Supporting Information

O^2 -Functionalized Methylamine Diazeniumdiolates: Evidence for $E \longrightarrow Z$ Equilibration in an Acyclic System

Debanjan Biswas,* Ryan J. Holland, Jeffrey R. Deschamps, Zhao Cao,

Larry K. Keefer, and Joseph E. Saavedra*

Drug Design Section, Chemical Biology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA. Basic Science Program, SAIC-Frederick, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA. Center for Biomolecular Science and Engineering, Naval Research Laboratory, Washington, D. C. 20375, USA.

Table of Contents

I.	Dynamic NMR experiments	S2
II.	UV-visible spectroscopic determination of pK_a for 13	S2
III.	LC/MS analysis	S 3
IV.	Single-crystal X-ray diffraction analysis of Z-4	S 6
V.	¹ H and ¹³ C NMR spectra for new compounds	S 8
VI.	References	S20

Dynamic NMR Experiments. Data used to derive the rate of exchange involving the anion and its conjugate acid were recorded on a 400 MHz NMR spectrometer. Samples were prepared in D_2O and the pD was adjusted to 3, 7, and 13 using NaOD and/or DCl.

Figure S1. UV spectrum of **13** ($\lambda_{max} = 241 \text{ nm}$) in pH 7.4 buffer.

Figure S2. UV spectrum of 13 (λ_{max} = 278 nm) in 1 M NaOH solution.

Figure S3. UV spectrum of **13** (λ_{max} = 241 and 278 nm) in pH 11.7 buffer.

LC/MS Analysis. A mixture of the two isomeric forms of 13 was injected on a HPLC, and the separations were performed on a reverse phase C18 column (3 μ m, 2.1x150 mm), with a water-acetonitrile 90:10 mobile phase and a flow rate of 0.2 mL/min. The solvent line was split prior to entering the mass spectrometer. High resolution mass spectra (HRMS) were recorded on an Accurate-Mass quadrupole time-of-flight (Q-TOF) mass spectrometer. Positive ions were generated using electrospray ionization (ESI) with a capillary voltage of 3500 V, a fragmenter voltage of 175 V, and a nebulizer pressure of 25 psi.

Figure S4. Equilibration of compound **13** between two isomeric forms that is partially separable by HPLC. **Panel A** is an HPLC trace illustrating the partial separation, with the shaded area representing the portion of the eluate richest in the smaller component; this portion was collected at 0 °C and immediately reinjected to obtain the chromatogram of **Panel B**, showing re-equilibration. **Panel C**, same as **A** except that the eluate that was collected cold and immediately reinjected (shaded area) was enriched in the major isomer. **D**, as in the experiment of **Panel B**, the resulting HPLC trace showed complete re-equilibration. Each trace is an extracted ion chromatogram, *m*/*z* 120.077. Photodiode array detector responses confirm that the two peaks in each chromatogram also had identical ultraviolet spectra ($\lambda_{max} = 240$ nm).

Peak 1

		m/z 🗠	lon	Formula	Abundance									
3-	•	120.07682	(M+H)+	C3 H10 N3 O2	24124.2									
		Best	Formula (M)	Ion Formula	m/z	Calc m/z	Mass	Calc Mass	Abs Diff (pp	Score V	Mass Match	Abund Match	Spacing Match	DBE
	÷	V	C3 H9 N3 O2	C3 H10 N3 O2	120.07682	120.07675	119.06954	119.06948	0.57	87.58	99.94	87.77	62.65	1

Peak 2

		m/z △	lon	Formula	Abundance									
		120.07692	(M+H)+	C3 H10 N3 O2	62731.2									
		Best	Formula (M)	Ion Formula	m/z	Calc m/z	Mass	Calc Mass	Abs Diff (pp	Score V	Mass Match	Abund Match	Spacing Match	DBE
Ð	-		C3 H9 N3 O2	C3 H10 N3 O2	120.07692	120.07675	119.06965	119.06948	1.42	99.2	99.6	98.45	99.28	1
		m/z △	lon	Formula	Abundance									
÷		142.05889	(M+Na)+	C3 H9 N3 Na O2	2241.5									
		Best	Formula (M)	Ion Formula	m/z	Calc m/z	Mass	Calc Mass	Abs Diff (pp	Score V	Mass Match	Abund Match	Spacing Match	DBE
Ð	-		C3 H9 N3 O2	C3 H9 N3 Na O2	142.05889	142.0587	119.06967	119.06948	1.63	47.39	99.52	0	0	1

Figure S5. Molecular formula calculations from the $[M+H]^+$ ion in peak 1 and both the $[M+H]^+$ and $[M+Na]^+$ ions in peak 2 of Figure S13. These calculations confirm that both peaks in the chromatograms of **13** have the same molecular formula, $C_3H_9N_3O_2$.

Figure S6. Extracted ion chromatogram of the ion of m/z 142.058 in the spectrum of **13**, which is the $[M+Na]^+$ ion detected in peak 2. This analysis shows that only peak 2 formed detectable sodium adducts.

Single-crystal X-ray Diffraction Analysis of Z-4. Single-crystal X-ray diffraction data on Z-4 were collected at 100 K using MoKα radiation ($\lambda = 0.71073$ Å) and a CCD area detector. The sample was prepared for data collection by coating with high viscosity microscope oil. The oil-coated crystal was mounted on a MicroMesh mount and transferred immediately to the diffractometer. The 0.618 x 0.514 x 0.277 mm³ crystal was monoclinic in space group *P*2_{1/c} with unit cell dimensions *a* = 22.122(4) Å, *b* = 5.3670(10) Å, *c* = 16.713(3) Å, and β = 112.172(4) °. Corrections were applied for Lorentz, polarization, and absorption effects. The structure was solved by direct methods and refined by full-matrix least squares on *F*² values. using appropriate programs. Parameters refined included atomic coordinates and anisotropic thermal parameters for all non-hydrogen atoms. Hydrogen atoms on carbons were included using a riding model [coordinate shifts of C applied to H atoms] with C-H distance set at 0.96 Å. The asymmetric unit contained a single molecule. Data were 96.3% complete to 25.00° θ. The asymmetric unit contains two molecules.

Empirical formula	$C_8H_{11}N_3O_2$							
Formula weight	181.20	181.20						
Temperature	100(2) K	100(2) K						
Wavelength	0.71073 Å	0.71073 Å						
Crystal system	Monoclinic	Monoclinic						
Space group	P 2 _{1/c}	P 2 _{1/c}						
Unit cell dimensions	a = 22.122(4) Å	$\alpha = 90^{\circ}$						
	b = 5.3670(10) Å	β=112.172(4)°						
	c = 16.713(3) Å	$\gamma = 90^{\circ}$						
Volume	1837.6(6) Å ³							
Z	8							
Density (calculated)	1.310 Mg/m ³							
Absorption coefficient	0.097 mm ⁻¹							
F(000)	768							

Table S1. Crystal data and structure refinement for Z-4.

Crystal size θ range for data collection Index ranges Reflections collected Independent reflections Completeness to $\theta = 25.00^{\circ}$ Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2 σ (I)] R indices (all data) Largest diff. peak and hole 0.618 x 0.514 x 0.277 mm³ 8.18 to 25.35° -26<=h<=26, -6<=k<=6, -20<=l<=20 19649 3249 [R(int) = 0.0574] 96.3 % Semi-empirical from equivalents 0.9736 and 0.9425 Full-matrix least-squares on F² 3249 / 156 / 237 1.083 R1 = 0.0451, wR2 = 0.1089 R1 = 0.0527, wR2 = 0.1105 0.423 and -0.440 e.Å⁻³

Figure S7. ¹H NMR spectra of compound **7** in CDCl₃ at 25 °C.

Figure S8. ¹³C NMR spectra of compound **7** in CDCl₃ at 25 °C.

Figure S9. ¹H NMR spectra of compound **8** in CDCl₃ at 25 °C.

Figure S10. ¹³C NMR spectra of compound **8** in CDCl₃ at 25 °C.

Figure S11. ¹H NMR spectrum of an equilibrium mixture of compounds Z-4 and E-4 in CDCl₃ at 25 °C.

Figure S12. ¹³C NMR spectrum of an equilibrium mixture of compounds Z-4 and E-4 in CDCl₃ at 25 °C.

Figure S13. ¹H NMR spectrum of compound 10 in CDCl₃ at 25 °C.

Figure S13. ¹³C NMR spectrum of compound **10** in CDCl₃ at 25 °C.

Figure S15. ¹H NMR spectrum of compound **11** in CDCl₃ at 25 °C.

Figure S16. ¹³C NMR spectrum of compound 11 in CDCl₃ at 25 °C.

Figure S17. ¹H NMR spectrum of an equilibrium mixture of compounds Z-13 and E-13 in $CDCl_3$ at 25 °C.

Figure S18. ¹³C NMR spectrum of an equilibrium mixture of compounds Z-13 and E-13 in CDCl₃ at 25 °C.

References

- [1] J. A. Hrabie, J. R. Klose, D. A. Wink, L. K. Keefer, J. Org. Chem. 1993, 58, 1472-1478.
- [2] L. K. Keefer, R. W. Nims, K. M. Davies, D. A. Wink, Methods Enzymol. 1996, 268, 281.
- [3] C. A. Velázquez, Q. Chen, M. L. Citro, L. K. Keefer, E. E. Knaus, J. Med. Chem. 2008, 51, 1954-1961.