, 32, 36 and 71 in order to show the different
’spatial’ frequencies of masks from this construction technique.
On the right are four consecutive masks constructed via the
Paley method, and the red triangles are only added as a visual
guide to show how these masks are just horizontally shifted
from one another.

values due to its low-transmission. This demonstrates that un-
dersampling, when done correctly, reduces the measurement
time without sacrificing image fidelity.
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Supplementary Figure 5. Terahertz movie frames. a: Five frames of the Terahertz movie shown as supplementary video
1. The movie shows the real-time recording of a THz pulse as it propagates through four different materials: air, metal, 210µm
and 420µm thick plastic. The displayed frames have been taken at different temporal points of the THz pulse, with solid black
lines indicating the time. b-c: The transmission and phase delay through the four distinct regions as calculated from the THz
movie.
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