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Supplementary Figures 

 
Supplementary Figure 1: Example of metabolic connection between genetic         
variation and AMR in Mycobacterium tuberculosis. 
An allele (i.e., a unique variant of a gene) underlies resistance in strain TB1 by determining the maximum                  
enzymatic flux of the protein it encodes. In this simple example, the antibiotic treatment causes a                
metabolic selection pressure to competitively inhibit antibiotic binding by maximizing synthesis of            
L-alanine, which is enabled by the allele-specific flux capacity. References for other similar and more               
complex metabolic examples are described in the text (Supplementary Table 1). 
 
 
  



 
Supplementary Figure 2: Statistical analysis of fluxes distinguishing resistant and 
susceptible strains 
(a) Statistical tests are performed on all strain-objective intersections to identify significant flux states              
discriminating between R and S strains (named “Flux GWAS”). (b) Statistical tests are also performed on                
the strain intersections to identify significant allele-specific fluxes and their network-level effects. 
  



 
Supplementary Figure 3: Characteristics of estimated MACs 
(a) Bayesian information criterion (BIC) distribution of 25,062 Metabolic Allele Classifiers (MACs) for             
isoniazid AMR. (b) Plot of the number of MACs that have less than a specific ΔBIC (ΔBICi = BICi - BICmin                     
for model i). Models with ΔBIC > 10 are generally considered to have insufficient support 31 (c) Plot of the                    
two most significant principal component regression components (PC) for the minimum (left), median             
(middle), and maximum (right) isoniazid BIC MACs. The classification boundary (cyan) and MAC             
isoniazid-specific objective (purple) are shown. (d) Receiver operator characteristic (ROC) curves for the             
minimum, median, and maximum BIC isoniazid MACs determined using a test set of 1,188              
isoniazid-tested strains. (e) Best MAC ROC curves for other antibiotics. Abbreviations: AUC, area under              
the curve. 
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Supplementary Figure 4: Overview of metabolic-model based sequence classifier 
for M. tuberculosis AMR 
The MAC is determined by three key steps: (1) generate an ensemble of random allele-constraint maps,                
(2) perform population flux variability analysis (popFVA) for each allele-constraint map, and (3) fit the               
popFVA solution with principal component logistic regression (PCR) to classify AMR phenotypes. The             
antibiotic-specific linear objective for each MNC sample is directly determined from the fitted             
antibiotic-specific PCR model, where popFVA variables vmax and vmin are replaced by MNC variables              
vforward and vreversible, respectively (i.e., MNC objective is normal to the PCR decision boundary). The quality                
of the MNCs are then ranked with respect to each antibiotic using the bayesian information criterion (BIC). 



 
Supplementary Figure 5: Theory and detailed inference approach for Metabolic 
Allele Classifiers 
(a) A fitness landscape illustration (left) for three strains (G1, G2, G3), two genes (A, B), and two alleles per                    
gene (a1, a2, b1 , b2 ) is represented mechanistically (right) by two steps. (b) The mechanistic map involves                 
two steps: (1) transforming sequencing space to constraint space by mapping each allele to a flux                
capacity constraint, and (2) strain-specific optimization of a biochemical objective. In this example, all              
alleles map to upper bound flux constraints and fitness is represented by metabolite m2 biosynthetic               
capabilities. Our framework is thus an optimality approach to understanding evolutionary adaptation—in            
which an optimized objective is a proxy for fitness (i.e., AMR phenotype) and differential fitness results                
from differential constraints (Parker and Smith 1990). (c) Complete picture of mechanistic map between              
sequence variation and phenotypic variation. Flux variability analysis is computed for each strain-specific             
GEM to comprehensively evaluate the solution space resulting from the allele-specific constraints. We call              
this population level FVA, popFVA. (d) Inference of mechanistic maps through randomized sampling and              
model selection. Abbreviations: UB, upper bound; GEM; genome-scale model; GPR,           
gene-product-reaction rule. 
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Supplementary Figure 6: Bayesian Information Criteria distribution  
Bayesian information criteria (BIC) distribution of 25,062 metabolic network classifiers (MNCs) for            
isoniazid, pyrazinamide, and para-aminosalicylic acid AMR (left to right). 
 
 
 
 
 
  



 
Supplementary Figure 7: Flux GWAS Manhattan plots 
Manhattan plot of MAC reaction fluxes associated with (A) pyrazinamide AMR, (B) para-aminosalicylic             
acid AMR, and (C) isoniazid AMR. The blue line describes the significance threshold set by the Bonferroni                 
correction (P < 4.66x10-5). The x-axis is a randomized ordering of the reaction indices. The primary known                 
genetic determinant for each antibiotic is noted in magenta. 
 
 
 
 
 
 
 
 
 
 
 
 
  



 
 
 

Supplementary Tables 

Supplementary Table 1: 
 

Antibiotic  Accounted for in iEK1011 Not accounted 
for in iEK1011 

Metabolic pressure or consequence 

INH (8/12) katĜ , inhÂ , fabG1, kasA, 
accD6, fadE24, fbpC,  ndh,  

oxyR-ahpC, 
iniABC 

Vmax differences in katG and inhA AMR alleles (Quémard et al. 
1995), Max NADH+/NAD ratio  (Vilcheze et al. 2005) 

RIF (0/2) — rpoB̂ , rpoC — 

EMB (3/4) embB̂ , ubiÂ , aftA embR Max DPA pool (Safi et al. 2013) 
PNZ (1/1) pncA ̂, ppsA — PZase loss-of-function (Cheng et al. 2000), Max CoA depletion*, 

(Gopal et al. 2016; Rosen et al. 2017), Min PDIM biosynthesis* 
(Gopal et al. 2016), 

OFX (0/2) — gyrA ̂, gyrB — 

PAS (3/3) folC ̂, thyA ̂, ribD — Max THF pool (Zheng et al. 2013), decreased thyA activity (Vmax) 
(Rengarajan et al. 2004) 

DCZ (3/3) ddl, alr̂ , ald,  — Max L-alanine pool (Desjardins et al. 2016) 
STR (0/2) — rpsL, gidB  
ETA (2/2) ethÂ , mshA-D — Min mycothiol biosynthesis (Vilchèze et al. 2008) 
MDR and 

others 
dprE1, drrABC, moeW,  prpR Alteration of propionyl-CoA metabolism (Hicks et al. 2018),  

̂Primary AMR determinant 
*Evidence for pyrazinoic acid (POA), the 
active form of PNZ 

  

 
Supplementary Table 1. Evaluation of GEM scope in mechanistically describing variants of known M.              
tuberculosis AMR genes. Abbreviations: INH, isoniazid; RIF, rifampicin; EMB, ethambutol; PNZ,           
pyrazinamide; OFX, ofloxacin; PAS, para-aminosalicylic acid; ETA, ethionamide; STR, streptomycin;          
DCZ, D-cycloserine; DPA, decaprenylphosphoryl-b-D-arabinose; CoA, coenzyme A; PDIM, phthiocerol         
dimycocerosates; THF, tetrahydrofolate. Bolded genes correspond to the noted metabolic pressure or            
consequence. 
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Supplementary Notes 

How alleles connect to flux constraints 

Metabolic genes encode enzymes that catalyze metabolic reactions. Variation in the sequence 

of a gene (alleles) may result in variation in the 3D structure of the enzyme, which leads to 

variation in the catalytic function of the enzyme. The catalytic function of a metabolic enzyme is 

to transform metabolites (substrates) to other metabolites (products) at a rate known as 

metabolic flux (see Glossary). The rate of this transformation is known as metabolic flux. 

Therefore, the allele sequence determines the maximum and minimum flux of the enzymatic 

reaction it encodes for, which are described explicitly in flux balance analysis as constraints 

(Vmax, Vmin constraints). In a genome-scale model, genes are associated with reactions through 

the gene-protein-reaction (GPR) (see Glossary). 

Computing the Metabolic Allele Classifiers 

We utilized randomized sampling, machine learning, and model selection to identify predictive            

MACs (see Supplementary Figures 2-3 and Methods for further details of the process outlined              

below). Specifically, we generated an ensemble of MAC models by randomly sampling            

allele-constraint maps, alb,ub, and unbiasedly evaluating their metabolic consequences through          

population flux variability analysis (popFVA)—a population extension of FVA presented in this            

study 29. For each sampled allele-constraint map, its corresponding popFVA result was fitted             

with L1-regularized principal component regression (PCR) to predict AMR phenotypes. The           

regression coefficients of the antibiotic-specific PCR models were then used to approximate            

antibiotic-specific objective functions for the MACs. The quality of each MAC in the ensemble              

https://paperpile.com/c/GWtila/bsIxt


was then quantified using the Bayesian Information criterion (BIC) 30—a model selection            

criterion that penalizes model complexity (i.e., number of parameters or “inefficiency”).  

 

The results provided here and throughout the main text correspond to an ensemble of 25,062               

MACs, where each MAC was trained on the same set of 375 strains to predict antibiotic                

phenotypes. We limited the set of alleles modeled by the MAC to 237, describing 107 genes                

with known and implicated relations to AMR (Supplementary File 1). The allele-constraint map             

for each MAC was generated by sampling a uniform distribution of four constraints per allele               

(i.e., 2 lb, 2 ub), for all 237 alleles (see Methods for further discussion on determining the                 

allele-specific constraint set by discretization of flux solution space). 

Metabolic allele classifiers accurately and efficiently predict AMR 

We find that the BIC of sampled MACs follows a normal distribution (Fig. 2a, see               

Supplementary Figure 3) where the number of high-quality MACs (i.e., ΔBICi<10) per antibiotic             

ranges from 7 (cycloserine) to 21 (pyrazinamide) (Fig. 2b). The number of high-quality MACs              

reflects the parameter space, which is a function of both the training size and complexity of the                 

fitted MAC. The majority of sampled MACs therefore lack sufficient empirical support according             

to the BIC metric 31, leaving only a select few MACs capable of downstream analysis. 

 

Plotting the top two significant components of the PCR models corresponding to the minimum              

(“best”), median, and maximum BIC isoniazid MACs, showed that the best MAC explains AMR              

phenotypes with higher accuracy and less complexity (i.e., “prediction efficiency”) than the other             

MACs (Fig. 2c). High-quality MACs thus provide simple explanations for their predictions. 

 

https://paperpile.com/c/GWtila/ZrFpN
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To validate the MACs and their relative quality, we used the minimum, median, and maximum               

BIC isoniazid MACs to predict AMR for a holdout test set of 1,182 isoniazid-tested TB strains                

and quantified their quality using the area under the receiver-operator characteristic curve            

(AUC). We find that the minimum BIC MAC achieves high performance (AUC=0.93) while the              

median (AUC=0.53) and maximum (AUC=0.50) BIC MACs perform poorly, which is consistent            

with our BIC-based assessment of MAC quality (Fig. 2d). High-quality MAC predictions are             

therefore robust in accurately classifying strains not previously seen. 

 

We assessed the best MACs for rifampicin, pyrazinamide, ethambutol, and ethionamide using            

held out test sets and find that the MACs generally achieve high classification performance (Fig.               

2e), with scores similar to our previous mechanism-agnostic machine learning models 2. These             

results show that the MAC performs on par with state-of-the-art machine learning approaches             

while maintaining low mechanistic model complexity.  

Comparison between MAC and the Support Vector Machine 

For the Support Vector Machine (SVM), the learned classifier has the following form, 

HSVM = sign(wTxk + b),  

Where H>0 is resistant, H<0 is susceptible, and x describes the allele presence/absence vector 

of a particular strain. The parameters w and b are learned from the data through optimization. 

For the MAC, the learned classifier has the following form, 

HMAC = sign(max cTv + b subject to Sv = 0, vlb ≤ v ≤ vub, xTalb < v < xTaub),  

 

Where H>0 is resistant, H<0 is susceptible, x describes the allele presence/absence vector of a 

particular strain, v describes the flux state of the strain, S is the stoichiometric matrix, and a is 

https://paperpile.com/c/GWtila/cYelp


the mapping of alleles to lb and ub flux constraints. The parameters w, b, and a are learned 

from the data through a detailed multi-step optimization process (see Methods). 

Design choices for the MAC 

The outcome of the MAC depends on two major design choices: the set of alleles and the                 

objective function that optimally separates strains into resistant and sensitive strain cohorts in             

the overall metabolic flux space. Although our approach does not explicitly require prior             

knowledge of key AMR genes, we chose a set of alleles with just over 100 genes with known                  

and implicated AMR relations in order to both provide test cases and to address the               

combinatorial explosion of sampling possible allelic effects. Relaxing the current computational           

bottleneck in identifying MACs will enable the utilization of all alleles. For determining the              

objective function, our approach was based on the key insight that a linear program may behave                

as a machine learning classifier if its objective optimizes in the direction normal to a predictive                

classification plane. While we utilized PCA, L1-logistic regression, and the BIC metric to identify              

sparse linear objectives, there are potentially alternative avenues that could be taken. The major              

concept that should sustain in any model selection strategy is that a good model is simple (in                 

structure) yet accurate (in its predictions). Application of the MAC to other GWAS datasets may               

therefore benefit from tuning these parameters appropriately. 

Glossary 
Metabolic Reaction: The transformation of reactant metabolites to product metabolites. Most           

metabolic reactions are enabled by proteins called enzymes. 

Protein-coding sequence (CDS): A particular sequence on the genome that encodes a            

protein. 



Metabolic Flux: The rate of a metabolic reaction.  

Metabolic Pathway: A human-defined set of metabolic reactions. 

Gene-Product-Reaction (GPR): The association between genes and reactions described in a           

genome-scale model. 

 

References 

 

Cheng, S. J., L. Thibert, T. Sanchez, L. Heifets, and Y. Zhang. 2000. “pncA Mutations as a 
Major Mechanism of Pyrazinamide Resistance in Mycobacterium Tuberculosis: Spread of a 
Monoresistant Strain in Quebec, Canada.” Antimicrobial Agents and Chemotherapy 44 (3): 
528–32. 

Desjardins, Christopher A., Keira A. Cohen, Vanisha Munsamy, Thomas Abeel, Kashmeel 
Maharaj, Bruce J. Walker, Terrance P. Shea, et al. 2016. “Genomic and Functional 
Analyses of Mycobacterium Tuberculosis Strains Implicate Ald in D-Cycloserine 
Resistance.” Nature Genetics 48 (5): 544–51. 

Gopal, Pooja, Michelle Yee, Jickky Sarathy, Jian Liang Low, Jansy P. Sarathy, Firat Kaya, 
Véronique Dartois, Martin Gengenbacher, and Thomas Dick. 2016. “Pyrazinamide 
Resistance Is Caused by Two Distinct Mechanisms: Prevention of Coenzyme A Depletion 
and Loss of Virulence Factor Synthesis.” ACS Infectious Diseases 2 (9): 616–26. 

Hicks, Nathan D., Jian Yang, Xiaobing Zhang, Bing Zhao, Yonatan H. Grad, Liguo Liu, Xichao 
Ou, et al. 2018. “Clinically Prevalent Mutations in Mycobacterium Tuberculosis Alter 
Propionate Metabolism and Mediate Multidrug Tolerance.” Nature Microbiology 3 (9): 
1032–42. 

Parker, G. A., and J. Maynard Smith. 1990. “Optimality Theory in Evolutionary Biology.” Nature 
348 (November): 27. 

Quémard, A., J. C. Sacchettini, A. Dessen, C. Vilcheze, R. Bittman, W. R. Jacobs Jr, and J. S. 
Blanchard. 1995. “Enzymatic Characterization of the Target for Isoniazid in Mycobacterium 
Tuberculosis.” Biochemistry 34 (26): 8235–41. 

Rengarajan, Jyothi, Christopher M. Sassetti, Vera Naroditskaya, Alexander Sloutsky, Barry R. 
Bloom, and Eric J. Rubin. 2004. “The Folate Pathway Is a Target for Resistance to the 
Drug Para-Aminosalicylic Acid (PAS) in Mycobacteria.” Molecular Microbiology 53 (1): 
275–82. 

Rosen, Brandon C., Nicholas A. Dillon, Nicholas D. Peterson, Yusuke Minato, and Anthony D. 
Baughn. 2017. “Long-Chain Fatty Acyl Coenzyme A Ligase FadD2 Mediates Intrinsic 
Pyrazinamide Resistance in Mycobacterium Tuberculosis.” Antimicrobial Agents and 
Chemotherapy 61 (2). https://doi.org/10.1128/AAC.02130-16. 

Safi, Hassan, Subramanya Lingaraju, Anita Amin, Soyeon Kim, Marcus Jones, Michael Holmes, 

http://paperpile.com/b/FyORmV/gNJ8i
http://paperpile.com/b/FyORmV/gNJ8i
http://paperpile.com/b/FyORmV/gNJ8i
http://paperpile.com/b/FyORmV/gNJ8i
http://paperpile.com/b/FyORmV/gNJ8i
http://paperpile.com/b/FyORmV/gNJ8i
http://paperpile.com/b/FyORmV/9J1o4
http://paperpile.com/b/FyORmV/9J1o4
http://paperpile.com/b/FyORmV/9J1o4
http://paperpile.com/b/FyORmV/9J1o4
http://paperpile.com/b/FyORmV/9J1o4
http://paperpile.com/b/FyORmV/9J1o4
http://paperpile.com/b/FyORmV/N4OGz
http://paperpile.com/b/FyORmV/N4OGz
http://paperpile.com/b/FyORmV/N4OGz
http://paperpile.com/b/FyORmV/N4OGz
http://paperpile.com/b/FyORmV/N4OGz
http://paperpile.com/b/FyORmV/N4OGz
http://paperpile.com/b/FyORmV/79emP
http://paperpile.com/b/FyORmV/79emP
http://paperpile.com/b/FyORmV/79emP
http://paperpile.com/b/FyORmV/79emP
http://paperpile.com/b/FyORmV/79emP
http://paperpile.com/b/FyORmV/79emP
http://paperpile.com/b/FyORmV/J7bVh
http://paperpile.com/b/FyORmV/J7bVh
http://paperpile.com/b/FyORmV/J7bVh
http://paperpile.com/b/FyORmV/J7bVh
http://paperpile.com/b/FyORmV/kkjlS
http://paperpile.com/b/FyORmV/kkjlS
http://paperpile.com/b/FyORmV/kkjlS
http://paperpile.com/b/FyORmV/kkjlS
http://paperpile.com/b/FyORmV/kkjlS
http://paperpile.com/b/FyORmV/eAuay
http://paperpile.com/b/FyORmV/eAuay
http://paperpile.com/b/FyORmV/eAuay
http://paperpile.com/b/FyORmV/eAuay
http://paperpile.com/b/FyORmV/eAuay
http://paperpile.com/b/FyORmV/eAuay
http://paperpile.com/b/FyORmV/2YDM0
http://paperpile.com/b/FyORmV/2YDM0
http://paperpile.com/b/FyORmV/2YDM0
http://paperpile.com/b/FyORmV/2YDM0
http://paperpile.com/b/FyORmV/2YDM0
http://paperpile.com/b/FyORmV/2YDM0
http://dx.doi.org/10.1128/AAC.02130-16
http://paperpile.com/b/FyORmV/2YDM0
http://paperpile.com/b/FyORmV/av193


Michael McNeil, et al. 2013. “Evolution of High-Level Ethambutol-Resistant Tuberculosis 
through Interacting Mutations in Decaprenylphosphoryl-[beta]-D-Arabinose Biosynthetic 
and Utilization Pathway Genes.” Nature Genetics 45 (10): 1190–97. 

Vilchèze, Catherine, Yossef Av-Gay, Rodgoun Attarian, Zhen Liu, Manzour H. Hazbón, Roberto 
Colangeli, Bing Chen, et al. 2008. “Mycothiol Biosynthesis Is Essential for Ethionamide 
Susceptibility in Mycobacterium Tuberculosis.” Molecular Microbiology 69 (5): 1316–29. 

Vilcheze, Catherine, Torin R. Weisbrod, Bing Chen, Laurent Kremer, Manzour H. Hazbón, Feng 
Wang, David Alland, James C. Sacchettini, and William R. Jacobs. 2005. “Altered 
NADH/NAD+ Ratio Mediates Coresistance to Isoniazid and Ethionamide in Mycobacteria.” 
Antimicrobial Agents and Chemotherapy 49 (2): 708–20. 

Zheng, Jun, Eric J. Rubin, Pablo Bifani, Vanessa Mathys, Vivian Lim, Melvin Au, Jichan Jang, et 
al. 2013. “Para-Aminosalicylic Acid Is a Prodrug Targeting Dihydrofolate Reductase in 
Mycobacterium Tuberculosis.” The Journal of Biological Chemistry 288 (32): 23447–56. 

 

http://paperpile.com/b/FyORmV/av193
http://paperpile.com/b/FyORmV/av193
http://paperpile.com/b/FyORmV/av193
http://paperpile.com/b/FyORmV/av193
http://paperpile.com/b/FyORmV/av193
http://paperpile.com/b/FyORmV/PPrpt
http://paperpile.com/b/FyORmV/PPrpt
http://paperpile.com/b/FyORmV/PPrpt
http://paperpile.com/b/FyORmV/PPrpt
http://paperpile.com/b/FyORmV/PPrpt
http://paperpile.com/b/FyORmV/DWaRW
http://paperpile.com/b/FyORmV/DWaRW
http://paperpile.com/b/FyORmV/DWaRW
http://paperpile.com/b/FyORmV/DWaRW
http://paperpile.com/b/FyORmV/DWaRW
http://paperpile.com/b/FyORmV/u0kyE
http://paperpile.com/b/FyORmV/u0kyE
http://paperpile.com/b/FyORmV/u0kyE
http://paperpile.com/b/FyORmV/u0kyE
http://paperpile.com/b/FyORmV/u0kyE

