Supplemental Figure 1: Individual value plots for laboratory findings

A. Proteinuria at presentation

B. Creatinine at presentation

C. Complement levels at presentation

Supplemental Figure 2: Pedigrees for familial cases

A: NCL25 (II:2)

aHUS

∂ DGKE c.463A>G p.(Arg155Gly)
+ DGKE c.1427T>C p.(Leu476Pro)
wt: wild type

B: NCL26 (II:8)

aHUS

¶ DGKE c.826delG p.(Val276Phefs*8)
wt: wild type

yrs = age (years) when died

NCL26 pedigree: additional clinical information

II:2

- Died aged 5 ½ months
- Death certificate recorded "Recurrent haemolytic uraemic syndrome and malignant hypertension"
- Blood tests before his death showed anaemia, kidney failure with a few fragments and burr cells, and thrombocytopaenia
- Kidney biopsy showed very large quantities of fibrillary material between the basement membranes and endothelial cells, extending into mesangial areas and also some 'formed, spherical, electron dense particles' in places; appearances were felt to be consistent with HUS

II:4

- Presented aged 3 ½ months with anaemia
- Presented aged 10 months with oedema and proteinuria; diagnosed with 'mild HUS'
- Episode of oedema after a measles vaccination
- Presented aged 18 months with febrile episode, oedema and vomiting
 - Haemolysis and AKI
 - Consent was not given for dialysis
 - Deteriorated with convulsions, anuria, and AKI
 - Then had peritoneal dialysis but remained ill with poorly controlled hypertension and heart failure
 - Subsequently had a cardiac arrest and died

II:6

- Presented aged 7 months with proteinuria and haemolysis
- HUS 'gradually came under control'
- Relapse aged 3 years: presented with vomiting and diarrhoea
 - HUS was diagnosed 10 days later, complicated by pulmonary oedema, heart failure and *E. coli* urinary tract infection
- Relapse aged 3 years 6 months
 - Consent was not given for dialysis
 - Died 1 month later

C: NCL27 (III:1) and NCL29 (III:2)

Δ *DGKE* c.1597A>C p.(Thr533Pro) wt: wild type

D: NCL34 (II:4)

aHUS yrs = current age (2019)

DGKE c.1647_1650delAACA p.(T550Mfs*13)

Supplemental Figure 3: Sanger sequencing traces

A. NCL25. a. *DGKE* exon 2. **b.** *DGKE* exon 11.

Reference base sequence NCL25 base sequence

NCL25 amino acid sequence Reference amino acid sequence

Reference sequence chromatogram

NCL25 chromatogram

b.

B. NCL27. DGKE exon 12

C. NCL29. *DGKE* exon 12

DGKE c.1597A>C p.(T533P)

Reference base sequence NCL29 base sequence

NCL29 amino acid sequence Reference amino acid sequence

Reference sequence chromatogram

NCL29 chromatogram

D. NCL30. a. DGKE exon 2. b. DGKE exon 3.

a.

ACCA ACCA	CTG CTG	<u>GAT</u> GAT	CCG	GGG	CAA CAA	GGT	GCC	CCT:	GTG GTG	CAG	TTZ	ACTGT ACTGT
ACCA	CTG	560 GAT	CCG	GGG	57 CAA	0 GGT	GCC	5 CCT	8 0 G T G	CAG	TTZ	590 CTGT
Н	W	I	R	G	к	• v	P	L	с	s	Y	с
H	W	I	R	G	N	V	Р	L	С	S	Y	С

20 Fragment base #573.

GG

Reference base sequence NCL30 base sequence

NCL30 amino acid sequence Reference amino acid sequence

Reference sequence chromatogram

NCL30 chromatogram

DGKE c.393C>G p (N131K)

b.

E. NCL31. DGKE exon 2

Reference base sequence NCL31 base sequence

NCL31 amino acid sequence Reference amino acid sequence

F. NCL33. DGKE exon 6

G. NCL34. DGKE exon 12

Reference base sequence NCL34 base sequence

NCL34 amino acid sequence Reference amino acid sequence

Reference sequence chromatogram

NCL34 chromatogram

H. NCL36. a. DGKE exon 6. b. DGKE exon 11.

Reference sequence chromatogram

NCL36 chromatogram

DGKE c.966G>A p.(Trp322*)

I. NCL37. DGKE exon

Reference base sequence NCL37 base sequence

NCL37 amino acid sequence Reference amino acid sequence

Reference sequence chromatogram

NCL37 chromatogram

J. NCL38. DGKE exon 6

Reference base sequence NCL38 base sequence

NCL38 amino acid sequence Reference amino acid sequence

Reference sequence chromatogram

NCL38 chromatogram

DGKE c.966G>A p.(Trp322*)

a.

Reference base sequence NCL39 base sequence

NCL39 amino acid sequence Reference amino acid sequence

b.

ATC	CA	AT AT	ACI ACI	AT 1	I G	GG	T	I G	GG AG	GT	A	CA	GG	T	T I T I	A T A T	G	CI	T (G () G ()	G A	GI
_					-		_	_			-			_				_	_	_		
ATO	11 CCA	3 0 A T	AC	ATI	I G	11 GG	4 (T 1	0 T G	AG	GT	A	11 CA	5 0 G G	Т	T /	AT	G	C 1	1 1 T (1 6 5 0	5 0 5 A	G I
ATO	11 CA	30 AT	AC	A T 1	ſG	11 GG	4 (T 1	0 I G	A G	GT	A	11 CA	5 0 G G	Т	TJ	AT	G	C	11	16	5 0 5 A	G1
ATO	11 CA	30 AT	AC: T	AT:	G	11 GG G	4 (T 1	o IG	₫G G	GT	A	11 CA	5 0 G G G	Т	T I Y	AT	G	C	11	1 6 3 6 3	5 0 5 A	G A

DGKE c.465-2A>G

Reference sequence chromatogram

NCL39 chromatogram

L. NCL40. DGKE exon 6

Reference base sequence NCL40 base sequence

NCL40 amino acid sequence Reference amino acid sequence

Reference sequence chromatogram

NCL40 chromatogram

Supplemental Figure 4: DGKE amino acid conservation alignments for newly described missense mutations

V

V

Е

G

i	Species	Amino acid sequence											
•	NCL25	К	L	С	D	Y	G	С	1	W	С	Q	
		150	151	152	153	154	155	156	157	158	159	160	
	Human	К	L	С	D	Y	R	С	I	W	С	Q	
	Chimp	K	L	С	D	Y	R	С	- 1	W	С	Q	
	Gorilla	K	L	С	D	Y	-	-	-	-	-	-	
	Orangutan	К	L	С	D	Y	R	С	-	W	С	Q	
	Rhesus Monkey	К	L	С	D	Y	R	С	-	W	С	Q	
	Mouse	к	L	С	D	Y	R	С	Ι	W	С	Q	
	Rat	К	L	С	D	Y	R	С	V	W	С	Q	
	Rabbit	К	L	С	D	Y	R	С	I	W	С	Q	
	Dolphin	к	L	С	D	Y	R	С	I	W	С	Q	
	Dog	К	L	С	D	Y	R	С	-	W	С	Q	
	Opossum	К	L	С	D	Y	R	С	-	W	С	Q	
	Platypus	К	L	С	D	Y	R	С	-	W	С	Q	
	Chicken	К	L	С	D	Y	R	С	V	W	С	Q	
	Zebrafish	К	L	С	D	Y	R	С	V	W	С	Q	
••	Species					Amino	acid se	quence	•				
II.	NCL25	R	Н	D	D	G	Р	L	Е	V	V	G	
		471	472	473	474	475	476	477	478	479	480	481	
	Human	R	Н	D	D	G	L	L	E	V	V	G	
	Chimp	R	Н	D	D	G	L	L	Е	V	V	G	
	Gorilla	R	Н	D	D	G	L	L	E	V	V	G	
	Orangutan	R	Н	D	D	G	L	L	Е	V	V	G	
	Rhesus Monkey	R	Н	D	D	G	L	L	Е	V	V	G	
	Mouse	R	н	D	D	G	L	L	E	I	V	G	
	Rat	R	н	D	D	G	L	L	E	V	V	G	
	Rabbit	R	Н	D	D	G	L	L	E	V	V	G	
	Dolphin	R	Н	D	D	G	L	L	Е	V	V	G	
	Dog	R	Н	D	D	G	L	L	Е	V	V	G	
	Opossum	S	Н	D	D	G	L	L	E	V	V	G	
	Platypus	R	Н	D	D	G	L	L	E	V	V	G	
	Chicken	R	н	D	D	G	L	L	E	V	V	G	

A. NCL25. i. R155G. ii. L476P

Zebrafish

R

V

D

D

G

L

L

B. NCL27 and NCL29. T533P

Species	Amino acid sequence												
NCL27 and NCL29	G	Р	С	Т	V	Р	I	Т	Н	K	Т		
	528	529	530	531	532	533	534	535	536	537	538		
Human	G	Р	С	Т	V	Т	I	Т	Н	Κ	Т		
Chimp	G	Р	С	Т	V	Т	I	Т	Н	Κ	Т		
Gorilla	G	Р	С	Т	V	Т	I	Т	Н	Κ	Т		
Orangutan	G	Р	С	Т	V	Т	I	Т	Н	Κ	Т		
Rhesus Monkey	G	Р	С	Т	V	Т	I	Т	Н	Κ	Т		
Mouse	G	Р	С	Т	V	Т	I	Т	Н	Κ	Т		
Rat	G	Р	С	Т	V	Т	I	Т	Н	Κ	Т		
Rabbit	G	Р	С	Т	V	Т	I	Т	Н	Κ	Т		
Dolphin	G	Р	С	Т	V	Т	I	Т	Н	Κ	Т		
Dog	G	Р	С	Т	V	Т	I	Т	Н	К	Т		
Opossum	G	Р	С	-	V	Т	I	Т	Н	Κ	Т		
Platypus	G	Р	С	Т	V	Т	1	Т	Н	K	Т		
Chicken	G	Р	C	Т	V	Т	I	Т	Н	K	Т		
Zebrafish	G	Р	С	Т		Т		Т	Н	K	Т		

C. NCL28. M1L

Species	Amino acid sequence									
NCL36	L1	E 2	A 3	E 4	R 5	R 6				
Human	М	E	А	E	R	R				
Chimp	М	E	А	E	R	R				
Gorilla	М	E	А	E	R	R				
Orangutan	М	E	А	E	R	R				
Rhesus Monkey	М	E	А	E	R	R				
Mouse	М	E	G	D	Q	R				
Rat	М	E	G	D	Q	R				
Rabbit	М	E	G	E	R	R				
Dolphin	М	E	G	Е	K	R				
Dog	М	E	А	E	R	R				
Opossum	М	E	G	R	K	Q				
Platypus	М	E	R	G	E	Р				
Chicken	М	L	Р	E	A	A				
Zebrafish	М	E	E	N	N	E				

D. NCL30. N131K

Species	Amino acid sequence												
NCL30	н	W	I	R	G	к	V	Р	L	С	S		
	126	127	128	129	130	131	132	133	134	135	136		
Human	Н	W	-	R	G	N	V	Р	L	С	S		
Chimp	Н	W	I	R	G	N	V	Р	L	С	S		
Gorilla	Н	W	I	R	G	N	V	Р	L	С	S		
Orangutan	Н	W	I	R	G	N	V	Р	L	С	S		
Rhesus Monkey	Н	W	-	R	G	N	V	Р	L	С	S		
Mouse	Н	W	-	R	G	Ν	V	Р	L	С	S		
Rat	Н	W	I	R	G	N	V	Р	L	С	Т		
Rabbit	Н	W	I	R	G	N	V	Р	L	С	S		
Dolphin	Н	W	I	R	G	N	V	Р	L	С	S		
Dog	Н	W	Ι	R	G	N	V	Р	L	С	S		
Opossum	Н	W	Ι	R	G	N	V	Р	L	С	S		
Platypus	R	W	I	R	G	N	V	Р	L	C	S		
Chicken	H	W		R	G	N	V	Р	L	C	S		
Zebrafish	Q	W	V	K	G	N	V	Р	L	A	S		

E. NCL32. Q79P

Species	Amino acid sequence												
NCL32	С	С	V	С	Α	Р	н	181	L 82	Q	G		
	74	75	76	77	78	79	80			83	84		
Human	С	С	V	C	Α	Q	Н	Ι	L	Q	G		
Chimp	С	С	V	C	Α	Q	Н	Ι	L	Q	G		
Gorilla	C	С	V	C	Α	Q	Н	Ι	L	Q	G		
Orangutan	С	С	V	С	А	Q	Н	-	L	Q	G		
Rhesus Monkey	С	С	V	С	Α	Q	Н	I	L	Q	G		
Mouse	С	С	V	C	Α	Q	Н	Ι	L	Q	G		
Rat	С	С	V	C	Α	Q	Н	Ι	L	Q	G		
Rabbit	С	С	V	C	Α	Q	Н	I	L	R	G		
Dolphin	С	С	V	C	Α	Q	Н	I	L	Q	G		
Dog	С	С	V	C	Α	Q	Н	Ι	L	L	G		
Opossum	C	С	V	С	Т	Q	Н	Ι	L	Q	G		
Platypus	C	С	L	C	A	Q	Н		L	R	G		
Chicken	C	С	V	C	A	Q	Н		L	R	G		
Zebrafish	C	С	V	C	С	Q	Р		L	Q	G		

F. NCL37. C108Y

Species	Amino acid sequence												
NCL37	D	К	R	F	Q	Y	K	E	I	М	L		
	103	104	105	106	107	108	109	110	111	112	113		
Human	D	К	R	F	Q	С	K	E	I	М	L		
Chimp	D	К	R	F	Q	С	K	Е	I	М	L		
Gorilla	D	К	R	F	Q	С	Κ	Е	I	М	L		
Orangutan	D	К	R	F	Q	С	Κ	Е	I	М	L		
Rhesus Monkey	D	R	R	F	Q	С	K	Е	I	М	L		
Mouse	D	К	R	F	Р	С	Κ	Е	I	М	L		
Rat	D	К	R	F	Р	С	K	Е	I	М	L		
Rabbit	D	R	R	F	Α	С	K	Е	I	٧	L		
Dolphin	D	К	R	F	Н	С	K	Е	I	М	L		
Dog	D	К	R	F	Р	С	K	Е	I	М	L		
Opossum	D	R	Q	F	Q	С	Κ	Е	I	М	L		
Platypus	D	R	R	F	Р	С	K	E	Ī	М	L		
Chicken	D	Q	Н	F	L	С	K	E	Ī	V	М		
Zebrafish	D	R		L	S	С	K	E	Ī	М	Т		

Supplemental Table 1: In silico analysis of newly described missense DGKE mutations

Patient	Inheritance	DGKE variant	ESP frequencies	Align GVGD	SIFT	MutationTaster
NCL25	Compound heterozygous	c.463A>G p.(Arg155Gly)¶	N/A	Class C65 (GV: 0.00 - GD: 125.13)	Deleterious (score: 0)	Disease causing (p-value: 1)
		c.1427T>C p.(Leu476Pro)¶	N/A	Class C45 (GV: 14.30 - GD: 86.59)	Deleterious (score: 0.01)	Disease causing (p-value: 1)
NCL26	Homozygous	c.826delG p.(Val276Phefs*8)¶	N/A	N	A: frameshift	
NCL27	Homozygous	c.1597A>C p.(Thr533Pro)¶	N/A	Class CO (GV: 121.10 - GD: 28.88)	Tolerated (score: 0.23)	Disease causing (p-value: 1)
NCL28	Homozygous	c.1A>T p.(Met1Leu)¶	N/A	Ν	IA: start loss	
NCL29	Homozygous	c.1597A>C p.(Thr533Pro) ¶	N/A	Class C0 (GV: 121.10 - GD: 28.88)	Tolerated (score: 0.23)	Disease causing (p-value: 1)
NCL30	Compound heterozygous	c.393C>G p.(Asn131Lys)¶	N/A	Class C65 (GV: 0.00 - GD: 93.88)	Deleterious (score: 0)	Disease causing (p-value: 1)
		c.465-2A>G ¶	N/A	Ν	A: splice site	
NCL32	Homozygous	c.236A>C p.(Gln79Pro)¶	N/A	Class C0 (GV: 261.33 - GD: 0.00)	Tolerated (score: 0.14)	Disease causing (p-value: 1)
NCL34	Homozygous	c.1647_1650delAACA p.(Thr550Metfs*13)¶	N/A	N	A: frameshift	
NCL37	Homozygous	c.323G>A p.(Cys108Tyr)¶	N/A	Class C65 (GV: 0.00 - GD: 193.72)	Deleterious (score: 0)	Disease causing (p-value: 1)

Abbreviations: DGKE, diacyl glycerol kinase & ESP, Exome Sequencing Project; GVGD, Grantham Variation Grantham Difference; NA, not applicable; N/A, not available; SIFT, Sorting Tolerant From Intolerant.

Supplemental Figure 5: Kaplan Meier Survival Curves

A. Renal survival comparing individuals who received eculizumab with those who did not

B. Renal and patient survival, including individuals for whom no genetic analysis was possible

C. Renal and patient survival, including individuals for whom no genetic analysis was possible, comparing individuals who received eculizumab with those who did not

Time since diagnosis (years)

D. Renal survival, incorporating data published by Azukaitis et al., for all published DGKA nephropathy cases

Supplemental Figure 6: Primer design for RNA studies A. c.1524+2T>C

CCGGGCTCGCCCTCCGAGGGCCTGTTTGCGGACGGGCACCTGATCTTGTGGACGCTGTGCTCGGTCCT GCTGCCGGTGTTCATCACCTTCTGGTGTAGCCTCCAGCGGTCGCCGCCGGCAGCTGCACCGCAGGGACA TGCGCGCAGCACATTCTGCAGGGCGCCTTCTGCGACTGCTGCGGGCTCCGCGTGGACGAGGGCTGCCT CAGGAAGGCCGACAAGCGCTTCCAGTGCAAGGAGATTATGCTCAA**GAATGACACCAAGGTCCTGG**ACG CCATGCCCCACCACTGGATCCGGGGGCAACGTGCCCCTGTGCAGTTACTGTATGGTTTGCAAGCAGCAG TGTGGCTGTCAACCCAAGCTTTGCGATTACAGGTGCATTTGGTGCCAGAAAACAGTACATGATGAGTG CATGAAAAATAGTTTAAAGAATGAAAAATGTGATTTTGGAGAATTCAAAAACCTAATCATTCCACCAA GTTATTTAACATCCATTAATCAGATGCGTAAAGACAAAAAAACAGATTATGAAGTGCTAGCCTCTAAG CTTGGAAAGCAGTGGACCCCATTAATAATCCTGGCCAACTCTCGTAGTGGAACTAATATGGGAGAAGG **ACTGTTGGGAGAATTTAGGATCTTGTTGAATCCAGTCCAGGTTTTTGATGTAACTAAAACTCCTCCTA** GGGACTGTAGGGTGGGTCCTGGATGCAGTTGATGACATGAAGATTAAGGGACAAGAAAAGTACATTCC ACAAGTTGCAGTTTTGCCTCTGGGAACAGGCAACGATCTATCCAATACATTGGGTTGGGGTACAGGTT ATGCTGGAGAAATTCCAGTTGCGCAGGTTTTGCGAAATGTAATGGAAGCAGATGGAATTAAACTAGAT CG

exon 1 - 162 bp exon 2 - 482 bp exon 3 - 160 bp exon 4 - 120 bp exon 5 - 144 bp exon 6 - 158 bp

predict exon 3 del - 318 bp WT - 478 bp

DGKE_RNA_Ex2-5f gtagcgcgacggccagtGAATGACACCAAGGTCCTGG DGKE_RNA_Ex2-5r cagggcgcagcgatgacTGTAGGGCTTTGATAGGAGG

B. c.465-2A>G

predicted to lose exon 11 = 112bp or get an extra 4 bases on end of exon 11

Expected product WT = 428 bp first 43 bases exon 10 to exon 12 = 215 bp inclusion of intron 11 = 788 bp

DGKE_RNA_Ex9f gtagcgcacggccagtGGAACCAAAGATTGTTTAGTGC DGKE_Ex10_12f gtagcgcacggccagtTGGATGGTGAGCGAGTAGC DGKE_Ex10_12r cagggcgcagcgatgacTCATTGCATGTGTCTTGTGAG