Supplementary Information

Title: The Hepatic Plasma Membrane Citrate Transporter NaCT (SLC13A5) as a Molecular Target for Metformin

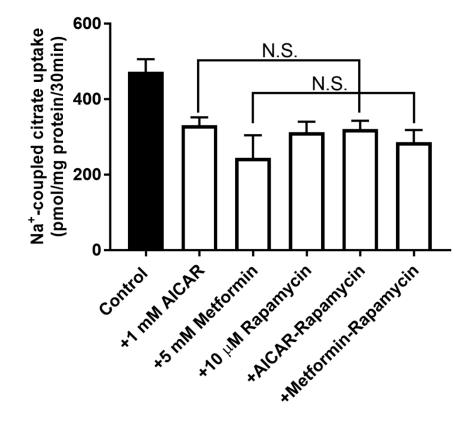
Authors: Jonathan Kopel, Kei Higuchi, Bojana Ristic, Toshihiro Sato, Sabarish Ramachandran, and Vadivel Ganapathy

Author's Affiliation: Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock 79430, Texas, United States

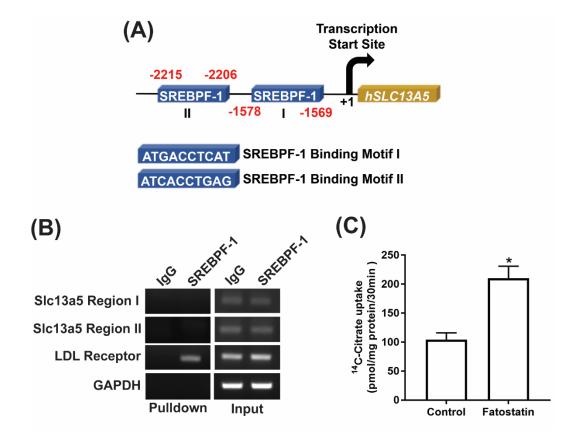
Pretreatment	LiCl	$K_m(mM)$	V _{max} (nmol/mg protein/30 min)
Control	(-)	6.39 ± 1.28	80.7 ± 10.0
1 mM AICAR	(-)	5.97 ± 1.58	39.4 ± 6.3
Control	(+)	0.482 ± 0.158	11.2 ± 1.4
1 mM AICAR	(+)	0.144 ± 0.034	4.53 ± 0.36
5 mM metformin	(+)	0.737 ± 0.437	3.85 ± 1.40
5 mM metformin	(+)	0.737 ± 0.437	3.85 ± 1.40

Supplementary Table 1. Effect of pretreatment of AICAR and metformin on kinetic parameters of citrate uptake in HepG2 cells

Each value represents the mean \pm S.E.

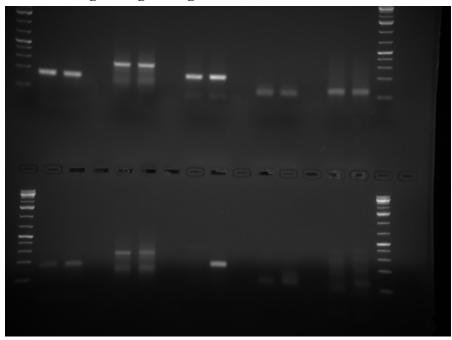

Supplementary Table 2: Primers for chromatin Immunoprecipitation (Ch
--

Primer Name	Sequence
Human GAPDH	Fwd: 5' -GTATTCCCCCAGGTTTACAT-3'
	Rev: 5' -TTCTGTCTTCCACTCACTCC-3'
Human LDL	Fwd: 5' -
	CACTTTCGAAGGACTGGAGTGG-3'
	Rev: 5' -CCACGTCATTTACAGCATTTC-3'
Human SLC13A5 SREBP-1 Region I	Fwd: 5' -TGCATCCCGGAGAAAAAGGT-3'
	Rev: 5' -TTCATCACCACCTGTCCAGC-3'
Human SLC13A5 SREBP-1 Region II	Fwd: 5' -ACTTGTCTGAGGCACACAGC-3'
	Rev: 5' -TCCAAAGGGATTCACCAGAGC-
	3'

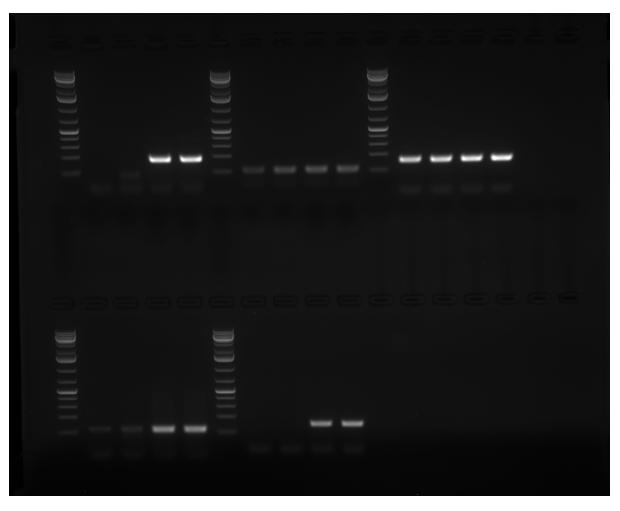

Supplementary Table 3: RT-PCR primers

Primer Name	Sequence
18S	Fwd: 5' -CCCGTTGAACCCCATTCGT-3'
	Rev: 5' -GCCTCACTAAACCATCCAATCGGTA-3'
Human SLC13A5	Fwd: 5' -CACCTTGTTCCTGCCCATCT-3'
	Rev: 5' -CCTGTTTTCACCATGTCAGCA-3'

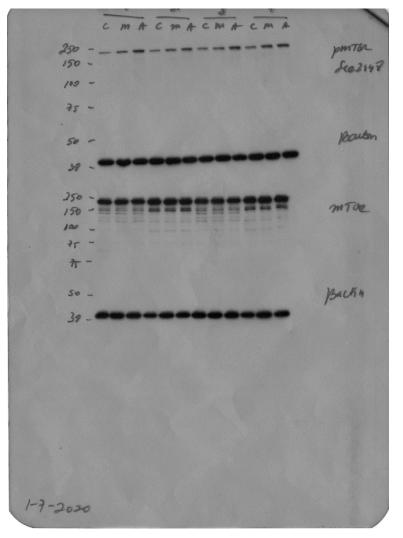
Lack of additive effect of rapamycin when present together with metformin or AICAR during treatment in HepG2 cells



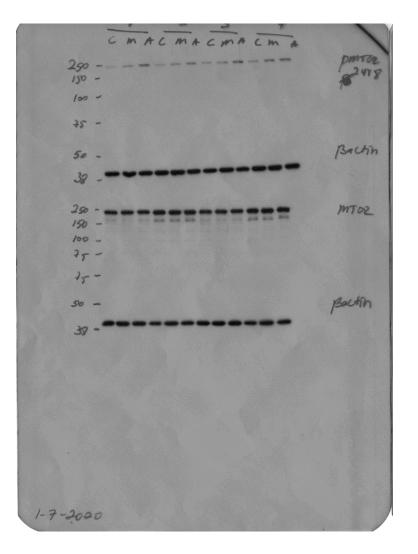
Supplementary Figure 1: HepG2 cells were cultured under conditions of physiologic concentration of glucose (5 mM), and treated with AICAR (1 mM), metformin (5 mM), rapamycin (10 μ M), AICAR (1 mM) with rapamycin (10 μ M) or metformin (5 mM) with rapamycin (10 μ M) for 24 h. Uptake of [¹⁴C]-citrate was measured in presence of 10 mM Li⁺. Each column represents the mean ± S.D. (n = 12). In each case, citrate uptake in treated cells was significantly less than citrate uptake in untreated control cells (P < 0.01). N.S., not significant.


Chromatin Immunoprecipitation (ChIP) for SREBPF-1

Supplementary Figure 2: Chromatin-Immunoprecipitation (ChIP) Analysis of SREBP-1. (A) Potential binding regions for SREBP-1 to SLC13A5 promoter. (B) ChIP results for SREBP-1. (C) [¹⁴C]-Citrate uptake was measured in control and fatostatin-treated HepG2 cells. Cells were cultured in 20-mM glucose medium and treated with or without 40 μ M fatostatin for 24 h prior to uptake measurement. Uptake was measured in transport buffer in presence of 10 mM Li⁺. Each column represents the mean \pm S.D. of nine determinations. *P<0.05 indicates a significant difference *vs* the control.

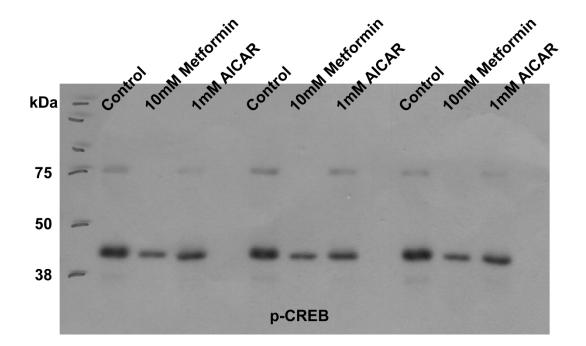

Whole agarose gel image of SREBPF-1 ChIP on SLC13A5 and LDL promoters

Supplementary Figure 3: Raw, full agarose gel of SREBPF-1 ChIP on *SLC13A5* and *LDL* promoters. Top row is the input. Lanes from the right: (**1-6**) Top and bottom are not used. Please disregard; (**7**) Promoter of *LDL* Receptor, IgG; (**8**) Promoter of *LDL* Receptor, SREBPF-1; (**10**) Promoter of *SLC13A5* Region I, IgG (**11**) Promoter of *SLC13A5* Region I, SREBPF-1; (**13**) Promoter of *SLC13A5* Region II, IgG (**14**) Promoter of *SLC13A5* Region II, SREBPF-1. The top row is the input, the bottom row is the pulldown. Lanes (**3**, **6**,**9**,**12**) are empty. Cropped image is used in the Supplementary Figure 2.

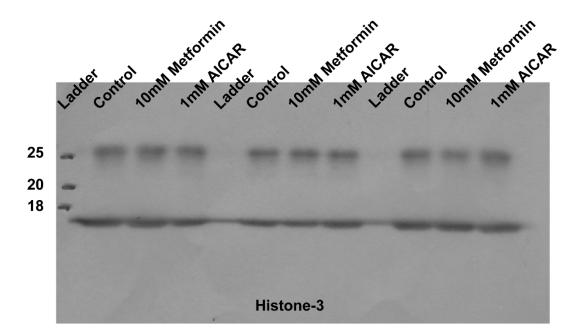

Whole agarose gel image of SREBPF-1 ChIP on GAPDH promoter

Supplementary Figure 4: Raw, full agarose gel of SREBPF-1 ChIP on *GAPDH* promoter. Only top row, lanes (1-4) are used. Please disregard the rest. Top row lanes: (1) Promoter of *GAPDH*, IgG pulldown (2) Promoter of *GAPDH*, SREBPF-1 pulldown; (3) Promoter of *GAPDH*, IgG input; (4) Promoter of *GAPDH*, SREBPF-1 input. Cropped image is used in the Supplementary Figure 2.

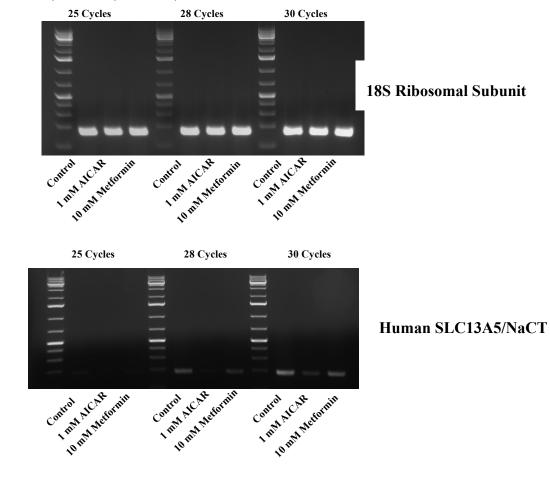
Whole phospho-mTOR western blot


Supplementary Figure 5: Raw, full Western Blot for phospho-mTOR (p-mTOR). Rows from the top: (1) p-mTOR in control (lanes 1,4,7,10), 1 mM Metformin (lanes 2, 5, 8, 11) and 10 mM AICAR (lanes 3, 6, 9, 12). The experiment was performed in quadruplicates. p-mTOR is a 289 kDa protein. Cropped figure is used in Figure 6; (2) β -actin in control (lanes 1, 4, 7, 10), 1 mM Metformin (lanes 2, 5, 8, 11) and 10 mM AICAR (lanes 3, 6, 9, 12). The experiment was performed in quadruplicates. β -actin is a 42 kDa protein. Not used due to high exposure (3) Total mTOR in control (lanes 1, 4, 7, 10), 1 mM Metformin (lanes 3, 6, 9, 12). The experiment was performed in quadruplicates. β -actin is a 42 kDa protein. Not used due to high exposure (3) Total mTOR in control (lanes 1, 4, 7, 10), 1 mM Metformin (lanes 2, 5, 8, 11) and 10 mM AICAR (lanes 3, 6, 9, 12). The experiment was performed in quadruplicates. mTOR is a 289kDa protein. Not used due to high exposure; (4) Not used. Please disregard.

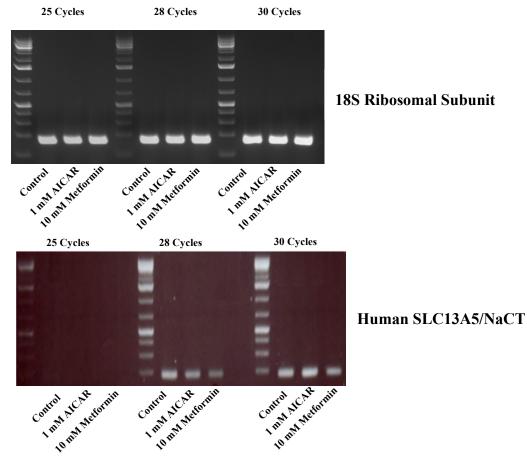
Whole mTOR and β-actin western blot


Supplementary Figure 6: Raw, full Western Blot for mTOR and β -actin. Rows from the top: (1) p-mTOR in control (lanes 1, 4, 7, 10), 1 mM Metformin (lanes 2, 5, 8, 11) and 10 mM AICAR (lanes 3, 6, 9, 12). The experiment was performed in quadruplicates. p-mTOR is a 289 kDa protein. Not used due to low exposure; (2) β -actin in control (lanes 1, 4, 7, 10), 1 mM Metformin (lanes 2, 5, 8, 11) and 10 mM AICAR (lanes 3, 6, 9, 12). The experiment was performed in quadruplicates. β -actin is a 42 kDa protein. Cropped figure is used in Figure 6; (3) Total mTOR in control (lanes 1, 4, 7, 10), 1 mM Metformin (lanes 2, 5, 8, 11) and 10 mM AICAR (lanes 3, 6, 9, 12). The experiment β a 289 kDa protein. Cropped figure is used in Figure 6; (4) Not used. Please disregard.

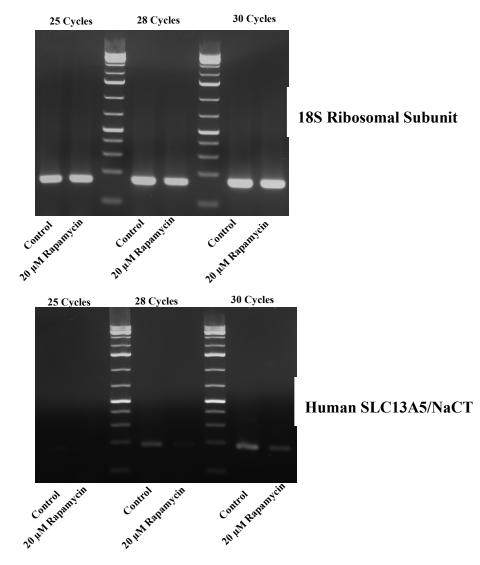
Whole phospho-CREBP western blot


Supplemental Figure 7: Phospho-CREBP is a 43 kDa protein. Cropped figure is used in Figure 7.

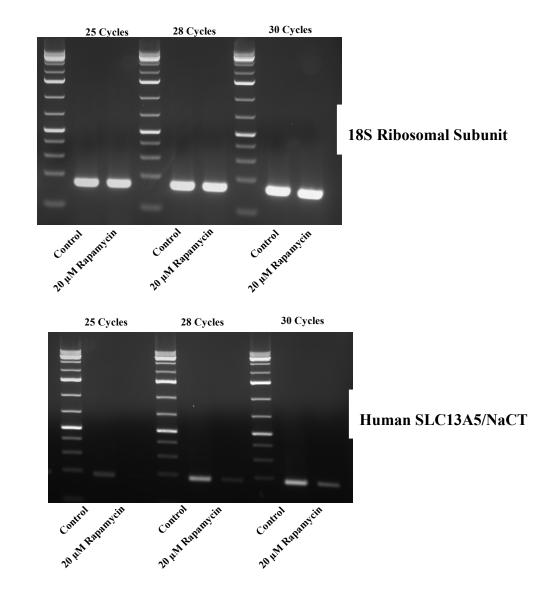
Whole histone-3 western blot



Supplemental Figure 8: Histone-3 is a 17 kDa protein. Cropped figure is used in Figure 7.


Supplementary Figure 9: Whole gel images for RT-qPCR

(a) 20 mM Glucose; Control, AICAR, and Metformin



(b) 5 mM Glucose; Control, AICAR, and Metformin

(c) 20 mM Glucose; Rapamycin

(d) 5 mM Glucose; Rapamycin

