

Figure S1. Stimulation effects on arousal did not significantly differ for different anesthetics or doses. Related to Figure 1. (A-C) Population mean arousal score (±SE) from both monkeys prior to (blue), during (red), and after (yellow) thalamic stimulation at (A) lower, (B) medium and (C) higher anesthetic doses in our experimental range. Individual stimulation events under isoflurane (diamonds) and propofol (circles) shown. Stimulation effects on arousal occur irrespective of dose; although the interaction is not significant, effects are slightly stronger at lower doses in our experimental range. (D-F) Change in stimulation-induced arousal (stim - pre) as a function of dorsal-ventral distance from CL center at (D) lower, (E) medium and (F) higher doses in our experimental range. Circles represent individual stimulation events. Red curve indicates quadratic fit (±SE). Proximity to CL has a slightly stronger effect under higher doses of anesthesia (i.e., stimulating array may need to be closer to CL center to induce arousal at higher doses), but the interaction is not significant. (G-I) Change in stimulation-induced arousal (stim pre) as a function of Euclidian distance from CL center at (G) lower, (H) medium and (I) higher doses in our experimental range. Circles represent individual stimulation events. Red curve indicates linear fit (±SE). Proximity to CL is significantly predictive of arousal score regardless of dose. The effect is slightly stronger under higher doses of anesthesia, but the interaction is not significant.

Figure S2. Propofol and isoflurane had similar effects on spiking activity and intracolumnar interactions, consistent with light NREM sleep effects. Related to Figures 2 and 3. (A-D) Spike rate of neurons recorded during isoflurane (Iso, blue), propofol (Prop, light blue) and wakefulness (Wake, orange) for (A) central lateral thalamic, (B) superficial cortical, (C) middle cortical and (D) deep cortical neurons. No significant differences were found between anesthetics. (E-G) Sample high-pass filtered traces of fast-spiking CL neurons across different states. (E) Example of CL neuron tonically firing at high spike rate during wakefulness (M = 59.32 Hz), and reduced spike rate in sleep (M = 38.70 Hz). (F) Example of fast-spiking (M = 52.83 Hz) CL neuron bursting during wakefulness. Interspike interval commonly 1-2 ms within a burst, and 12-50 ms between bursts. (G) Example of CL neuron bursting during propofol anesthesia. (H-P) Population coherence difference between wakefulness and anesthesia, positive when wake > anesthesia (error bars show 95% confidence intervals of T-tests at each frequency), or difference between wakefulness and NREM sleep, positive when wake > sleep (error bars show 95% confidence intervals). Average difference of all contact pairs (cortical areas combined) for: superficial cortical layers relative to (H) isoflurane, (I) propofol and (J) sleep; between superficial and deep layers relative to (K) isoflurane, (L) propofol and (M) sleep; for deep layers relative to (N) isoflurane, (O) propofol and (P) sleep.

Figure S3. Cortical power correlates poorly with arousal. Related to Figures 3 and 4. Effects were not consistent between state (wake vs anesthesia) and stimulation (effective vs ineffective), and thus power is a poor predictor of behavioral arousal. (**A**) Population FEF and (**B**) LIP power spectra for wakefulness (orange) and anesthesia (blue). Average of all contacts across cortical layers. Line thickness indicates 95% confidence intervals. Gray lines show frequencies with significant differences between spectra (Holm's-corrected T-tests). (**C-H**) Population power difference between wakefulness and anesthesia. Positive when wake > anesthesia. Error bars indicate 95% confidence intervals of T-tests at each frequency. Average of all contacts for: superficial (**C**) FEF and (**D**) LIP; middle (**E**) FEF and (**F**) LIP; deep (**G**) FEF and (**H**) LIP. (**I**) Population FEF and (**J**) LIP power with 95% confidence intervals under anesthesia prior to (blue) and during effective stimulation (red). Average across all cortical layers. (**K-P**) Population power difference between effective (red) and ineffective (black) stimulations. Positive when stim > pre. Error bars indicate 95% confidence intervals. Average of all contacts for: superficial (**K**) FEF and (**L**) LIP; middle (**M**) FEF and (**N**) LIP; deep (**O**) FEF and (**P**) LIP.

Figure S4. Propofol, isoflurane, and light NREM sleep had similar influences on cross-area interactions. Related to Figure 4. (A-I) Population average LFP-LFP coherence difference between wakefulness and anesthesia, positive when wake > anesthesia (error bars indicate 95% confidence intervals of T-tests at each frequency), or difference between wakefulness and sleep, positive when wake > sleep (error bars indicate 95% confidence intervals). Average difference of all contact pairs for: superficial LIP and superficial/mid FEF relative to (A) isoflurane, (B) propofol and (C) sleep; deep FEF and superficial LIP relative to (D) isoflurane, (E) propofol and (F) sleep; and deep FEF and deep LIP relative to (G) isoflurane, (H) propofol and (I) sleep. (J-R) Spike-field coherence (±SE) at delta (0-4 Hz), alpha (8-15 Hz) and low gamma (30-60 Hz) frequencies during wakefulness (W, orange) and anesthesia (A, blue). Average of all contact pairs for: (J) superficial LIP spikes and superficial/middle FEF LFPs; (K) deep FEF spikes and superficial LIP LFPs; (L) deep FEF spikes and deep LIP LFPs; (M) CL spikes and superficial FEF LFPs; (N) CL spikes and deep FEF LFPs; (O) deep FEF spikes and CL LFPs; (P) CL spikes and superficial LIP LFPs; (Q) CL spikes and deep LIP LFPs; and (R) deep LIP spikes and CL LFPs.

	Wake v Ane	s intrace	olumnar	coherenc	e	Stimulation intracolumnar coherence									
M14	Data	Band	β1	Т	p _{adj}	M19	Data	Band	β1	Т	p _{adj}				
		δ	-0.104	-28.08	<1.0x10 ⁻¹⁰			δ	-0.002	-0.30	1.000				
	Sup ⇔ Sup	θ	0.002	0.43	1.000		Sup ⇔ Sup	θ	0.009	1.18	1.000				
	N 4000	α	0.076	20.86	<1.0x10 ⁻¹⁰	epo	N 045	α	0.017	2.44	0.119				
	$N_{\text{Make}} = 4326$ $N_{\text{Anes}} = 5959$	β	-0.028	-10.23	<1.0x10 ⁻¹⁰	seCo	N _{Effect} = 845 N _{Ineffect} = 1544 DF = 2384	β	-0.004	-0.85	1.000				
	DF = 10282	γı	0.014	5.91	1.7x10 ⁻⁸	*Dos		γι	0.020	5.24	1.8x10 ⁻⁶				
₂*Area		γh	-0.003	-1.07	0.937	+ β₂		γh	0.003	0.77	1.000				
		δ	-0.073	-22.78	<1.0x10 ⁻¹⁰	fect ea		δ	0.006	0.82	1.000				
+ 6	Sup ⇔ Deep N _{Wake} = 4196 N _{Anes} = 4529 DF = 8722	θ	0.086	23.29	<1.0x10 ⁻¹⁰	 β₀ + β₁*StimEf β₃*Anes + β₄*Ar 	Sup ⇔ Deep	θ	0.032	4.83	1.3x10 ⁻⁶				
itate		α	0.154	41.79	<1.0x10 ⁻¹⁰		N 906	α	0.045	7.31	<1.0x10 ⁻¹⁰				
β.*S		β	0.020	10.05	<1.0x10 ⁻¹⁰		N _{Effect} = 826 N _{Ineffect} = 1805	β	0.021	5.42	7.3x10 ⁻⁶				
β ₀ +		γı	0.054	25.12	<1.0x10 ⁻¹⁰		DF = 2626	γι	0.032	10.45	<1.0x10 ⁻¹⁰				
2		γh	0.034	23.02	<1.0x10 ⁻¹⁰	÷ +		γh	0.023	7.50	<1.0x10 ⁻¹⁰				
Ŭ			δ	0.069	7.75	<1.0x10 ⁻¹⁰									
	Deep ⇔ Deep	θ	0.053	12.70	<1.0x10 ⁻¹⁰	(stim	Deep ⇔ Deep	θ	0.070	9.04	<1.0x10 ⁻¹⁰				
	Nwaka = 4378	α	0.105	26.04	<1.0x10 ⁻¹⁰	Diff (N _{Effort} = 699	α	0.083	11.79	<1.0x10 ⁻¹⁰				
	$N_{Anes} = 4316$	β	-0.002	-0.62	1.000	ō	$N_{\text{Ineffect}} = 1484$	β	0.034	7.93	<1.0x10 ⁻¹⁰				
	DF = 8691	γı	0.036	11.87	<1.0x10 ⁻¹⁰		DF = 2178	γı	0.008	2.21	0.190				
		γ'n	-0.004	-1.19	0.937			γ'n	0.005	1.58	0.681				

Table S1. Statistical results for intracolumnar cortical coherence in wakefulness and anesthesia, as well as during effective and ineffective thalamic stimulations. Related to Figure 3. Analyses with model 14 and 19 performed for: delta $(\delta) = 0.4$ Hz; theta $(\theta) = 4.8$ Hz; alpha $(\alpha) = 8.15$ Hz; beta $(\beta) = 15.30$; low gamma $(\gamma_1) = 30.60$ Hz; and high gamma $(\gamma_h) = 60.90$ Hz for coherence pairs within/between different layers of cortical areas. Reported statistics are the slope (β_1) , T statistic (T) and Holm's adjusted p-value (p_{adj}) for the parameter of interest $(\beta_1 * \text{State or } \beta_1 * \text{StimEffect})$. Significant effects (p < 0.05) show frequency bands where coherence is significantly different for wakefulness relative to anesthesia (Wake v Anes intracolumnar coherence), or for effective relative to ineffective stimulations (Stimulation intracolumnar coherence).

W	ake v Anes co	rtical an	d subco	rtical pov	Stimulation cortical power									
M15 & 17	Data	Band	β1	Т	p _{adj}	M20	Data	Band	β1	Т	p _{adj}			
		δ	-0.264	-9.26	<1.0x10 ⁻¹⁰			δ	-0.173	-2.20	0.290			
	Sup	θ	0.257	8.57	<1.0x10 ⁻¹⁰		Sup	θ	-0.110	-1.34	1.000			
	N 700	α	0.424	14.04	<1.0x10 ⁻¹⁰	ode	N 041	α	-0.077	-0.91	1.000			
	$N_{Wake} = 793$ $N_{Anes} = 881$	β	0.078	3.35	0.003	SeC	$N_{Effect} = 241$ $N_{Ineffect} = 756$	β	-0.122	-1.38	1.000			
	DF = 1671	γı	0.127	5.32	7.2x10 ⁻⁷	[*] Do	DF = 856	γı	-0.011	-0.13	1.000			
ea		γh	0.156	8.67	<1.0x10 ⁻¹⁰	+ β2		γh	-0.107	-1.20	1.000			
² *Arc		δ	-0.143	-3.34	0.003	fect ea		δ	-0.513	-3.61	0.006			
+ α	Mid	θ	0.385	8.61	<1.0x10 ⁻¹⁰	nEff *Are	Mid	θ	-0.531	-3.56	0.007			
 β₀ + β₁*State 		α	0.493	11.15	<1.0x10 ⁻¹⁰	*Stir + β₂		α	-0.514	-3.28	0.018			
	$N_{Wake} = 294$ $N_{Anes} = 635$	β	0.167	5.06	2.7x10 ⁻⁶	+β ₁ nes	$N_{Effect} = 91$ $N_{Ineffect} = 299$	β	-0.531	-3.13	0.028			
	DF = 632	γı	0.207	5.92	3.7x10 ⁻⁸	β₀ ³ *A	DF = 343	γı	-0.388	-2.45	0.193			
		γh	0.206	8.13	<1.0x10 ⁻¹⁰			γ'n	-0.483	-3.00	0.040			
လ်		δ	-0.120	-4.23	9.8x10 ⁻⁵	pre		δ	-0.141	-1.58	0.803			
	Deep	θ	0.411	13.82	<1.0x10 ⁻¹⁰	I E	Deep	θ	-0.203	-2.23	0.290			
	NI 700	α	0.525	17.37	<1.0x10 ⁻¹⁰	(sti	N 404	α	-0.188	-2.03	0.341			
	$N_{Wake} = 709$ $N_{Anes} = 764$	β	0.156	7.03	<1.0x10 ⁻¹⁰	Diff	$N_{Effect} = 184$ $N_{Ineffect} = 726$	β	-0.218	- 2.17	0.290			
	DF = 1470	γı	0.148	6.25	4.3x10 ⁻⁹		DF = 779	γı	-0.126	-1.33	1.000			
		γh	0.176	10.48	<1.0x10 ⁻¹⁰			γh	-0.216	-2.26	0.290			
(I)		δ	-0.415	-14.94	<1.0x10 ⁻¹⁰		•							
State	CL	θ	0.374	13.05	<1.0x10 ⁻¹⁰									
β.*6	NL 004	α	0.486	17.00	<1.0x10 ⁻¹⁰									
30 +	$N_{Wake} = 684$ $N_{Anes} = 1403$	β	-0.180	-7.70	<1.0x10 ⁻¹⁰	1								
2	DF = 2085	γı	-0.290	-10.94	<1.0x10 ⁻¹⁰	1								
S		Vh	-0.042	-2 74	0.006	1								

Table S2. Statistical results for cortical and thalamic power in wakefulness and anesthesia, and for cortical power with effective and ineffective thalamic stimulations. Related to Figures 3, 4, and S3. Analyses with model 15, 17 and 20 performed for: delta (δ) = 0-4 Hz; theta (θ) = 4-8 Hz; alpha (α) = 8-15 Hz; beta (β) = 15-30 Hz; low gamma (γ I) = 30-60 Hz; and high gamma (γ I) = 60-90 Hz for different layers of cortical areas and for thalamus. Reported statistics are the slope (β 1), T statistic (T) and Holm's adjusted p-value (p_{adj}) for the parameter of interest (β 1*State or β 1*StimEffect). Significant effects (p < 0.05) show frequency bands where power is significantly different for wakefulness relative to anesthesia (Wake v Anes cortical and subcortical power), or for effective relative to ineffective stimulations (Stimulation cortical power).

Wake v Anes corticocortical LFP-LFP coherence							Stimulation corticocortical LFP-LFP coherence							Wake v Anes corticocortical spike-field coherence						
M16	Data	Band	βı	Т	\mathbf{p}_{adj}	M21	Data	Band	βı	Т	p _{adj}	M18	Data	Band	βı	F	p _{adj}			
	LIPs ⇔ FEFsm	δ	-0.012	-6.91	<1.0x10 ⁻¹⁰		LIP _S ⇔ FEF _{S/M} N _{Effect} = 1258 N _{Ineffect} = 3397 DF = 2794	δ	-0.021	-4.05	8.6x10-4		LIPs⇔	δ	0.022	27.26	1.8x10-₅			
		θ	0.070	32.30	<1.0x10 ⁻¹⁰	nes		θ	0.002	0.49	1.000		FEF _{S/M}	θ	0.024	42.17	1.7x10 ⁻⁷			
	N _{Wake} =	α	0.103	41.80	<1.0x10 ⁻¹⁰	β ₃ *A		α	0.026	6.87	1.5x10 ⁻¹⁰		N _{Wake} = 30	α	0.026	53.29	8.4x10 ⁻⁹			
	N _{Anes} =	β	0.045	50.98	<1.0x10 ⁻¹⁰	$) \sim \beta_0 + \beta_1^* \text{StimEffect} + \beta_2^* \text{DoseCode} + \beta_2^* Dose$		β	0.002	0.83	1.000		N _{Anes} = 30 DF =	β	0.027	154.39	<1.0x10 ⁻¹⁰			
	3664 DE -	γι	0.061	46.64	<1.0x10 ⁻¹⁰			γı	0.012	4.45	1.5x10-4	1		γι	0.029	161.93	<1.0x10 ⁻¹⁰			
	7524	γ'n	0.027	19.48	<1.0x10 ⁻¹⁰			γ'n	0.008	3.03	0.027	uron*(57.43	γ'n	0.030	155.71	<1.0x10 ⁻¹⁰			
β₁*State	FEFD	δ	-0.015	-7.64	<1.0x10 ⁻¹⁰		FEF _D ⇔ LIPs N _{Effect} = 598	δ	-0.026	-2.92	0.032	γ nei	$FEF_{D} \Leftrightarrow LIP_{S}$ $N_{Wake} = 44$ $N_{Anes} = 74$	δ	0.015	8.04	0.005			
	⇔ LIPs N _{Wake} = 2634 N _{Anes} = 1816 DE -	θ	0.092	28.34	<1.0x10 ⁻¹⁰			θ	0.009	1.18	1.000	te +		θ	0.026	19.76	6.4x10 ⁻⁵			
		α	0.118	31.12	<1.0x10 ⁻¹⁰			α	0.027	3.97	0.001	*Sta		α	0.025	21.23	6.3x10-₅			
β₀ +		β	0.039	30.06	<1.0x10 ⁻¹⁰		N _{Ineffect} =	β	-0.012	-3.10	0.024	+β,		β	0.027	71.84	<1.0x10 ⁻¹⁰			
℃		γı	0.071	41.86	<1.0x10 ⁻¹⁰		DF = 1613	γı	-0.001	-0.41	1.000	β	DF =	γι	0.029	116.59	<1.0x10 ⁻¹⁰			
	4410	γh	0.044	32.50	<1.0x10 ⁻¹⁰			γh	-0.014	-3.44	0.008	ů Ľ	114.08	γh	0.028	123.53	<1.0x10 ⁻¹⁰			
	FEF₀	δ	-0.013	-6.04	1.6x10 ⁻⁹		FEF₀⇔	δ	-0.019	-2.14	0.226	pikel	FEF _D ⇔ LIP _D N _{Wake} = 45	δ	0.019	12.59	0.001			
	LIP₀	θ	0.082	27.24	<1.0x10 ⁻¹⁰	- pre		θ	-0.003	-0.37	1.000	S		θ	0.031	20.33	6.4x10 ⁻⁵			
	N _{Wake} =	α	0.108	31.65	<1.0x10 ⁻¹⁰	iff (stim -	523	α	0.001	0.14	1.000			α	0.026	20.78	6.4x10⁻⁵			
	N _{Anes} =	β	0.047	39.02	<1.0x10 ⁻¹⁰		N _{Ineffect} =	β	-0.011	-3.01	0.027		N _{Anes} =	β	0.031	66.96	<1.0x10 ⁻¹⁰			
	1947 DF =	γı	0.069	41.25	<1.0x10 ⁻¹⁰	G	DF =	γı	-0.009	-2.47	0.109		DF =	γι	0.030	114.38	<1.0x10 ⁻¹⁰			
	3968	γh	0.047	33.31	<1.0x10 ⁻¹⁰		1666	γh	-0.013	-3.36	0.010		115.19	γh	0.029	145.27	<1.0x10 ⁻¹⁰			

Table S3. Statistical results for cross-area corticocortical coherence in wakefulness and anesthesia, as well as during effective and ineffective stimulations. Related to Figures 4 and S4. Analyses with models 16, 21 and 18 performed for: delta (δ) = 0-4 Hz; theta (θ) = 4-8 Hz; alpha (α) = 8-15 Hz; beta (β) = 15-30 Hz; low gamma (γ_1) = 30-60 Hz; and high gamma (γ_h) = 60-90 Hz for different pairs of contacts between FEF and LIP (deep (D), superficial (S), and middle (M) layers). Reported statistics are the slope (β_1), T statistic (T) and Holm's adjusted p-value (p_{adj}) for the parameter of interest (β_1 *State or β_1 *StimEffect). Significant effects (p < 0.05) show frequency bands where coherence is significantly different for wakefulness relative to anesthesia (Wake vs Anes corticocortical LFP-LFP or spike-field coherence), or for effective relative to ineffective stimulations (Stimulation corticocortical LFP-LFP coherence).

Wake v Anes thalamocortical LFP-LFP coherence						Wake v Anes thalamocortical spike-field coherence											
M16	Data	Band	β1	Т	p_{adj}	M18	Data	Band	β1	F	p_{adj}	M18	Data	Band	β1	F	p _{adj}
	CL ⇔ FEFs N _{Wake} = 3446	δ	0.030	20.68	<1.0x10 ⁻¹⁰		CL ⇔ FEFs N _{Wake} = 95	δ	0.021	47.95	<1.0x10 ⁻¹⁰		FEF₀⇔	δ	0.028	75.75	<1.0x10 ⁻¹⁰
		θ	0.084	59.83	<1.0x10 ⁻¹⁰			θ	0.029	154.65	<1.0x10 ⁻¹⁰	*(1)	CL	θ	0.029	88.22	<1.0x10 ⁻¹⁰
		α	0.097	64.15	<1.0x10 ⁻¹⁰			α	0.030	167.69	<1.0x10 ⁻¹⁰	euron	N _{Wake} = 45	α	0.028	46.28	4.7x10 ⁻⁹
	N _{Anes} =	β	0.045	57.72	<1.0x10 ⁻¹⁰		N _{Anes} =	β	0.024	156.47	<1.0x10 ⁻¹⁰	۲ ۲	N _{Anes} =	β	0.030	100.97	<1.0x10 ⁻¹⁰
	9315 DF =	γı	0.065	66.28	<1.0x10 ⁻¹⁰		154 DF =	γı	0.018	112.75	<1.0x10 ⁻¹⁰	+	74 DF =	γı	0.030	126.02	<1.0x10 ⁻¹⁰
	12531	γh	0.027	22.74	<1.0x10 ⁻¹⁰		496.63	γh	0.015	85.46	<1.0x10 ⁻¹⁰	State	116.27	γ'n	0.030	134.45	<1.0x10 ⁻¹⁰
	CL⇔	δ	0.027	24.40	<1.0x10 ⁻¹⁰		CL ⇔ LIPs	δ	0.029	135.27	<1.0x10 ⁻¹⁰	β1*	LIP₀⇔	δ	0.040	215.05	<1.0x10 ⁻¹⁰
State		θ	0.123	83.19	<1.0x10 ⁻¹⁰	*(1)		θ	0.028	159.64	<1.0x10 ⁻¹⁰	β₀ +	CL	θ	0.041	105.97	<1.0x10 ⁻¹⁰
	N _{Wake} = 5282	α	0.150	89.64	<1.0x10 ⁻¹⁰	euron,	N _{Wake} = 93	α	0.028	223.56	<1.0x10 ⁻¹⁰	2	N _{Wake} = 62	= <u>α</u> 0.041 = β 0.040	141.49	<1.0x10 ⁻¹⁰	
	N _{Anes} = 10478 DF =	β	0.031	26.12	<1.0x10 ⁻¹⁰	$eFC \sim \beta_0 + \beta_1^*State + + \gamma_n$	N _{Anes} = 155 DF = 682.34	β	0.023	228.67	<1.0x10 ⁻¹⁰	еFС	N _{Anes} = 80 DF = 139.67	β	0.040	249.93	<1.0x10 ⁻¹⁰
		γı	0.058	54.91	<1.0x10 ⁻¹⁰			γı	0.018	188.59	<1.0x10 ⁻¹⁰	spik		γı	0.040	305.65	<1.0x10 ⁻¹⁰
β1*	15466	γ'n	0.031	34.47	<1.0x10 ⁻¹⁰			γh	0.018	199.69	<1.0x10 ⁻¹⁰			γ'n	0.040	267.00	<1.0x10 ⁻¹⁰
β₀ +	CL ⇔ FEF₀	δ	-0.001	-0.612	0.541		CL ⇔ FEF _D N _{Wake} = 94 N _{Anes} = 130 DF =	δ	0.024	67.50	<1.0x10 ⁻¹⁰						
2		θ	0.086	48.14	<1.0x10 ⁻¹⁰			θ	0.028	171.18	<1.0x10 ⁻¹⁰						
0	3561	α	0.086	47.65	<1.0x10 ⁻¹⁰			α	0.025	144.29	<1.0x10 ⁻¹⁰						
	N _{Anes} =	β	0.040	49.62	<1.0x10 ⁻¹⁰			β	0.024	181.38	<1.0x10 ⁻¹⁰						
	5675 DF =	γι	0.054	58.00	<1.0x10 ⁻¹⁰	spik		γι	0.021	181.10	<1.0x10 ⁻¹⁰						
	9074	γ'n	0.042	45.84	<1.0x10 ⁻¹⁰		616.41	γh	0.021	247.87	<1.0x10 ⁻¹⁰						
	CL⇔	δ	0.024	21.69	<1.0x10 ⁻¹⁰		CL⇔	δ	0.035	125.98	<1.0x10 ⁻¹⁰						
		θ	0.147	94.76	<1.0x10 ⁻¹⁰			θ	0.032	181.38	<1.0x10 ⁻¹⁰						
	5806	α	0.161	102.90	<1.0x10 ⁻¹⁰		N _{Wake} = 93 N _{Anes} =	α	0.032	183.38	<1.0x10 ⁻¹⁰						
	N _{Anes} =	β	0.042	39.74	<1.0x10 ⁻¹⁰			β	0.029	220.95	<1.0x10 ⁻¹⁰						
	9581 DF =	γı	0.072	60.78	<1.0x10 ⁻¹⁰		DF =	γı	0.024	189.16	<1.0x10 ⁻¹⁰						
	15029	γh	0.022	19.19	<1.0x10 ⁻¹⁰		384.64	γh	0.022	171.24	<1.0x10 ⁻¹⁰						

Table S4. Statistical results for thalamocortical LFP-LFP and spike-field coherence in wakefulness and anesthesia. Related to Figures 4 and S4. Analyses with models 16 and 18 performed for: delta (δ), theta (θ), alpha (α), beta (β), low gamma (γ I), and high gamma (γ H) for all contact pairs between thalamus and superficial (S) or deep (D) cortical layers in FEF or LIP. Reported statistics are the slope (β I), T statistic (T) and Holm's adjusted p-value (p_{adj}) for the parameter of interest (β I*State). Significant effects (p < 0.05) show frequency bands where coherence is significantly different for wakefulness relative to anesthesia.