
Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

The " A biochemically-interpretable machine learning classifier for microbial GWAS" manuscript by 

Erol, et al., addresses an important issue in the field of antibiotic resistance, namely a novel 

methodology to make mechanistic predictions of the role of antibiotic-resistance mutations in 

metabolism. The authors instead of using a classical correlative approach (i.e. GWAS), used a 

constraint-based modeling approach to predict flux changes in resistant vs sensitive TB strains. 

I find the methodology innovative and I can envisage many researchers in the field of systems 

biology and drug resistance (beyond antimicrobials) to adopt it. Although the topic can be of broad 

interest to the scientific community, in the present form, the manuscript is difficult to access. The 

description of the methodology is difficult to follow, such that I’m left wondering how robust 

predictions are and what are the really novel predictions and those which are used as “validation”. 

Major comments 

From the introduction it is very difficult to understand what the authors are really trying to do and 

what are the key advantages of their procedure compared to classical GWAS. It might seems that 

a major goal of the method is the classification of AMR phenotypes or the identification of “key 

genetic determinants”. However, because one key input to the model are a preselection of alleles 

previously found to relate to resistance, it is not surprising that the model is able to classify and 

identify AMR related mutations (see also following comments). 

Only after reading half of the manuscript it becomes clear that one key advantage of the proposed 

methodology is to predict how such mutations would affect overall metabolism in resistant strains, 

leading to experimentally testable hypothesis of the role of flux changes in conferring or 

compensating for resistance. 

Technically I’m concerned by the vastity of the space of possible allele-constraints and objective 

functions to be searched, and hence the robustness of model predictions. Somehow, I cannot find 

convincing evidence that the sampling is adequate enough to generate robust predictions. 

Moreover, in Fig. 2b the authors showed that only very few MACs can generate adequate 

predictions differentiating resistant from sensitive strains. While this is presented as a positive 

aspect, I wonder whether these models could have emerged by chance from the sampling. For 

example, what would the results look like if the G matrix was randomized (e.g. random association 

between alleles and fluxes)? How would results in Fig. 2d and e would look like if only a subset of 

alleles were selected for training the model? How does AUCs compared to simply estimating the 

genetic distance between strains? 

The interpretation of LOR-flux correlations is not clear. My expectation is that most flux 

rearrangements predicted by the model, which are not catalyzed by mutated enzymes, are indirect 

adaptive changes to the mutations. Hence, these changes are likely to be not directly involved in 

resistance mechanisms but rather in their compensation. The authors should clarify this point. 

Moreover, I think the potential ability of the model to predict compensatory metabolic mechanisms 

could be a major selling point. If this is indeed one of the predictive value of such modeling 

approache, why the authors decided to focus only on drugs that act on metabolic enzymes? If the 

model can be applied also to drugs with non metabolic targets (e.g. ribosome or DNA replication 

inhbitors ) , the predictions would be entirely novel opening new opportunities for understand the 

role of metabolism in compensating antibiotic resistance. 

It is not clear why the authors focused on 3 drugs, and what predictions are novel from those that 

look like more as a “sanity check” (e.g. katG). While I understand that experimental validation in 

AMR TB strains is perhaps out of the scope of this study, after reading the 3 case studies I’m left 

wondering what the model predictions really tell us, besides that there are changes in fluxes. The 

authors suggest that such changes should hint at selective pressures acting on the catalyzing 

enzymes. Are there any evidence supporting this? For example gene expression data showing that 

expression of these enzymes is significantly altered in resistant TB strains?. I actually suspect that 

most of the changes are indirect. The key question for me is whether these changes are simply 

fulfilling mass balance constraints, or if they could be driven by the selected objective function. 

The authors seem to completely neglect that MAC model also makes prediction of new objective 



functions. Is there a specific reason for that? Could one use prediction of objective functions to 

better understand the role of metabolic changes in resistant strains? 

The authors claim that their modeling approach (MAC) outperforms classic GWAS in predicting 

AMR. However it is not clear to me what are the evidence for that. The new methodology proposed 

by the authors is based on a preselection of alleles previously identified to be implicated to AMR, 

presumable by statistical analysis similar to GWAS. Hence, selected genes are already 

discriminative of sensitive vs resistant TB strains. The ranking argument (lines 408-417) seems an 

unfair comparison. Similarly to the following argument on the enrichment analysis. It is a triviality 

that MAC models emphasize the selection of pathway related to mutated enzymes involved in 

resistance, as most likely flux constraints on the AMR-related reactions will cause flux changes in 

the entire pathway. 

 

 

 

Reviewer #2: 

Remarks to the Author: 

The research group led by Dr Palsson has previously published genome-scale metabolic models for 

several bacterial pathogens, including Salmonella and Staphylococcus aureus; as well as 

constraint-based modelling methods to understand genotype–phenotype relationships using these 

genome-scale metabolic models. In this new study, the group aim to combine the power of 

metabolic modelling with a GWAS approach. 

 

The authors note that genetic variants associated with drug resistance in M. tuberculosis often 

map to the same metabolic network, that is, they reflect adaptations in the same biochemical 

process in response to antibiotic selective pressures. 

 

They developed method named Metabolic Allele Classifier (MAC) that takes the genome sequence 

of a particular TB strain and classifies it as either resistant or susceptible to a specific antibiotic. 

The authors used an existing dataset of whole-genome sequenced TB strains they had previously 

used. 

 

They propose to incorporate metabolic network information as part of machine learning classifiers 

to facilitate the biological interpretation of microbial genome-wide association studies (GWAS). 

This is to me, the key and most innovative development of this work which, in my opinion, 

deserves being published in Nature Communications. 

 

However, in its current form, the manuscript will not accessible to a wide audience due to 

abundance of technical terms throughout the text, which should normally be restricted to the 

Methods section. To facilitate the reading, the authors should put more emphasis on the biological 

interpretation of model parameters across all modelling steps. 

 

Specific comments: 

 

Methods 

 

- The sentence in lines 503-505 is repeated again in lines 514-516. 

 

- Line 615. Conventional GWAS and pathway analysis of allelic variants. The authors apply a 

GWAS to identify alleles significantly associated with AMR phenotypes applying an ANOVA F-test. 

The authors should apply the state-of-the-art GWAS model based on linear-mixed models that 

adjust for population structure as implemented in: 

- Lees JA, Galardini M, Bentley SD, Weiser JN, Corander J. 2018. pyseer: a comprehensive tool for 

microbial pangenome-wide association studies ed. O. Stegle. Bioinformatics 34: 4310–4312. 

Or 

- Earle SG, Wu CH, Charlesworth J, Stoesser N, Gordon NC, Walker TM, Spencer CCA, Iqbal Z, 



Clifton DA, Hopkins KL, et al. 2016. Identifying lineage effects when controlling for population 

structure improves power in bacterial association studies. Nature Microbiology 1: 16041. 

 

Introduction 

 

The authors need to introduce the term and concept of “metabolic flux” and how it relates to more 

familiar terms like “metabolic pathway”, “metabolic reaction”, “enzymes” or “protein-coding 

sequence (CDS)”. 

 

The authors should also explain the biochemical rationale for proposing metabolic flux as the unit 

of association (from which significantly associated pathways and genetic loci and alleles are later 

derived) as opposed to using entire metabolic pathways or metabolic submodules as their 

preferred unit of association, as done in classical/conventional pathway-based GWAS analysis. I 

am not suggesting the latter is more valid, but instead more commonly seen in the GWAS 

literature. 

 

Results: 

 

Line 88. By using the “unique amino acid sequence” of proteins as “alleles” the authors restrict 

their analyses to genetic variants (SNPs and indels) that lead to non-synonymous amino acid 

changes (and frame-shift mutations?), that is, protein-altering variants. This is a valid approach, 

but the authors need to be more explicit about this and the fact they filter out synonymous amino 

acid changes and intergenic genetic variants. Specifically because they use the term “genetic 

variant matrix” which may lead the reader to think about a matrix of nucleotide alleles. 

 

Line 89. “The corresponding AMR”, use “The corresponding drug susceptibility status for a strain is 

described…” 

 

Line 90. Include what percentage of genes (in brackets) in the H37Rv genome these 1,011 

correspond to. 

 

Line 94. The authors state that the iEK1011 GEM includes 1,011 genes, but right after mention 

that 981 genes are found in the genomic dataset. How can the authors explain that 30 genes in 

the iEK1011 are not found any of the strains sequenced in their collection? 

 

Lines 98 – 102. The authors need to comment more on and be more explicit about the antibiotic 

resistances they cannot model, that is, fluoroquinolones (DNA replication), rifampicin (RNA 

synthesis) and aminoglycosides (protein synthesis). 

 

Related to this, sheet 1 in Supplementary Data File 1 does not seem to be complete. The ‘Paper’, 

‘Mechanism of Action or Metabolic Effect’ and ‘Antibiotics’ columns do not contain text for all 

genes/rows. In Sheet 1, the column ‘Mutations’ has also a lot of empty cells. 

Figure 1 Footnote. In text “GWAS data describing TB genome sequences”, avoid using the term 

‘GWAS’ when referring to the genomic collection used, as GWAS analyses has not yet been applied 

in step a. 

 

Line 129. The authors may want to cite one of their own articles (Orth JD, Thiele I, Palsson BØ. 

2010. What is flux balance analysis? Nature Biotechnology 28: 245–248.) to introduce the reader 

to flux balance analysis. 

 

Lines 166 – 166. I find difficult to interpret the relationship between flux states and alleles 

biologically, that is, how alleles (representing SNPs and indels in enzyme-coding genes) impose 

constraints on metabolic fluxes. In the review cited above (Orth et al. 2010), the authors explain 

that constraints can be used to represent genetic manipulations (such as gene knock-outs) by 

limiting metabolic reactions to zero flux. 



 

Lines 171 - 180. Related to the point above, the authors need to include a better explanation on 

how “antibiotic-specific objective coefficients”, obtained after optimising the objective function 

from the data, can be interpreted biologically. How should the expressions “level of activity of 

metabolic pathways” and “fluxes activated by alleles” be interpreted? 

 

Lines 196-197. The authors limited the set of alleles modelled by the MAC to those in AMR genes 

only. Does this reflect a limitation of the proposed metabolic modelling approach in the number of 

alleles that can be modelled at the same time? This is included in the Discussion but it will helpful 

to justify this choice here. 

Could this model be trained with all alleles in the genome (i.e. all CDS in iEK1011) to identify 

genes and metabolic processes not yet known to be involved in drug susceptibility? 

 

Line 203-204. How can the number of high-quality MACs per antibiotic be interpreted? Is this a 

function of available sample sizes, that is, total number of susceptible and resistant strains tested 

for a particular antibiotic? Or is this a consequence of the number/complexity of metabolic 

processes governing susceptibility to a particular antibiotic? In other words, do pyrazinamide result 

in a higher number of high-quality MACs than cycloserine because the authors used a higher 

number of strains tested for pyrazinamide than to cycloserine? Or because resistance to 

pyrazinamide can result from multiple metabolic adaptations? 

 

Line 233. Given that rifampicin resistance genes rpoB and rpoC are not in the GEM model, how can 

the authors interpret the best MACs for rifampicin? 

 

Line 247. The authors need to be more explicit on why they focus on pyrazinamide, para-

aminosalicylic acid and isoniazid; and the rationale for excluding the rest. It is understandable not 

to include the antibiotics they cannot model, that is, fluoroquinolones (DNA replication), rifampicin 

(RNA synthesis) and aminoglycosides (protein synthesis); but what about the rest? 

 

Lines 258. Alleles in supplementary tables (in the tabs ending with _MNC_allele_params) should 

also be expressed as mutations (SNPs or indels) with respect to the H37Rv reference genome, 

using HGVS nomenclature (https://www.hgvs.org/mutnomen/recs.html). Also add a new column 

with the Rv locus name of each gene and metabolic pathways the gene belongs to (extracted from 

Supplementary File 2). This way readers will be able relate drug resistance mutations and gene 

names they may be more familiar with to their metabolic pathway(s). 

 

Lines 260-262. Indicate how many CDS in the H37Rv reference genome are included in the 

curated gene-pathway annotation, both a as number and percentage. 

 

Figure 3b and similar. Indicate what mutation(s) each allele in the x-axis corresponds to. 

 

Line 311. Do the authors mean alr by “alar”? 

 

Lines 311 – 312. The authors identify 8 genes through the flux GWAS for para-aminosalicylic acid. 

At least four of these genes – katG (isoniazid), inhA (isoniazid), pncA (pyrazinamide) and ald 

(cycloserine) – are known to be involved in resistance to other drugs. This is not a limitation of 

their approach but the fact that clinical strains of Mtb that are resistant to last-line drugs (like 

para-aminosalicylic acid) are commonly resistant to other drugs too, that is, resistances commonly 

co-occur. In this regard, it does not make much sense to include pncA and alr alleles in Figure 4b. 

Thus, and as an example, the decreasing selection pressure in pncA identified here for PAS is most 

likely the result of pyrazinamide resistant strains in the para-aminosalicylic acid training set 

(n=375). The authors need to look at the co-occurrence and correlation of drug resistances in their 

training sets as this would help them interpret the GWAS results. 

 

Line 352. The authors should indicate how many strains are resistant and sensitive in each training 



dataset here, and anywhere else describing the size of training sets. 

 

Line 355. The authors identified many more significant fluxes for isoniazid than for the other two 

described drugs. How can this be explained? Does the isoniazid training set contain a higher 

proportion of resistant strains than other drug training sets? Or does isoniazid resistance result 

from more diverse metabolic adaptations? 

 

Lines 406 – 417. At the moment, the comparison with the classical GWAS results is rather unfair. 

The authors should use state-of-the-art GWAS methods that implement linear-mixed models. 

 

 

 

Reviewer #3: 

Remarks to the Author: 

The manuscript by Palsson team presents a study of a novel methodology aiming to integrate 

mutation data into metabolic networks to provide interpretation to a so called “black box” machine 

learning models. As a case study authors use data from antibiotics resistance study that 

genotyped >1500 TB strains from previously published study. 

Briefly, the authors perform a version of flux variability analysis (FVA) on the network that is 

constrained by mutations. Obtained flux boundaries from FVA then are then mapped to principal 

component space. Logistic regression with L1 regularisation then used on PCA-transformed 

variables to separate resistant from non-resistant strains. While authors written a nice biological 

story, the study has significant conceptual and technical pitfalls outlined in the following: 

 

Major concerns: 

Authors do not use any control for overfitting instead select models purely based on BIC criterion 

which just evaluates model “quality” as a function of number of parameters, it does not tell 

anything about generalisation of model, i.e. prediction performance on test set, from what I read, 

I believe the presented results are just fit to the data. Authors presented results on a held out set, 

that is in the majority of tested cases 2-3 larger than training dataset (Figure 2), which is very 

suspicious and probably technical error. However, if that is still the case the reason this could 

occur, is just simply because few common mutations makes TB resistance and one does not need 

to do FBA to explain them. It seems authors confuse “predictive” modeling with statistical 

inference, providing no QC analysis of regression model and call everything machine learning. It 

should be very clearly stated what is used for training what is for testing, how regularisation was 

tuned, on which data? Apart of multiple buzzwords I found manuscript very confusing to read. Due 

to this technical issue, all biological interpretation is questionable. 

The motivation of manuscript is written using a very bold language, emphasising that machine 

learning is a “black-box”. While it is generally true for complex neural networks, in the present 

study authors use the most basic statistical logistic regression model that is extremely easy to 

interpret. The problem is the interpretation of complex multilayer networks with thousands of 

parameters, not the basic sigmoid function. Talking about interpretation, metabolic networks are 

low rank networks, e.g. reactions in linear pathways are highly correlative, making PCA on them 

lumps all fluxes into fewer components. E.g all fluxes will be correlated to glucose input and load 

to the same component, I don't understand how it simplifies the interpretation. 

What I understood by reading few times the Methods, the formulation of MAC provided in is not 

what it is, objective function operates on PCA space space, the v in objective function is not v from 

FBA, is a linear combination of FVA v loaded on component. Is confusing to see the results of 

logistic regression as a within FBA framework which is traditionally formulated as LP problem. 

Although, solving binary cross entropy with logistic function is a convex problem, with all the FVA 

flux discretisation, random allele sampling (why is it needed?) etc, I don't think can be formulated 

as a standard LP problem, which confuses the method presentation as integration of ML and FBA. 

 

Minor issues: 

Provided code does not work and naming conventions are not the same as in manuscript. 



Specifically: Fails with example arguments, there is a bug involving argument parsing, maybe 

that’s not reviewers job to fix it :) 

Other issues: 

Should provide sanity check tests (aka “self-tests”). Code looks messy (especially in the sense of 

structural integrity) so it makes me suspicious of its correctness. 

Incomplete installation instructions: should mention the requirements.txt file 

Incomplete execution instructions (MNC_DIR =?). 

Refer to it at Metabolic Network Classifiers, not Allele Classifiers 



We thank the reviewers for their valuable and constructive feedback. In light of the comments made 

by reviewers 1 and 2, we have changed our manuscript to hopefully be more accessible. To do this, 

we moved sections “Computing the Metabolic Allele Classifiers” and “Metabolic Allele Classifiers 

accurately and efficiently predict AMR” to the Supplementary and replaced them in the main text with 

two paragraphs in a section titled “Validation of Metabolic Allele Classifiers”. Furthermore, we edited 

Figures 1 and 2 to highlight the biological interpretation of the results and to clarify MAC 

validation, respectively. We believe this makes the paper much more accessible by removing the 

complex details underlying the estimation of MAC parameters.  

Reviewers' comments:



Reviewer #1 (Remarks to the Author): 
 

The " A biochemically-interpretable machine learning classifier for microbial GWAS" manuscript by            

Erol, et al., addresses an important issue in the field of antibiotic resistance, namely a novel                

methodology to make mechanistic predictions of the role of antibiotic-resistance mutations in            

metabolism. The authors instead of using a classical correlative approach (i.e. GWAS), used a              

constraint-based modeling approach to predict flux changes in resistant vs sensitive TB strains. 

 

I find the methodology innovative and I can envisage many researchers in the field of systems biology                 

and drug resistance (beyond antimicrobials) to adopt it. Although the topic can be of broad interest to                 

the scientific community, in the present form, ​the manuscript is difficult to access. The description of                

the methodology is difficult to follow, such that I’m left wondering how robust predictions are and                

what are the really novel predictions and those which are used as “validation”. 

 

Major comments 

 

From the introduction it is very difficult to understand what the authors are really trying to do and                  

what are the key advantages of their procedure compared to classical GWAS. It might seems that a                 

major goal of the method is the classification of AMR phenotypes or the identification of “key genetic                 

determinants”. However, because one key input to the model are a preselection of alleles previously               

found to relate to resistance, it is not surprising that the model is able to classify and identify AMR                   

related mutations (see also following comments). 

 

We have now added the following text to the first paragraph of the introduction in order to make the                   

point of our study clearer, 

 

...These studies show that identified genetic associations have corresponding network-level          
associations that are highly informative of AMR mechanisms. ​However, current GWAS results            
only provide predictions for what alleles are most important, not their biochemical effects.             
Machine learning models that incorporate biochemical network structure may thus lead to an             
enhanced understanding of AMR mechanisms through network-level interpretability of predictive          
genotype-phenotype maps ​13–15​. ​Therefore, machine learning models that incorporate biochemical          
network structure may naturally extend GWAS results by estimating network-level biochemical           
effects of identified alleles, leading to an enhanced understanding of AMR ​13–15​. 

 

We agree that it is important for the readers of the article to understand the source of alleles that 

were included in our analysis. The list of alleles utilized consists of both known AMR genes and 

unknown genes. We have added text to the section “Validation of Metabolic Allele Classifiers” to clarify 

this, 

 

Since the computational cost of estimating MACs scales poorly with the number of alleles utilized,               
we limited the set of alleles modeled by the MAC to 237, describing 107 genes consisting of both                  
known and unknown relations to AMR (​Supplementary File 1​). The known AMR genes provide              
validation cases while the unknown genes enable novel insights. 

 

 

Only after reading half of the manuscript it becomes clear that one key advantage of the proposed                 

methodology is to predict how such mutations would affect overall metabolism in resistant strains,              

https://paperpile.com/c/GWtila/qUcMu+3TOpk+cwUe0
https://paperpile.com/c/GWtila/qUcMu+3TOpk+cwUe0


leading to experimentally testable hypothesis of the role of flux changes in conferring or compensating               

for resistance.  

 

That is indeed the primary advantage of the MAC. We have now modified Figure 1c to portray these                  

metabolic predictions of allelic effects. 

 

 

Figure 1​. ​A metabolic systems approach for genetic associations. ​(​a​) In this study, data describing               
TB genome sequences and AMR data types are integrated with a metabolic model to learn a                
biochemically-interpretable classifier, named Metabolic Allele Classifier (MAC). The MAC parameters          
consist of allele-specific flux capacity constraints, ​a​, and an antibiotic-specific metabolic objective, ​c​, both              
of which are inferred from the data. (​b​) The optimal MAC describes strain-specific polytopes in flux space                 
that separate into resistant (R) and susceptible (S) regions. The MAC objective function, ​c​T​v​, is identified                
as normal to the plane that best separates R and S. (​c​) The learned MAC provides biochemically-based                 
hypothesis of AMR mechanisms and allele-specific effects through interpretation of ​c and ​v​. The              
genome-scale flux state of a strain, ​v​, consists of fluxes that are directly activated by alleles (allelic fluxes)                  
and those that are flux-balance consequences of the allele-activated fluxes (compensatory fluxes).            
Abbreviations: S, susceptible; R, resistant; AMR, antimicrobial resistance. 
 

Technically I’m concerned by the vastity of the space of possible allele-constraints and objective              

functions to be searched, and hence the robustness of model predictions. Somehow, I cannot find               

convincing evidence that the sampling is adequate enough to generate robust predictions. Moreover,             

in Fig. 2b the authors showed that only very few MACs can generate adequate predictions               

differentiating resistant from sensitive strains. While this is presented as a positive aspect, I wonder               



whether these models could have emerged by chance from the sampling. For example, what would               

the results look like if the G matrix was randomized (e.g. random association between alleles and                

fluxes)? How would results in Fig. 2d and e would look like if only a subset of alleles were selected for                     

training the model? How does AUCs compared to simply estimating the genetic distance between              

strains? 

 

We have now reorganized the two sections detailing the estimation and validation of MACs in order to                 

emphasize the assessment of MAC predictions. In particular, Figure 2 was edited by removing              

estimation details and adding a panel describing the distribution of objective function weights for each               

antibiotic, shown below,  

 

 
Figure 2. ​Validation of Metabolic Allele Classifiers​. ​(a) ​Receiver operator characteristic (ROC)            
curves for MAC AMR predictions. ​(b) Histogram of median absolute objective function coefficients             
for pyrazinamide, para-aminosalicylic acid, and isoniazid MACs. For each antibiotic, the reaction            
variable corresponding to the primary AMR gene is colored pink with the gene noted in               
parenthesis. Abbreviations: AUC, area under the curve. 

 

The high AUC scores on the large test set show that the predictions of AMR class are generalizable and                   

not overfit. The recapitulation of primary AMR genes in the MAC objective functions show that they are                 

robust and encode valuable information in the structure of G (identification of primary AMR genes by                

the MAC would not appear if the G matrix was random). These results show that the sampling is                  

sufficient to generate consistent and robust results. 

 

The interpretation of LOR-flux correlations is not clear. My expectation is that most flux              

rearrangements predicted by the model, which are not catalyzed by mutated enzymes, are indirect              

adaptive changes to the mutations. Hence, these changes are likely to be not directly involved in                

resistance mechanisms but rather in their compensation. The authors should clarify this point.             

Moreover, I think the potential ability of the model to predict compensatory metabolic mechanisms              



could be a major selling point. If this is indeed one of the predictive value of such modeling                  

approache, why the authors decided to focus only on drugs that act on metabolic enzymes? If the                 

model can be applied also to drugs with non metabolic targets (e.g. ribosome or DNA replication                

inhbitors ), the predictions would be entirely novel opening new opportunities for understand the role               

of metabolism in compensating antibiotic resistance. 

 

We have now changed the text to explain the LOR-flux correlation.  
 

...We then set out to understand the genetic basis for the flux associations by ​testing the alleles of                  
each gene for a linear correlation between flux and log odds ratio ​identifying loci in which the                 
AMR association of each allele was correlated with their flux distribution (“LOR-flux correlation”)             
(see ​Methods​). The idea here is that ​for the selection pressure at a particular locus to be                 
significant, we expect the flux effects of alleles at the locus to be proportional to their statistical                 
association with AMR ​resistant alleles have different metabolic effects than susceptible alleles for             
key genes. These allele-specific flux differences underlie the AMR classification accuracy of the             
MAC. 

 
The MAC certainly predicts compensatory metabolic mechanisms. We have changed Figure 1 to             

emphasize the identification of compensatory fluxes. We focused on drugs targeting metabolic            

enzymes because the primary AMR alleles are modeled in the MAC. For non-metabolic targets such as                

rifampicin which targets the ribosome, the MAC does not have any reaction variables that describe               

rpoB or ​rpoC alleles. Therefore, the resulting MAC fluxes will have no relationship to the ribosome and                 

can’t be interpreted as compensations to resistant ​rpoB​/​rpoC​ alleles. 

 

It is not clear why the authors focused on 3 drugs, and what predictions are novel from those that                   

look like more as a “sanity check” (e.g. katG). While I understand that experimental validation in AMR                 

TB strains is perhaps out of the scope of this study, after reading the 3 case studies I’m left wondering                    

what the model predictions really tell us, besides that there are changes in fluxes. The authors                

suggest that such changes should hint at selective pressures acting on the catalyzing enzymes. Are               

there any evidence supporting this? For example gene expression data showing that expression of              

these enzymes is significantly altered in resistant TB strains?. I actually suspect that most of the                

changes are indirect. The key question for me is whether these changes are simply fulfilling mass                

balance constraints, or if they could be driven by the selected objective function. The authors seem to                 

completely neglect that MAC model also makes prediction of new objective functions. Is there a               

specific reason for that? Could one use prediction of objective functions to better understand the role                

of metabolic changes in resistant strains? 

  

The choice to focus on 3 drugs was due to content limitations. The MAC enables biological                

interpretation of model parameters which consequently leads to more analysis and results. We have              

added text to explicitly state the rationale of these 3 antibiotics, 

 

Below, we focus our analysis on three case studies: pyrazinamide, para-aminosalicylic acid, and             
isoniazid AMR. ​These three antibiotics were chosen due to having both characterized and             
uncharacterized mechanisms underlying their associated alleles, allowing for both test cases and            
novel insights for the MAC​. 
 

Evidence supporting selective pressure acting on catalyzing enzymes was provided in Supplementary            

Table 1. We have now added a reference to this table in the first introductory paragraph.  

 



Since the objective functions are the crux of our study, we have now edited Figure 1 to emphasize                  

their biological interpretation (see response to 2nd comment) and analyzed them in Figure 2b. The               

prediction of compensatory flux is now highlighted in Figure 2b. 
 

The authors claim that their modeling approach (MAC) outperforms classic GWAS in predicting AMR.              

However it is not clear to me what are the evidence for that. The new methodology proposed by the                   

authors is based on a preselection of alleles previously identified to be implicated to AMR, presumable                

by statistical analysis similar to GWAS. Hence, selected genes are already discriminative of sensitive              

vs resistant TB strains. The ranking argument (lines 408-417) seems an unfair comparison. Similarly              

to the following argument on the enrichment analysis. It is a triviality that MAC models emphasize the                 

selection of pathway related to mutated enzymes involved in resistance, as most likely flux constraints               

on the AMR-related reactions will cause flux changes in the entire pathway. 

 

We agree with this good point that the comparison in gene identification ability is not fair since the                  

allele set used for comparing GWAS and MAC was limited. We have now removed this comparison                

from the study. While the reviewer is correct that the ability of the MAC model to significantly improve                  

pathway identification over conventional approaches is due to flux constraints, and thus may appear              

trivial, this result emphasizes an advantage of the MAC and provides basic insight to how the MAC                 

works and interpretation of the predictions made.  

Reviewer #2 (Remarks to the Author): 
 

The research group led by Dr Palsson has previously published genome-scale metabolic models for 

several bacterial pathogens, including Salmonella and Staphylococcus aureus; as well as 

constraint-based modelling methods to understand genotype–phenotype relationships using these 

genome-scale metabolic models. In this new study, the group aim to combine the power of metabolic 

modelling with a GWAS approach. 

 

The authors note that genetic variants associated with drug resistance in M. tuberculosis often map to 

the same metabolic network, that is, they reflect adaptations in the same biochemical process in 

response to antibiotic selective pressures. 

 

They developed method named Metabolic Allele Classifier (MAC) that takes the genome sequence of a 

particular TB strain and classifies it as either resistant or susceptible to a specific antibiotic. The 

authors used an existing dataset of whole-genome sequenced TB strains they had previously used. 

 

They propose to incorporate metabolic network information as part of machine learning classifiers to 

facilitate the biological interpretation of microbial genome-wide association studies (GWAS). This is to 

me, the key and most innovative development of this work which, in my opinion, deserves being 

published in Nature Communications. 

 

However, in its current form, the manuscript will not accessible to a wide audience due to abundance 

of technical terms throughout the text, which should normally be restricted to the Methods section. To 

facilitate the reading, the authors should put more emphasis on the biological interpretation of model 

parameters across all modelling steps. 

 

We thank the reviewer for their insightful comments. We have now replaced sections detailing the               

estimation process with a single section titled “Validation of Metabolic Network Classifiers”. The             

previous sections have been moved the Supplementary Material. Furthermore, we have edited Figure             



1 to illustrate the biological interpretation of the model parameters across the different modelling              

steps. We believe this makes the manuscript much more accessible. 

 

Specific comments: 

 

Methods 

 

- The sentence in lines 503-505 is repeated again in lines 514-516. 

 

We have removed the redundant sentences in lines 514-516.  

 

- Line 615. Conventional GWAS and pathway analysis of allelic variants. The authors apply a GWAS to 

identify alleles significantly associated with AMR phenotypes applying an ANOVA F-test. ​The authors 

should apply the state-of-the-art GWAS model based on linear-mixed models that adjust for 

population structure as implemented in​: 
- Lees JA, Galardini M, Bentley SD, Weiser JN, Corander J. 2018. pyseer: a comprehensive tool for 

microbial pangenome-wide association studies ed. O. Stegle. Bioinformatics 34: 4310–4312. 

Or 

- Earle SG, Wu CH, Charlesworth J, Stoesser N, Gordon NC, Walker TM, Spencer CCA, Iqbal Z, Clifton 

DA, Hopkins KL, et al. 2016. Identifying lineage effects when controlling for population structure 

improves power in bacterial association studies. Nature Microbiology 1: 16041. 

 

Because of concerns brought up by Reviewer 1, we have removed the comparison in gene 

identification between GWAS and MAC. 

 

Introduction 

 

The authors need to introduce the term and concept of “metabolic flux” and how it relates to more 

familiar terms like “metabolic pathway”, “metabolic reaction”, “enzymes” or “protein-coding sequence 

(CDS)”. 

  

We have now added a Glossary to the Supplement that defines these terms and referenced it in the 

introduction as follows, 

 

By computing ​metabolic flux states (see Glossary for definition of terms) ​optimal pathway use              
consistent with imposed biological constraints, 

 

The authors should also explain the biochemical rationale for proposing metabolic flux as the unit of                

association (from which significantly associated pathways and genetic loci and alleles are later             

derived) as opposed to using entire metabolic pathways or metabolic submodules as their preferred              

unit of association, as done in classical/conventional pathway-based GWAS analysis. I am not             

suggesting the latter is more valid, but instead more commonly seen in the GWAS literature. 

 

We have now included a Supplementary Notes section titled “How alleles connect to flux constraints” 

and referenced it in the introduction. 

 

Results: 

 

Line 88. By using the “unique amino acid sequence” of proteins as “alleles” the authors restrict their 

analyses to genetic variants (SNPs and indels) that lead to non-synonymous amino acid changes (and 



frame-shift mutations?), that is, protein-altering variants. This is a valid approach, but the authors 

need to be more explicit about this and the fact they filter out synonymous amino acid changes and 

intergenic genetic variants. Specifically because they use the term “genetic variant matrix” which may 

lead the reader to think about a matrix of nucleotide alleles. 

 

We have now included a sentence that explicitly describes this, 
 

The acquired genetic variant matrix (​G​) of the 1,595 strains describes 3,739 protein-coding genes              
and their 12,762 allelic variants, where each variant is defined as a unique amino acid sequence                
for the protein coding gene. ​Our analysis therefore does not account for synonymous amino acid               
changes and intergentic genetic variants​.  
 

 

Line 89. “The corresponding AMR”, use “The corresponding drug susceptibility status for a strain is 

described…” 

 

We have made this change in the manuscript. 

 

Line 90. Include what percentage of genes (in brackets) in the H37Rv genome these 1,011 correspond 

to. 

 

We have made this change in the manuscript. The 1,011 genes make up 26% of total H37Rv genes. 

 

Line 94. The authors state that the iEK1011 GEM includes 1,011 genes, but right after mention that 

981 genes are found in the genomic dataset. How can the authors explain that 30 genes in the 

iEK1011 are not found any of the strains sequenced in their collection? 

  

The genomic dataset is filtered, so they may appear in the strains but were taken out during QA/QC 

purposes. 

  

Lines 98 – 102. The authors need to comment more on and be more explicit about the antibiotic 

resistances they cannot model, that is, fluoroquinolones (DNA replication), rifampicin (RNA synthesis) 

and aminoglycosides (protein synthesis). 

 

We have added the following sentence to the manuscript explicitly stating what antibiotics cannot be 

modeled by our approach, 

 

AMR genes not explicitly accounted for in iEK1011 were primarily related to DNA transcription              
(e.g., ​rpoB​) and transcriptional regulation (e.g., ​embR​). ​The antibiotics rifampicin, ofloxacin, and            
streptomycin do not have AMR genes accounted for in iEK1011 and are therefore out of scope of                 
our study.  

 

 

Related to this, sheet 1 in Supplementary Data File 1 does not seem to be complete. The ‘Paper’,                  

‘Mechanism of Action or Metabolic Effect’ and ‘Antibiotics’ columns do not contain text for all               

genes/rows. In Sheet 1, the column ‘Mutations’ has also a lot of empty cells. 

 

We have fixed Supplementary Data File 1 by completing the missing entries in the “Antibiotics” column 

and removing the “Mechanism of Action or Metabolic Effect” and “Paper” columns.  

 



Figure 1 Footnote. In text “GWAS data describing TB genome sequences”, avoid using the term               

‘GWAS’ when referring to the genomic collection used, as GWAS analyses has not yet been applied in                 

step a. 

 

We have removed the term “GWAS” from Figure 1 caption. 

 

Line 129. The authors may want to cite one of their own articles (Orth JD, Thiele I, Palsson BØ. 2010.                    

What is flux balance analysis? Nature Biotechnology 28: 245–248.) to introduce the reader to flux               

balance analysis. 

 

We have added the recommended citation of Orth JD et al 2010. 

 

Lines 166 – 166. I find difficult to interpret the relationship between flux states and alleles biologically, 

that is, how alleles (representing SNPs and indels in enzyme-coding genes) impose constraints on 

metabolic fluxes. In the review cited above (Orth et al. 2010), the authors explain that constraints can 

be used to represent genetic manipulations (such as gene knock-outs) by limiting metabolic reactions 

to zero flux. 

  

We have now included a Supplementary Notes section titled “How alleles connect to flux constraints” 

and referenced this section at the noted paragraph to clarify the biological relationship between flux 

states and alleles.  

 

Lines 171 - 180. Related to the point above, the authors need to include a better explanation on how 

“antibiotic-specific objective coefficients”, obtained after optimising the objective function from the 

data, can be interpreted biologically. How should the expressions “level of activity of metabolic 

pathways” and “fluxes activated by alleles” be interpreted? 

  

We have now edited Figure 1 to include a panel that portrays the attributes of the objective function                  

and their biological interpretation (panel c). The term “Fluxes activated by alleles” is also explained in                

this figure. 

 

Lines 196-197. The authors limited the set of alleles modelled by the MAC to those in AMR genes only. 

Does this reflect a limitation of the proposed metabolic modelling approach in the number of alleles 

that can be modelled at the same time? This is included in the Discussion but it will helpful to justify 

this choice here. 

Could this model be trained with all alleles in the genome (i.e. all CDS in iEK1011) to identify genes 

and metabolic processes not yet known to be involved in drug susceptibility? 

  

The list of alleles utilized consists of both known AMR genes and unknown genes. For example, ​ansP2                 

and ​cysK2 are not AMR genes but were included in the gene list and were proposed as novel AMR                   

determinants with a biochemical basis in this study. We have added text to the section “Validation of                 

Metabolic Allele Classifiers” to clarify this, 

 

Since the computational cost of estimating MACs scales poorly with the number of alleles utilized,               
we limited the set of alleles modeled by the MAC to 237, describing 107 genes consisting of both                  
known and unknown relations to AMR (​Supplementary File 1​). The known AMR genes provide              
validation cases while the unknown genes enable novel insights. 

 

Furthermore, the model could indeed be trained with all alleles in the genome (all CDS in iEK1011),                 

but is too computationally expensive with the current estimation methodology. Training with all alleles              

may identify more novel genetic candidates and metabolic processes.  



 

Line 203-204. How can the number of high-quality MACs per antibiotic be interpreted? Is this a                

function of available sample sizes, that is, total number of susceptible and resistant strains tested for                

a particular antibiotic? Or is this a consequence of the number/complexity of metabolic processes              

governing susceptibility to a particular antibiotic? In other words, do pyrazinamide result in a higher               

number of high-quality MACs than cycloserine because the authors used a higher number of strains               

tested for pyrazinamide than to cycloserine? Or because resistance to pyrazinamide can result from              

multiple metabolic adaptations? 

  

The information regarding high-quality MACs and BIC-based MAC assessment has been moved to the              

Supplementary Discussion section since these are non-biological details of the MAC estimation            

process. The number of high-quality MACs reflects the parameter space of the fitted MACs, which is a                 

function of both the training size and model complexity.  

 

Line 233. Given that rifampicin resistance genes rpoB and rpoC are not in the GEM model, how can                  

the authors interpret the best MACs for rifampicin? 

  

If we fit a classical ML model between alleles and rifampicin AMR, but remove ​rpoB and ​rpoC alleles,                  

the model would still predict AMR with relatively good accuracy because the presence/absence of other               

alleles such as KatG alleles are still informative of rifampicin AMR (due to the treatment regimen) (see                 

ROC curve figure and table of top feature weights below). Similarly, katG-related metabolic fluxes              

become the strongest predictors of AMR in the MAC. 

 

 

SVM WITH rpoB/rpoC top weights SVM WITHOUT rpoB/rpoC top weights 

Rv0667_4​      1743.960131 

Rv3795_9      1151.653018 

Rv2043c_10    1031.943588 

Rv0667_3​       949.504034 

Rv3854c_9      680.646019 

Rv0668_6​       575.290323 

Rv0682_2       534.663336 

Rv1908c_2      456.476187 

Rv1908c_5      389.301972 

Rv0682_4       381.810042 

Rv3795_9      1159.732011 

Rv2043c_10     962.280580 

Rv3854c_9      652.710354 

Rv0682_2       609.567899 

Rv0682_4       466.811259 

Rv1908c_2      416.656474 

Rv1908c_5      404.005780 

Rv0006_5       341.773561 

Rv0016c_3      338.935188 

Rv3795_11      323.910103 

Table of top 10 weighted features (absolute SVM coefficients) in two linear SVM models of rifampicin AMR                 

that differ in presence of rpoB/rpoC alleles in the training dataset. The alleles of genes ​rpoB and ​rpoC                  

(Rv0667 and Rv0668, respectively) are bolded. The katG alleles are those with Rv1908 text and appear in                 

both top lists. 

 



 

Line 247. The authors need to be more explicit on why they focus on pyrazinamide,               

para-aminosalicylic acid and isoniazid; and the rationale for excluding the rest. It is understandable              

not to include the antibiotics they cannot model, that is, fluoroquinolones (DNA replication), rifampicin              

(RNA synthesis) and aminoglycosides (protein synthesis); but what about the rest? 

  

We focused on 3 antibiotics for content limitations. We have added text to explicitly state the rationale 

of these 3 antibiotics, 

 

Below, we focus our analysis on three case studies: pyrazinamide, para-aminosalicylic acid, and             
isoniazid AMR. ​These three antibiotics were chosen due to having both characterized and             
uncharacterized mechanisms underlying their associated alleles, allowing for both test cases and            
novel insights for the MAC​. 

 

 

Lines 258. Alleles in supplementary tables (in the tabs ending with _MNC_allele_params) should also              

be expressed as mutations (SNPs or indels) with respect to the H37Rv reference genome, using HGVS                

nomenclature (https://www.hgvs.org/mutnomen/recs.html). Also add a new column with the Rv locus           

name of each gene and metabolic pathways the gene belongs to (extracted from Supplementary File               

2). This way readers will be able relate drug resistance mutations and gene names they may be more                  

familiar with to their metabolic pathway(s). 

 

We have now added columns to the MAC_allele_params tab for each drug describing the amino acid 

sequence (aa_seq), set of mutations (muts), Rv locus name (Rv_locus_name), and gene pathways 

(pathways) for each allele. 

 

Lines 260-262. Indicate how many CDS in the H37Rv reference genome are included in the curated 

gene-pathway annotation, both a as number and percentage. 

 

We have now included this detail at the noted line. It is 32% of all H37Rv protein coding genes 

(1254/3906). 

 

 

Figure 3b and similar. Indicate what mutation(s) each allele in the x-axis corresponds to. 

 

Since many of these alleles map to numerous mutations (i.e., ppsA_4 contains 6 SNPs), displaying 

them along the x-axis in the figure is challenging. We have now referred to the Supplementary Data 

Files in the figure so the reader can find the list of mutations per allele. 

 

Line 311. Do the authors mean alr by “alar”? 

 

We have corrected the typo. 

 

Lines 311 – 312. The authors identify 8 genes through the flux GWAS for para-aminosalicylic acid. At                 

least four of these genes – katG (isoniazid), inhA (isoniazid), pncA (pyrazinamide) and ald              

(cycloserine) – are known to be involved in resistance to other drugs. This is not a limitation of their                   

approach but the fact that clinical strains of Mtb that are resistant to last-line drugs (like                

para-aminosalicylic acid) are commonly resistant to other drugs too, that is, resistances commonly             

co-occur. In this regard, it does not make much sense to include pncA and alr alleles in Figure 4b.                   

Thus, and as an example, the decreasing selection pressure in pncA identified here for PAS is most                 

likely the result of pyrazinamide resistant strains in the para-aminosalicylic acid training set (n=375).              



The authors need to look at the co-occurrence and correlation of drug resistances in their training sets                 

as this would help them interpret the GWAS results. 

 

The reviewer is correct that these genes identified for pyrazinamide are known determinants of other               

drugs. Despite this, we included the genes because we did not want to bias the portrayal of MAC                  

results. We have added a sentence to the discussion mentioning the occurrence of these genes. 

 

The identification of ​alr and ​pncA​—known determinants of cycloserine and pyrazinamide,           
respectively—reflect the co-resistance of these strains and are not known to have selective             
pressure in para-aminosalicylic acid treatment.  

 

Line 352. The authors should indicate how many strains are resistant and sensitive in each training 

dataset here, and anywhere else describing the size of training sets. 

 

We have added text indicating the # of resistant and susceptible strains in each training dataset where 

they are described. 

 

Line 355. The authors identified many more significant fluxes for isoniazid than for the other two 

described drugs. How can this be explained? Does the isoniazid training set contain a higher 

proportion of resistant strains than other drug training sets? Or does isoniazid resistance result from 

more diverse metabolic adaptations? 

 

The larger number of significant fluxes for isoniazid than the other antibiotics is due to both the larger                  

proportion of resistant samples and the metabolic effect of isoniazid AMR genes. Specifically, ​katG              

alleles directly perturb oxygen and hydroxide metabolites (Catalase peroxidase reaction) which           

directly impact a large number of subsystems (TCA, oxidative phosphorylation). Other isoniazid AMR             

genes impact the mycolic acid biochemical pathways. 

 

Lines 406 – 417. At the moment, the comparison with the classical GWAS results is rather unfair. The 

authors should use state-of-the-art GWAS methods that implement linear-mixed models. 

 

The reviewer makes a good point that the comparison in gene identification ability is not conclusive                

since the allele set used for comparing GWAS and MAC was limited. Furthermore, the comparison in                

identified gene sets is misleading since the MAC is not meant to compete against GWAS methods but                 

instead extend their insights. We have now removed the comparison and instead focused the section               

on a comparison between MAC and conventional pathway analysis. The conventional pathway analysis             

makes use of the alleles identified by the MAC. 

Reviewer #3 (Remarks to the Author): 
 

The manuscript by Palsson team presents a study of a novel methodology aiming to integrate 

mutation data into metabolic networks to provide interpretation to a so called “black box” machine 

learning models. As a case study authors use data from antibiotics resistance study that genotyped 

>1500 TB strains from previously published study. 

 

Briefly, the authors perform a version of flux variability analysis (FVA) on the network that is 

constrained by mutations. Obtained flux boundaries from FVA then are then mapped to principal 

component space. Logistic regression with L1 regularisation then used on PCA-transformed variables 



to separate resistant from non-resistant strains. ​While authors written a nice biological story, the 

study has significant conceptual and technical pitfalls outlined in the following: 

 

We thank the reviewer for their comments regarding the concepts and technical aspects of our               

methodology. From the reviewer’s brief summary and major concerns, it is clear to us that the paper                 

in its current form is inaccessible and leads to a misunderstanding of our presented method. We have                 

clarified the reviewer’s concerns below with detailed answers and revised the manuscript to hopefully              

clear up any possible misunderstandings. Specifically, we have moved the parts regarding estimation             

of MACs to the methods section, leaving only a paragraph describing the validation of the model on                 

the test sets. In addition, Figures 1 and 2 have been edited to clarify the new insights provided by the                    

MAC as well as validation. Furthermore, we have added supplementary information that contrasts the              

support vector machine with the MAC in order to help understand the MAC. We hope that this will                  

achieve two things: (1) show that the model was not overfit, and (2) emphasize that the MAC is a                   

linear program that classifies strains by solving the linear program and that the L1-PCR FVA model                

was used to estimate the parameters of the MAC. 

 

Major concerns: 

 

Authors do not use any control for overfitting instead select models purely based on BIC criterion                

which just evaluates model “quality” as a function of number of parameters, it does not tell anything                 

about generalisation of model, i.e. prediction performance on test set, from what I read, I believe the                 

presented results are just fit to the data. Authors presented results on a held out set, that is in the                    

majority of tested cases 2-3 larger than training dataset (Figure 2), which is very suspicious and                

probably technical error. However, if that is still the case the reason this could occur, is just simply                  

because few common mutations makes TB resistance and one does not need to do FBA to explain                 

them. It seems authors confuse “predictive” modeling with statistical inference, providing no QC             

analysis of regression model and call everything machine learning. It should be very clearly stated               

what is used for training what is for testing, how regularisation was tuned, on which data? Apart of                  

multiple buzzwords I found manuscript very confusing to read. Due to this technical issue, all               

biological interpretation is questionable. 

 

Both the high AUC scores, which were determined using test sets, as well as the recapitulation of                 

primary AMR genes show that the MAC was not overfit. While the BIC was used to select MACs, it was                    

the test set AUC scores (not BIC) that allowed us to evaluate the generalisation and performance of                 

the MAC. Our use of principal component regression, L1-regularization, and BIC criteria in determining              

the MAC parameters ensured that the model was sparse and explains the generalizability/performance             

of our model. The unusual train-test split is due to the computational challenge of estimating MACs,                

which scales poorly with the number of strains and alleles. The use of a large test set provides a                   

robust evaluation of model performance/generalization and therefore provides stronger evidence that           

the estimated MACs were not overfit. 

 

We have now replaced the sections detailing the MAC estimation process with a section titled               

“Validation of Metabolic Network Classifiers”. We have additionally reworked Figure 2 to emphasize             

MAC validation. Figure 2a now shows the training and test splits.  

 

The motivation of manuscript is written using a very bold language, emphasising that machine              

learning is a “black-box”. While it is generally true for complex neural networks, in the present study                 

authors use the most basic statistical logistic regression model that is extremely easy to interpret. The                

problem is the interpretation of complex multilayer networks with thousands of parameters, not the              

basic sigmoid function. Talking about interpretation, metabolic networks are low rank networks, e.g.             



reactions in linear pathways are highly correlative, making PCA on them lumps all fluxes into fewer                

components. E.g all fluxes will be correlated to glucose input and load to the same component, I don't                  

understand how it simplifies the interpretation. 

 

The reviewer makes a good point that many machine learning models are interpretable. In fact, our                

previous work leverages the interpretability of simple machine learning models to identify primary             

AMR genes. However, current “black-box” ML models do not enable meaningful interpretation beyond             

identifying which features are most important (i.e., allele x determines AMR). Here, mechanistic             

knowledge regarding metabolic gene function and their interacting functions is integrated with an ML              

model such that the learned parameters describe the biochemical effects of alleles, providing new              

insights to AMR. We have now clarified this advantage in both the introduction and in Figure 1. 

 

What I understood by reading few times the Methods, the formulation of MAC provided in is not what 

it is, objective function operates on PCA space space, the v in objective function is not v from FBA, is a 

linear combination of FVA v loaded on component. Is confusing to see the results of logistic regression 

as a within FBA framework which is traditionally formulated as LP problem. Although, solving binary 

cross entropy with logistic function is a convex problem, with all the FVA flux discretisation, random 

allele sampling (why is it needed?) etc, I don't think can be formulated as a standard LP problem, 

which confuses the method presentation as integration of ML and FBA. 

 

The MAC objective function operates on the flux space (v), not PCA space. First, the PCA components                 

are transformed back to FVA fluxes (vmax, vmins), such that the LogReg(PCA(FVA fluxes)) ~=              

LogReg(FVA). We then relate the FVA variables to flux variables by mapping vmax=v_forward,             

vmin=v_reverse, so that LogReg(FVA) ~= LogReg(v). This LogReg(v) becomes the MAC objective            

function. We have added the following text to the methods section titled “Estimation of MAC objective                

function” to clarify this, 

 

...We expect that the MAC predicts increasing or decreasing resistance as we maximize or              
minimize the objective value. ​Specifically, we first transform the PCR variables back to popFVA              
variables through multiplication of ​V​. We then translate the popFVA variables to reaction             
variables by replacing V​max and V​min by V​forward and V​reverse​, respectively. The MAC objective              
coefficients of these forward and reverse reaction variables then take on the regression             
coefficients of the corresponding popFVA features. ​Since the MAC objective function operates            

on the flux space, a series of mathematical transformations were taken to go from the PCR                

popFVA model to the MAC objective function (i.e., LogReg(PCA(FVA fluxes) → LogReg(v)). We             

start with the PCA decomposition of the popFVA fluxes, 

 

PCA(FVA fluxes) → ​U = XZ​,  
 

Where ​X is the popFVA fluxes (strains, popFVA features), and ​U ​describes the PCA              

components (strains, PCA components) and ​Z has shape (popFVA features, PCA components).            

Fitting logistic regression to predict AMR using the PCA components gives the following             

equation, 

 

LogReg(PCA(FVA fluxes) → ​Y​ = ​b​
o​ + b​

1​u​
1​ + … + b​

k​u​
k​,  

 

Where ​u describes the k PCA components and ​b describes the LogReg coefficients. From this,               

we transform back to FVA space using the following mapping, 

 

X = UZ​T 

 

Which leads to the new LogReg equation, 

 

LogReg(FVA fluxes) → ​Y​ = ​b​
o​ + c​

1​x​1​ + … + c​
m​x ​m​, 

 



Where ​for ​m popFVA variables and ​k PCA components. The ​c values becomecm = ∑
k

i=1
zm,i * bi              

the coefficients in the MAC objective function by representing the V​
max

popFVA variables as              

V​
forward​ flux variables and V​

min​ popFVA features as V​
reverse​ flux variables. 

 

The use of logistic regression is ideal for estimating an FBA objective function because it is a linear                  

model. To our knowledge, this is the first time an LP itself has been used as a classifier and therefore                    

may appear strange. LPs have previously been used to solve ​for a classifier (e.g., LPBoost), but not                 

solved ​to​ classify. The distinction is subtle and thus may appear confusing.  

 

The reviewer makes a good point that the MAC formulation is confusing within the context of machine                 

learning classifiers since written optimization problems are usually used to describe how the classifier              

will be solved, not the classifier itself. The MAC itself is an LP but the optimization problem used to                   

estimate the MAC is not an LP. We have now provided a comparison of the MAC to the Support Vector                    

Machine in the Supplementary Discussion to help explain this distinction. 

 

For an SVM, the learned classifier has the following form, 

 

H​
SVM​ = sign(​w​T​x​

k​ + b),  

 

Where H>0 is resistant, H<0 is susceptible, and ​x​ describes the allele presence/absence 

vector of a particular strain. The parameters ​w​ and ​b​ are learned from the data through 

optimization [2].  

 

For the MAC, the learned classifier has the following form, 

 

H​
MAC​ = sign(max ​c​T​v​ + b subject to S​v​ = ​0​, ​v​lb​ ≤ ​v​ ≤ ​v​ub​

, ​x​T​a​lb​ ​< ​v​ < ​x​T​a​ub​
),  

 

Where H>0 is resistant, H<0 is susceptible, ​x​ describes the allele presence/absence vector of 

a particular strain, ​v​ describes the flux state of the strain, S is the stoichiometric matrix, and ​a 

is the mapping of alleles to lb and ub flux constraints. The parameters ​w​, ​b​,​ ​a​lb​, ​and ​a ​ub​ ​
are 

learned from the data through a detailed multi-step optimization process (see ​Methods​). 
 

Minor issues: 

Provided code does not work and naming conventions are not the same as in manuscript. Specifically: 

Fails with example arguments, there is a bug involving argument parsing, maybe that’s not reviewers 

job to fix it :) 

 

We apologize that the code repository did not work and have now fixed the issue.  

 

Other issues: 

 

Should provide sanity check tests (aka “self-tests”). Code looks messy (especially in the sense of 

structural integrity) so it makes me suspicious of its correctness. 

 

We have now provided a Test Run section to the GitHub repository.  

 

Incomplete installation instructions: should mention the requirements.txt file 

 

We have now included the requirements.txt file in the installation instructions. 



 

Incomplete execution instructions (MNC_DIR =?). 

 

We have completed the execution instructions. 

 

Refer to it at Metabolic Network Classifiers, not Allele Classifiers 

 

The repository has now been renamed to Metabolic Allele Classifiers to reflect the name used in our 

study. 



Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

The authors adequately addressed all my concerns. 

 

 

 

Reviewer #2: 

Remarks to the Author: 

The authors have incorporated all suggested changes. The manuscript reads better and is more 

accessible in the current form. I have no furhter suggestions. 

 

 

 

Reviewer #3: 

None 



Our responses are in blue. 
 

 
REVIEWERS' COMMENTS: 
 
Reviewer #1 (Remarks to the Author): 
 
The authors adequately addressed all my concerns. 
 
We thank Reviewer #1 for their feedback. 
 
 
Reviewer #2 (Remarks to the Author): 
 
The authors have incorporated all suggested changes. The manuscript reads better 
and is more accessible in the current form. I have no furhter suggestions. 
 
We thank Reviewer #2 for their feedback. 


