
Supplementary text 1. Samples description 

German Dementia Competence Network cohort (DCN) 

The DCN cohort includes 1,095 patients with mild cognitive impairment (MCI) and 648 cases with mild 

Alzheimer’s disease (AD) clinical dementia syndrome who were recruited from 14 university hospital memory 

clinics across Germany between 2003 and 2005 [23]. Exclusion criteria were substance abuse or dependence, 

insufficient German language skills, multi-morbidity, comorbid condition with excess mortality, circumstances 

that would have made regular attendance at follow-up visits questionable and lack of an informant.  

An MCI diagnosis was assigned following the Winblad criteria [60]. The criteria were operationalized as having 

complaints of cognitive deficit in daily living and objectified decline of cognitive abilities (more than 1 SD), as 

evidenced by age-corrected standardized tests, in at least 1 of the following domains: verbal learning and 

memory, nonverbal learning and memory, word fluency, naming, visuoconstruction, cognitive speed or 

executive function. Minor impairments in complex activities of daily living (i.e. a Bayer-ADL (B-ADL) score 

<4) were accepted [15]. The diagnosis of dementia of the Alzheimer’s type was assigned according to NINCDS-

ADRDA criteria [35].   

All patients underwent extensive neuropsychological testing at baseline and at a maximum of three annual 

follow-up visits with a maximal follow-up time of 4.1 years. MRI and CSF samples were optionally acquired. 

Valid phospholipase-C-γ2 (PLCG2) genotypes were available for 766 patients. Of those, 348 provided CSF data. 

We excluded 6 patients due to age below 50 resulting in a sample of 342 samples. From the 537 MCI patients 

who provided data on longitudinal cognition, 8 patients had to be excluded because of missing covariates (7 due 

to missing APOE-ε4 genotype and one patient due to missing information on education). Therefore, 529 MCI 

patients were included in the cognitive decline analyses. Of these, 252 were also included in the analysis of CSF 

biomarkers. 

The study was approved by the respective ethics committees, and written informed consent was obtained from 

all participants before inclusion. 

 

Interdisciplinary Memory Clinic at the University Hospital of Bonn (UH Bonn) 

Patients from the memory clinic at the university hospital of Bonn were recruited with a similar protocol as in 

the DCN and received a diagnosis of MCI according to Winblad criteria [60]. For the diagnosis of dementia of 

the Alzheimer’s type, diagnoses were assigned according to the NINCDS-ADRDA criteria [35] and based on 

clinical history, physical examination, neuropsychological testing (using the CERAD neuropsychological 

battery, including the MMSE), laboratory assessments, and brain imaging. Out of 91 patients with CSF data and 

PLCG2 genotypes available, 4 had to be excluded due to age below 50 resulting in 87 eligible patients. The 

majority of the CSF samples were quantified in the laboratory in Erlangen (n=60) while the remaining 27 

samples were quantified in the laboratory in Bonn. 

The study was approved by the respective ethics committees, and written informed consent was obtained from 

all participants before inclusion. 

 

Amsterdam Dementia cohort (ADC) 

The sample consisted of 502 MCI patients who visited the memory clinic of the Alzheimer Center of the VU 

University Medical Center (VUmc) between 1996 and 2016 [55]. Inclusion and exclusion criteria of the 

Amsterdam Dementia Cohorts are described elsewhere [55]. Patients underwent an extensive standardized 

assessment, including a physical and neurologic examination, medical history based on informant, 

neuropsychological assessment, laboratory tests, CSF investigation and magnetic resonance investigation (MRI) 

of the brain.  

MCI diagnoses were made independent of the CSF results in a consensus meeting attended by neurologists, 

neuropsychologists, and nurses. Petersen's criteria were used until the beginning of 2012 when the National 

Institute on Aging–Alzheimer's Association (NIA-AA) criteria for MCI were implemented [1, 42]. The diagnosis 

of dementia of the Alzheimer’s type was made according to the NINCDS-ADRDA criteria [35].  



Follow-up was conducted on an annual basis in a standardized fashion. Up to 12 follow-up visits were performed 

and the maximum follow-up time was 11.6 years. Among 384 patients with CSF data and valid PLCG2 

genotypes, 3 were excluded due to age below 50. 

The medical ethics committee of the VU University Medical Center approved the study protocol for the use of 

clinical data for research purposes and the biobank protocol for storage and use of DNA. Written informed 

consent was obtained from all individuals before inclusion. 

 

Fundació ACE (FACE) 

The FACE sample comprised MCI patients that were recruited from the Diagnostic Unit of FACE in Barcelona, 

Spain between 1996 and 2015. Recruitment, inclusion and exclusion criteria and assignment of a diagnosis of 

MCI in the ACE dataset were described in detail previously [12]. All MCI patients were assessed with the 

neuropsychological battery of Fundació ACE (NBACE), the Mini-Mental State Examination (MMSE), the 

Hachinski Ischemia Scale, the BDRS and the Neuropsychiatric Inventory Questionnaire (NPI-Q) [5, 6, 13].  The 

MMSE was measured at all visits. A diagnosis of MCI was assigned according to the Petersen criteria [42] and 

the classification of Lopez et al [12, 26, 27]. All subjects had a CDR [37] of 0.5, were autonomous at the time of 

enrolment but did not report deficits in general intellectual abilities. Minor impairments in complex ADL were 

allowed. All MCI diagnoses were made by neurologists, neuropsychologists, and social workers at a consensus 

conference.  

Follow-up assessments were conducted on an approximately annual basis. Up to 20 follow-up visits with a 

maximal observation time of 18.3 years were conducted. From the total sample of 1,095 MCI patients with 

p.P522R genotype, 3 patients were excluded due to missing APOE-ε4 information leaving 1092 patients for the 

analysis of cognitive decline. 

The study was approved by the respective ethics committees, and written informed consent was obtained from 

all participants before inclusion. The study protocol complied with national legislation and the Code of Ethical 

Principles for Medical Research Involving Human Subjects of the World Medical Association. 

 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

Data used in the preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private partnership, led by 

Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial 

magnetic resonance imaging (MRI), positron emission tomography (PET), other biological markers, and clinical 

and neuropsychological assessment can be combined to measure the progression of mild cognitive impairment 

(MCI) and early Alzheimer’s disease (AD). For up-to-date information, see www.adni-info.org. For the current 

study, patients with early and late MCI from the ADNI1, ADNI GO and ANDI2 cohorts were included. Late 

MCI was operationalized as a MMSE between 24 and 30, self- or informant reported complaints about 

worsening memory performance, a CDR rating of 0.5, objective education-adjusted memory impairment as 

measured by  the Wechsler Memory scale Logical Memory II test but absence of impairment in other cognitive 

domains and absence of dementia or essential impairments in activities of daily living. For early MCI subjects, 

less stringent criteria for the definition of objective impairment in memory were applied (0.5-1.5 SD below the 

mean of cognitively normal individuals). In addition, all participants had to be between 55 and 90 years of age, 

fluent in English or Spanish and have a Hachinski score<=4 and willing to undergo ADNI test procedures and 

longitudinal follow-up. The diagnosis of mild DAT was assigned according to NINCDS/ADRDA criteria for 

probable AD [35]. 

After the baseline visit, patients were assessed every 3 month and after one completed year, every 12 month. 

Assessments included detailed neuropsychological testing and clinical assessment as well as biomarker 

measurements including the collection of CSF samples used in our analyses. For the current analysis, we used 

only participants reporting to be non-hispanic whites to reduce the risk of population stratification in this sample.   

Written informed consent was obtained for participation in these studies, as approved by the institutional review 

board at each participating center. 

 



The German study on aging, cognition and dementia cohort (AgeCoDe) 

The AgeCoDe study is a general practice (GP) registry-based longitudinal study in elderly individuals that 

recruited patients aged 75 years and above in six German cities from 2003 to 2004 [29]. Exclusion criteria were 

consultations only by home visits by the GP, residence in a nursing home, severe illness the GP would deem 

fatal within 3 months, insufficient facility in German, deafness or blindness, lacking the ability to consent and 

not being a regular patient of the participating practice. A total of 3,327 patients gave informed consent for 

participation and received follow-up assessments every 18 months. Up to 8 follow-up visits were considered 

with a maximal follow-up time of 12.3 years. All assessments were performed by trained physicians and 

psychologists at the patient’s home environment using standardized questionnaires. Valid PLCG2 genotype data 

were available in 1,978 participants. Of those, 1,967 participants were all included in the analysis of the 

cognitive decline in the population-based studies. Nine participants were excluded due to missing APOE-ε4 

genotype and two participants were excluded due to age below 75 indicating failure to meet the AgeCoDe 

inclusion criteria. 

At baseline and each follow-up, AgeCoDe participants received an MCI diagnosis according to Winblad criteria 

[60] which were operationally defined by evidence for cognitive impairment (-1SD) in the neuropsychological 

test battery of the SIDAM, self-report of deterioration of memory functions and preserved activities of daily 

living (SIDAM-ADL-Scale) [63]. Using the data from the baseline assessment of the full sample, the prevalence 

of MCI was estimated at 15.4% [29] which closely resembles meta-analytic prevalence estimates form general 

population-based studies [48]. For the analysis of the cognitive decline in MCI patients, 929 participants who 

received an MCI diagnosis at any visit of the AgeCoDe cohort were included. However, for this analysis, we 

used the time point of MCI diagnosis as the new analysis baseline, i.e. no observations recorded before the MCI 

diagnoses were considered. This approach was chosen to align the data from AgeCoDe MCI patients with the 

data from the other three memory clinic cohorts with longitudinal data (i.e. DCN, ADC, and FACE) since the 

observation also started at the time point of MCI diagnosis in these cohorts. For the MCI analysis up to 8 follow-

up visits were included with an observation time of up to 12.2 years. 

The present study was approved by the respective ethics committees, and written informed consent was obtained 

from all participants before inclusion. All study procedures complied with national legislation and the Code of 

Ethical Principles for Medical Research Involving Human Subjects of the World Medical Association. 

 

Three City study (3C) 

The 3C study enrolled 9,294 non-institutionalized participants aged 65 years or above, sampled from the 

electoral rolls of three French cities of Bordeaux, Dijon, and Montpellier between 1999 and 2001 [2]. Inclusion 

criteria were (1) living in these cities or their suburbs and registered on the electoral rolls, (2) aged 65 years and 

over and (3) not institutionalized. 

Each participant signed informed consent. Partial refusal of the participation in specific parts of the examination 

(e.g. blood sampling or magnetic resonance imaging) did not result in exclusion from the study. Details about the 

study design of 3C were reported previously [2]. Health-related data were collected using standardized 

questionnaires during face-to-face interviews. Participants were assessed for up to 10 years in approximately 2 

years intervals. 

The 3C study did not implement a standardized, regular assessment of MCI diagnosis at each visit but an 

assessment of dementia diagnosis. 2.2% of the 3C study participants were classified as demented at baseline [2]. 

The study protocol was approved by the ethical committee of the University Hospital of Kremlin-Bicêtre. The 

study was conducted according to the principles expressed in the Declaration of Helsinki. 

 

Longitudinal Aging Study Amsterdam (LASA) 

The prospective cohort study Longitudinal Aging Study Amsterdam (LASA) consists of a nationally 

representative sample of older adults aged between 55 and 85 years who were recruited from the regions around 

Zwolle, Oss, and Amsterdam in the Netherlands. The LASA study incorporates three cohorts. The first LASA 

cohort included 3,107 participants and was selected from the municipal registries of the regions of the 

Netherlands named above between 1991 and 1992, with an oversampling of the oldest old and older men. The 

subjects of the first LASA cohort were followed-up for up to 24 years in 3-year intervals. A second cohort was 



recruited between 2002 and 2003 in the same regions as the original cohort and consisted of 1,002 subjects that 

were assessed for up to 13 years again in three-year intervals. The third cohort included 1,023 participants that 

were recruited between 2012 and 2013 and received two assessments (in three-year intervals) so far. At all visits, 

interviews were performed by trained interviewers in the respondents’ home environment. Further information is 

provided by Huisman and colleagues [18]. In LASA, no formal assessment of dementia or MCI was performed. 

In total 5,132 participants were included at baseline (3,107 participants were included in cohort 1, 1,002 in 

cohort 2 and 1,023 in cohort 3). The LASA study is conducted in line with the Declaration of Helsinki and was 

approved by the medical ethics committee of the VU University medical center. 

 

Supplementary text 2. Genotyping 

To genotype the rs72824905 variant (p.P522R) in samples from FACE, UKB, DCN and AgeCoDe, a custom 

TaqMan® SNP genotyping assay was designed using the available Applied Biosystems online assay design tool. 

Oligonucleotide primers were ordered from Applied Biosystems (Thermo Fisher Scientific) and performed 

according to the manufacturer's instructions in a Quantstudio-6™ Real-Time PCR Systems (Thermo Fisher 

Scientific). The quality of the assay was confirmed by direct sequencing of heterozygous samples. Assays' 

accuracy was checked by including positive and negative controls in each experiment.  

ADC was genotyped using the Illumina Global Screening Array (Infinium-global-screening-array-24-v1 with 

GSAsharedCUSTOM_20018389_A2) and applied established quality control methods [8]. We used high-quality 

genotyping in all individuals (individual call rate > 98%, variant call rate > 98%), individuals with sex 

mismatches were excluded and Hardy–Weinberg equilibrium-departure was considered significant at 

p < 1 × 10
−6

. The PLCG2 variant was part of the custom content of the GSA array.  

In ADNI, genotyping was performed using the Illumina Human610-Quad BeadChip, HumanOmniExpress 

BeadChip and Illumina Omni 2.5M platforms as previously described and applied established quality control 

methods were applied including exclusion of duplicates, highly related individuals and non-caucasian subjects 

(based on a ±6 SD from the man cut-off for the first principal component and a ±3 SD cut-off for the second 

principal component). The p.P522R genotypes were derived from imputation using the HRC Michigan 

Imputation Server [34]. At the HRC server, SHAPEIT was used to phase the data, and imputation was performed 

using the HRC reference panel (hrc.r1.1.2016) and a cut-off for imputation quality of R²=0.3. Imputed genotypes 

were returned by the service. For the current analysis, we used “best-guess” genotypes of p.P522R based on the 

platform with the highest quality (genotype probability>=0.8).  

In the 3C study, genomic DNA samples of 6,636 individuals were transferred to the French Centre National de 

Génotypage (CNG) as part of a previous replication effort [52]. Samples that passed DNA quality control were 

genotyped using the Agena Bioscience MassARRAY platform. We also excluded samples with more than three 

missing genotypes and males heterozygous for X chromosome variants present within the panel. Variants were 

excluded based on missingness >5%, Hardy–Weinberg equilibrium (in cases and controls separately) < 1 × 10 

−5, and differential missingness between cases and controls < 1 × 10 −5. After exclusion, 6,201 samples were 

available. 

The LASA cohorts were genotyped using commercial genotyping arrays and then followed a genotyping quality 

control and an imputation step. For genotyping, the Infinium-global-screening-array-24-v1 was used in 1,899 

samples and the AXIOM-NL array was utilized for 625 [11]. The following quality control (QC) criteria were 

used with the individuals genotyped: individuals with a call rate <98%, an excess heterozygosity rate or a gender 

mismatch, and individuals which were duplicates or PCA outliers using a PCA projection of the study samples 

onto 1KG were removed. A total of 2,358 samples passed the QC (1,779 GSA and 579 Axiom array). At the 

variant level following QC criteria were used: all monomorphic markers and markers with Hardy-Weinberg 

p>10
-6

 or call rate <98% were removed. For imputation, the dataset was prepared using scripts provided online 

(Haplotype Reference Consortium [HRC] imputation preparation and checking, version 4.2.5). Imputation to the 

HRC was performed at the HRC Michigan Imputation Server [34]. At the HRC server, SHAPEIT2 (version 2, 

.r790) was used to phase the data, and imputation was performed using the HRC reference panel (version 1.0) 

using Minimac 3. Imputed genotypes were returned by the service. Imputation quality (R2) was 0.89 for GSA 

and 0.93 for the Axiom assay. They were combined in the analysis due to highly similar MAF of 1.38% and 

1.02% in the axiom and GSA assay, respectively. 

 



Supplementary figure 1A-G. Plots of the first two principal components of the 

population structure per cohort 

 

Supplementary figure 1a. DCN cohort  

 

 

Supplementary figure 1b. ADC cohort  

 

 



Supplementary figure 1c. FACE cohort 

 

 

 

Supplementary figure 1d. ADNI cohort 

 

 

 



Supplementary figure 1e. AgeCoDe cohort 

 

 

Supplementary figure 1f. 3C cohort 

 

 

 

 

 



Supplementary figure 1g. LASA cohort 

 

 

  



Supplementary text 3. Examination of the effect of population stratification 

To evaluate the impact of adjusting for potential population stratification using principal components (PC), we 

restricted the analysis of the effect of p.P522R in MCI to those samples with GWAS data available. Thus, we 

could calculate PC for the sample and include them in the analysis. All cases from ADNI and ADC had GWAS 

data available, while 632 (68.2%) MCI patients of AgeCoDe and 348 (65.8%) DCN and 1,060 (97.1%) of the 

FACE cohort provided GWAS data. We then rerun only analyses showing significant associations in the main 

analyses in the paper with and without inclusion of the first two PCs in our model. We assessed the perceptual 

change in the parameters. As suggested previously on confounding effects [31], changes of less than 10% were 

considered an indication that the effects found in our study are independent of adjustments for PCs. Data was not 

pooled across cohort as PCs were computed per cohort and therefore represent a cohort-specific measure to 

correct for population stratification that could not be harmonized across cohorts. 

In the analyses of cognitive decline, we did not re-analyze the data from ADC since the low number of carriers 

and the short follow-up for these carriers had already affected the stability of our estimations in the main 

analyses (see supplementary figure 2).  

Cohort FACE AgeCoDe 

Statistical model Not adjusted for PCs Adjusted for first two PCs Not adjusted for PCs Adjusted for first two PCs 

 χ² df p χ² df p  χ² df p χ² df p  

Joint effect of p.P522R 

on cognitive change 
3.958 2 0.138 3.923 2 0.141  3.649 2 0.161 3.617 2 0.164  

 Est SE p Est SE p %Δ Est SE p Est SE p %Δ 

P.P522R 1.096 0.701 0.118 1.062 0.697 0.128 -3.09 0.074 0.383 0.848 0.084 0.382 0.825 14.72 

P.P522R*time 0.410 0.216 0.058 0.419 0.217 0.053 2.16 0.167 0.133 0.211 0.167 0.132 0.206 0.30 

P.P522R*timeQ -0.018 0.034 0.601 -0.024 0.035 0.481 34.81 0.003 0.017 0.855 0.00279 0.01668 0.867 -9.12 

PC1 
   

0.227 0.072 0.002 
    

0.015 0.036 0.679 
 

PC1*time 
   

0.008 0.028 0.779 
    

0.014 0.013 0.285 
 

PC1*timeQ 
   

-0.001 0.004 0.840 
    

-0.002 0.002 0.478 
 

PC2 
   

-0.226 0.148 0.127 
    

0.010 0.035 0.769 
 

PC2*time 
   

-0.002 0.062 0.980 
    

0.000 0.013 0.976 
 

PC2*timeQ 
   

-0.007 0.007 0.326 
    

0.001 0.002 0.727 
 

Cohort DCN ADNI 

Statistical model Not adjusted for PCs Adjusted for first two PCs Not adjusted for PCs Adjusted for first two PCs 

 χ² df p χ² df p  χ² df p χ² df p  

Joint effect of p.P522R 

on cognitive change 
0.847 2 0.655 0.907 2 0.635  1.588 2 0,452 1.905 2 0.386  

 Est SE p Est SE p %Δ Est SE p Est SE p %Δ 

P.P522R 0.042 0.631 0.947 -0.041 0.615 0.946 -199.14 0.395 0.581 0.496 0.435 0.579 0.453 9.20 

P.P522R*time 0.338 0.373 0.366 0.333 0.366 0.363 -1.52 0.181 0.172 0.293 0.196 0.171 0.252 8.29 

P.P522R*timeQ 0.161 0.223 0.472 0.179 0.219 0.415 11.26 -0.002 0.035 0.946 -0.002 0.036 0.949 -0.00 

PC1    0.171 0.058 0.003     0.023 0.658 0.972  

PC1*time    -0.015 0.038 0.692     -5.368 10.454 0.608  

PC1*timeQ    -0.054 0.022 0.012     -0.586 3.123 0.851  

PC2    -0.011 0.052 0.831     5.752 2.792 0.039  

PC2*time    -0.045 0.031 0.143     1.213 2.024 0.549  

PC2*timeQ    0.003 0.018 0.862     -0.047 0.569 0.934  

 

Results indicated that there were no changes in the estimates of the effect of p.P522R on the linear decline over 

time. For the quadratic term, we observed a stronger change with PC inclusion. However, the effect of p.P522R 



in the main analysis and in all individual cohorts derived from the interaction of p.P522R and the linear term 

indicating that the stronger change for the quadratic term could represent random noise. In line with this, the p-

values for the association of p.P522R with the cognitive decline that takes into account both, the linear and the 

quadratic term, remained unchanged by PC adjustment. We therefore conclude that PC adjustment had no effect 

on the associations of p.P522R in each cohort. 

For the analyses on CSF biomarkers, no change above 10% in the estimates for the effect of p.P522R was 

observed for pTau181and tTau for which we observed a significant influence in our main analysis. Changes in 

estimates for Aβ1-42 may again arise from random noise in the non-significant association with p.P522R. Of note, 

the effect observed on Aβ1-42 in DCN is in the opposite direction as in the ADNI cohort suggesting again a 

random noise more than a true association. 

Outcome Variable DCN ADNI 

  Not adjusted for PCs Adjusted for first two PCs Not adjusted for PCs Adjusted for first two PCs 

  Est SE p Est SE p %Δ Est SE p Est SE p %Δ 

Aβ1-42 P.P522R -0.096 0.078 0.217 -0.079 0.073 0.279 -17.55 0.017 0.068 0.802 0.024 0.068 0.721 42.53 

 PC1    2.962 0.732 0.000     -3.614 5.250 0.492  

 PC2    1.894 0.769 0.014     0.154 0.981 0.876  

pTau181 P.P522R -0.167 0.082 0.044 -0.160 0.081 0.048 -3.97 -0.102 0.077 0.184 -0.109 0.077 0.156 6.46 

 PC1    -0.502 0.827 0.545     4.660 5.810 0.423 
 

 PC2    2.077 0.927 0.026     0.060 1.086 0.956 
 

tTau P.P522R -0.150 0.096 0.118 -0.153 0.095 0.107 1.68 -0.131 0.082 0.110 -0.137 0.082 0.094 4.71 

 PC1    -1.914 0.969 0.049     2.361 6.288 0.708 
 

 PC2    1.104 1.094 0.314     -0.581 1.174 0.621 
 

 

  



Supplementary text 4. CSF collection and harmonization 

Supplementary text 4.1: CSF collection 

In the ADC cohort, a lumbar puncture was performed using a 25G needle. The CSF was collected in 

polypropylene tubes and centrifuged at 1800/2100 g for 10 min at 4°C. The CSF was immediately stored at 

−20°C until further analysis (maximum 2 months). CSF levels of Aβ1–42 and pTau181 and total Tau were 

measured using commercial ELISA immunoassays. Quantification was performed in the neurological laboratory 

of the VU University Medical Center in Amsterdam following the protocols described by Mulder and colleagues 

[39]. For the definition of AD biomarker abnormality, we applied previously published cut-off values, which are 

the standard in the Amsterdam CSF laboratory [39, 66]. Abnormal CSF- Aβ1–42 was defined as values <640 

pg/ml, abnormal CSF-total tau (tTau) was defined as values >375 pg/ml, and CSF- pTau181 >52 pg/ml. 

In the DCN and the memory clinic Bonn samples, lumbar punctures from the L3/L4 or L4/L5 intervertebral 

region were performed at the respective department of neurology or psychiatry. The CSF samples were kept on 

ice for a maximum of 1 h and then centrifuged for 10 min (2000 g at 4°C). Samples were aliquoted to 0.25 ml 

and stored in polypropylene tubes at −80 °C until analysis. All CSF samples from DCN and 257 samples from 

the memory clinic of Bonn were sent to the Department of Psychiatry in Erlangen for quantification. Levels of 

Aβ1–42 and pTau181 and total Tau were measured using commercially available ELISA immunoassays 

INNOTEST
®
 β-amyloid(1–42) and INNOTEST

®
 PhosphoTAU(181p) (Innogenetics), in accordance with the 

protocols described by Lewczuck and colleagues in an ISO9001–certified  laboratory  under a routine quality-

control regimen (intra-assay  coefficients  of  variation: 2.3%–5.9%; interassay coefficients of variation:  9.8%–

13.7%) [24, 25]. We performed all analyses in duplicate and used the mean of the two. We defined abnormally 

low CSF Aβ1–42 < 600 pg/mL, abnormally high CSF tTau > 300 pg/mL, and abnormally high CSF pTau181 > 60 

pg/mL based on DCN specific, previously published cutoff values. 

In 27 CSF samples collected at the university hospital Bonn, CSF samples were processed using the protocol 

established by the local biomarkers laboratory. Briefly, CSF samples kept at 4 °C until processing for biobank 

storage at -80 °C. Processing was completed on the day of lumbar puncture and samples were stored for no 

longer than 4 weeks until analysis. Samples and calibrators were run in duplicates, and samples with a 

coefficient of variation (CV) > 20% were repeated. A pooled and aliquoted CSF sample was run as an internal 

standard on each assay plate to control for inter-run variance. For AD core biomarkers, the V-PLEX Aβ Peptide 

Panel 1 (6E10) Kit (K15200E), the V-PLEX Human Total Tau Kit (K151LAE) (Mesoscale Diagnostics LLC, 

Rockville, MD, USA), as well as the INNOTEST PHOSPHO TAU(181P) kit (81581, Fujirebio, Ghent, 

Belgium) was used. Laboratory specific cut-off values to define abnormal CSF levels were Aβ1–42 < 350 pg/mL, 

tTau > 470 pg/mL, pTau181> 57 pg/mL. 

In the ADNI cohort, CSF was collected as previously described [50]. In brief, CSF samples were collected in the 

morning after an overnight fast. After collection and transfer into polypropylene tubes, CSF samples were frozen 

on dry ice within 1 hour after collection followed by shipping to the ADNI Biomarker Core Laboratory at the 

University of Pennsylvania Medical Center on dry ice. Afterward, thawing (1 hour) at room temperature and 

gentle mixing, aliquots (0.5 mL) were prepared and stored in bar code–labeled polypropylene vials at −80°C. All 

CSF biomarkers were quantified using the multiplex xMAP Luminex platform (Luminex Corp, Austin, TX) with 

Innogenetics (INNO-BIA AlzBio3; Ghent, Belgium; for research use-only reagents) immunoassay kit–based 

reagents. We used < 192 pg/mL as the cut-off for Aβ1–42, >23 pg/mL as the cut-off for pTau181 and 93 pg/mL as 

the cut-off for tTau as previously recommended. 

 

Supplementary text 4.2: Harmonization of batch effects 

Due to technical differences, CSF samples analyzed with different quantification batches are not measured on 

the same scale. To pool and jointly analyze CSF samples quantified with different batches, a harmonization 

procedure is required. In this study, the method described by Zhou and colleagues was applied [65]. This method 

allows the harmonization of non-overlapping samples. To do so a transformation is determined that converts 

CSF samples analyzed with different batches to the same scale and provides a p-value to assess the accuracy of 

the transformation. The Matlab (MATLAB Release 2016b The MathWorks, Inc., Natick, Massachusetts, United 

States) implementation created by Zhou and colleagues was used (https://github.com/hzhoustat/PNAS2018). For 

the harmonization efforts, we included patients with dementia of the Alzheimer’s type in the analyses to broaden 

the range of pathologies and the sample size. This might improve the removal of methodological differences. 



To ensure that the transformation only harmonizes differences in the scales induced by batches it is necessary to 

account for sample differences due to sample selection bias or different population characteristics. To this end, a 

set of relevant covariates have to be identified whose influence is then removed by stratifying the sample 

according to these covariates. To identify those covariates, graphical cause model techniques can be applied. 

Zhou and colleagues demonstrated that for the harmonization of CSF in AD research, age and diagnosis are 

important determinants. However, especially in the context of genetics and samples with highly different age 

ranges, the APOE-ε4 allele is another important factor since it influences CSF levels and the age at onset of 

Alzheimer’s disease [28, 41]. Hence, APOE-ε4 was added to the causal graph proposed by Zhou and colleagues 

[65]. A graphical representation of the extended graph is presented below: 

 

As can be seen from the figure, bias induced by sample selection and population characteristics is selectively 

linked to the CSF measures via the three variables age, APOE-ε4 and diagnosis. Removing their influence will 

enable correction for differences in scales between different CSF batches.  

On the other hand, no differences in population characteristics between the samples from the DCN and UKB 

cohort were expected, regardless of the laboratory and the batch used for quantification since patients referring to 

the memory clinic of the university hospital of Bonn were included in both cohorts and since inclusion criteria 

for both cohorts were largely similar. Both cohorts did indeed not differ in frequency of age groups (i.e. <60/60-

70/71-75/>75), χ²(3)=2.19, p=0.534), APOE-ε4 (χ²(1)=2.80, p=0.094) and gender (χ²(1)=2.37, p=0.124). 

However, the frequency of diagnoses (i.e. MCI or dementia) was different and the diagnosis was therefore used 

for stratification during the computation of the harmonization transformation. 

MCI patients of the DCN and the ADC cohort are expected to differ concerning relevant sample characteristics 

because they were recruited in different countries using different study protocols. Both cohorts differed 

concerning age (χ²(3)=14.140, p=0.002) and APOE-ε4 (χ²(1)=8.36, p=0.004) but not with regard to gender 

(χ²(1)=2.37, p=0.124). The former two variables were used to stratify the samples during the harmonization. 

For the ADNI cohort, sample characteristics were also expected to differ from those of the CSF Erlangen 

sample. In line with this expectation, we observed significant differences regarding age (χ²(3)=101.5, p<0.001) 

and diagnosis (χ²(1)=81.7, p<0.001). Unexpectedly, both samples showed additional differences in their gender 

distribution (χ²(1)=11.3, p=0.001) but not in the APOE-ε4 frequency (χ²(1)=0.4, p=0.843). To avoid bias in the 

transformation process due to difference and gender and over-stratification resulting in too small samples for 

harmonization by conditioning on APOE-ε4, we used age, gender and diagnosis to stratify the samples for 

harmonization. 

To harmonize the samples, we applied a linear transformation to the samples quantified in the laboratory in Bonn 

or Amsterdam to harmonize them with the samples processed in Erlangen (DCN and the majority of the samples 

from the UHB cohort) which remained untransformed. Non-significant p-values indicated that the 

transformations were appropriate for Aβ1–42 (p=0.354), pTau181 (p=0.763) and total tau (p=0.454) processed in 

Bonn as well as for Aβ1–42 (p=0.524), pTau181 (p=0.511) and total tau (p=0.713) samples processed in 

Amsterdam. Similar results were obtained for Aβ1–42 (p=0.940), pTau181 (p=0.908) and total tau (p=0.872) 

samples in the ADNI cohort. 
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Supplementary text 5. Neuropsychological assessments 

In all MCI samples, the MMSE was considered for the assessment of cognition [13]. The test is a global 

screening for dementia consisting of 30 items. This test was chosen because it was the only test available across 

all cohorts that provided a sensitive global assessment of cognitive change across different cognitive domains. 

Previous research has shown that it provides good sensitivity to cognitive changes in MCI patients [46]. 

In the 3C study, the global cognition of the participants was also assessed using the MMSE. Besides, the Isaac 

set test (IST) [20] and the Benton visual retention test (BVRT) [4] were assigned as a measure of verbal fluency 

and episodic memory, respectively. In the 3C study, the IST requires the naming of words of different, 

consecutively administered semantic categories (i.e. colors, animals, fruits and cities) for 15 seconds. The BVRT 

consists of 15 stimulus cards presented for 10 seconds. Afterward, the participants are asked to select each 

stimulus among 3 distractors. 

In AgeCoDe, the CERAD delayed word list recall and animal fluency task of the CERAD neuropsychological 

test battery [38] were considered for cognitive assessments in addition to the MMSE. Similar to the 3C study, 

they assess verbal fluency, episodic memory, and global cognition, respectively. The CERAD delayed word list 

recall consists of 10 words that are presented and have to be recalled in three consecutive learning trials. After a 

delay, the participant is asked to freely recall from long-term memory. The animal fluency task requires the 

participant to name as many animals as possible in one minute. 

In LASA, the global cognition of the participants was also assessed using the MMSE. Episodic memory was 

assessed using the 15 Words Test, the Dutch version of the Auditory Verbal Learning Test [47, 49]. The tests 

consisted of 15 words which were learned during 3 trials. After every trial, the respondent was asked to recall as 

many words as possible. After a distraction period of 20 minutes, the respondent was asked to name again the 

learned words. The total number of words learned during 3 tests is the recall score (range 0-45). The number of 

words reproduced after 20 minutes is the delayed recall score (range 0-15) which was used in this research [9].  

 

Supplementary Table 1. Software and gene expression databases used in the analysis  

Software Web address Analysis 

R package LCMM 

[45] 

https://cran.r-project.org/package=lcmm Analysis of cognitive decline 

 

R package 

robustbase 
[32] 

http://CRAN.R-project.org/package=robustbase Analysis of continuous CSF biomarkers 

 

R package nnet 

[58] 

https://cran.r-

project.org/web/packages/nnet/index.html 

Multinominal regression 

R package mgcv 

[62] 

https://cran.r-

project.org/web/packages/mgcv/index.html 

Analysis of continuous CSF biomarkers 

using generalized additive models 
 

R package itsadug 

[57] 

https://cran.r-

project.org/web/packages/itsadug/index.html 

Posterior simulation of generalized additive 

models 

 
CSF batch 

harmonization 

software 
[65] 

https://github.com/hzhoustat/PNAS2018 Harmonization of batch effects 

Mplus 

[40] 

https://www.statmodel.com/ Structural equation modeling 

GeneFriends 

[54] 

http://www.genefriends.org/ Generation of trans co-expression networks 

for APOE, TREM2, and PLCG2 

 
WebGestalt 

[64] 

http://www.webgestalt.org/option.php Analysis of enrichment of biological 

processes in gene sets 

 
STRING 

[53] 

https://string-db.org/ Analysis of Protein-Protein Interactions in 

the co-expression network shared by APOE, 

PLCG2, and TREM2 
R package 

homologene 

https://cran.r-

project.org/web/packages/homologene/index.html 

Enrichment for genes differentially 

expressed in microglia 

  



Supplementary text 6. Statistical methods 

Supplementary text 6.1: Latent process linear mixed models for the analysis of the cognitive decline 

We chose to model the continuous cognitive decline in patients with MCI rather than conversion to dementia 

since the analysis of continuous traits can improve statistical power to detect genetic determinants [51]. Besides, 

simulation has demonstrated that the application of linear mixed models of cognitive decline may outperform 

survival analysis concerning the sensitivity for modulators of disease progression [10]. 

However, cognitive tests used as outcomes in these analyses frequently show unequal interval scaling and 

ignoring this issue can introduce bias in the analysis of cognitive decline [44]. Taking this source of bias into 

account is recommended by current guidelines for longitudinal dementia research [59]. Therefore, we used linear 

mixed models with a latent process as implemented in the R package LCMM [45]. These models jointly estimate 

a latent process representing the true change of cognition over time and a link function that relates this process to 

the observed cognitive measurements. To select the most appropriate link function adjusting for unequal interval 

scaling, we compared several options: a linear link function, a beta link function, and quadratic I-splines with 

varying numbers of knots placed at the percentiles or equidistant along with the distribution of the outcome. All 

possible link functions were fitted using models including a random intercept and a linear or quadratic 

polynomial trend of time in the random and/or fixed effects (i.e. linear fixed and random effect, quadratic fixed 

and linear random effect, and quadratic random and fixed effect). An evaluation of the need for non-linear 

decline is recommended by guidelines for statistical analysis in dementia research [59]. Besides, the omission of 

a relevant non-linear effect from the mixed model can induce spurious effects for predictors that are correlated 

with the person-specific mean of the variable showing the non-linear effect that was omitted [3]. In our model, 

omitting a non-linear trend of time would possibly introduce spurious effects for p.P522R because the variant is 

related to survival [56] so that p.P522R can be expected to show a higher mean observation time. 

Only polynomial trends up to the second-order (i.e. quadratic) were examined. More complex models including 

higher polynomial terms of time could not be reliably fitted in the limited number of p.P522R carriers in our 

cohorts and would have resulted in overfitting to random variation in the longitudinal cognitive data of the 

carriers. In the pooled cohort of MCI patients, we allowed the fixed effects of the polynomial trends of the time 

to vary across cohorts. All models were also combined with different zero-mean Gaussian stochastic processes 

that take into account correlations between the observations besides the random effects. We considered an 

uncorrelated errors structure, a first-order autoregressive and Brownian motion process.
 

Among all fitted models, those with the lowest BIC and appropriate model fit according to a visual inspection of 

residual plots were chosen to assess the effect of p.P522R. These factors (i.e. link function, the shape of the 

cognitive decline trajectory, residual error structure) were evaluated in combination since the interaction of these 

factors concerning model fit is hard to predict a priori. 

The procedures described above were repeated for each outcome in each of the population-based cohorts 

(AgeCoDe, 3C, and LASA) and the sample of MCI patients pooled across cohorts. However, for the analysis of 

the MMSE in LASA and the 3C study, a beta-link function was chosen a priori since this link function has been 

shown to provide a good modulation of the unequal interval scaling of this test in the literature and provided the 

best model fit in the AgeCoDe cohort and the MCI sample [44]. The selection of the same link function in the 

analyses may also contribute to the comparability of results across cohorts. 

Of note, the time scales used to set up the linear mixed model with a latent process differed between the MCI 

samples and the population-based cohorts. In the population-based cohorts, chronological age at each visit was 

used as the most natural time scale to study the cognitive change in elderly populations [59]. We also included 

age at baseline to model the convergence of age-related cognitive trajectories of individuals from different birth 

cohorts [16, 59]. Analyses, therefore, focus on the age-related cognitive change over time.  

In the MCI samples, however, time from diagnosis was used because for this analysis, the focus was more on 

disease progression in the at-risk stage for AD. Nevertheless, we controlled for age at baseline to take into 

account different chronological ages of the MCI patients and to correct for birth cohort differences. All MCI 

samples were pooled and analyzed jointly. This approach is called integrative data analysis and it is 

recommended in case of rare predictor variables to enable the application of more complex, accurate statistical 

models, reduce the influence of outlying observations and to maximize the power to detect associations [7]. The 

use of the MMSE as a common test across cohorts assured that the cognitive decline was assessed using a 

homogenous, harmonized outcome measure in all cohorts. 



Only after the selection of the best fitting combination of link-function, the shape of the trajectory of the 

cognitive decline and additional correlation structure between observations, covariates and p.P522R were 

included in the model as well as their interaction with all polynomials of time. The significance of the effect of 

p.P522R on the cognitive decline was assessed using a multivariate Wald test of the joint effect of all rare 

variant-time interactions as implemented in the LCMM package. 

Supplementary text 6.2: Computation of effect sizes in linear mixed models with non-linear effects 

In case of a non-linear trajectory of cognition over time, the effect of a predictor under study (i.e. p.P522R or 

APOE-ε4 in this analysis) changes may change over time as the speed of cognitive changes is not constant over 

the observation period. It is therefore not straightforward to provide a single effect size of the association of the 

predictor and the cognitive decline. Consequently, we computed effect sizes at multiple time points of the 

cognitive trajectory to evaluate the possible changes in the association. To this end, we derived expected 

differences in cognition at each time point concerning the baseline level of cognition based on the fixed effect 

estimates in the latent process linear mixed models. As those estimates were on an arbitrary, latent scale, we used 

the expected variance of the latent process at the last evaluated tie point to standardize the estimates. Estimates 

of this variance were derived from the random effect variance-covariance matrix of the latent process linear 

mixed models. 

Supplementary text 6.3: Generalized additive models 

Generalized additive models are a flexible method to assess the relationship between a dependent variable and a 

set of independent variables where the functional form of the relationship does not have to be linear. To this end, 

it is assumed that the dependent variable is related to the independent variables via a smooth function. The model 

can be written as: 

E(𝑌) = a + s1(x1)+s2(x2)+…+sn(xn) 

where Y is the dependent variable, E() is the expected value, a is the intercept of the model, sn() are smooth 

functions and 𝑥1, …,  xn are independent variables. The smooth functions can be estimated from the data while 

taking into account the model complexity and fit to the data. In the current analyses, the R-package mgcv [62] 

was used to estimate the generalized additive models. The smooth functions were represented by thin plate 

regression splines [61]. 

To assess the interplay of p.P522R and Aβ1–42 levels in CSF concerning tTau and pTau181, we estimated a 

varying-coefficient model that estimated a smooth relationship between Aβ1–42 levels and tTau or pTau181 levels 

as well as an effect for p.P522R that was allowed to vary smoothly with the levels of amyloid pathology: 

E(𝑡𝑇𝑎𝑢) = a + s1(Aβ1−42)+s2(Aβ1−42)∙p.P522R+𝑠3(𝑎𝑔𝑒)+sex+APOE-ε4 +CSF sample 

Analyses were controlled for sex, APOE-ε4 and CSF sample as parametric linear effects. For age, a smooth term 

was estimated to take into account a potential non-linear relationship to CF biomarkers. 

To infer those levels of Aβ1–42 at which p.P522R is associated with tTau or pTau181 levels, we performed 

posterior simulations as implemented in the “plot_smooth” and “plot_diff” functions form the R-package itsadug 

[57]. Estimates of the expected relationship of Aβ1–42 and tTau or pTau181 for p.P522R carrier and non-carrier as 

well as expected differences between the two groups were derived. Simultaneous confidence intervals (as 

opposed to point-wise confidence intervals) were computed to account for multiple testing. 

Supplementary text 6.4: Structural Equation modeling 

We fitted structural equation models to assess mediation of the effect of p.P522R on the cognitive decline via 

CSF biomarkers in Mplus version 7.31 [40]. As recommended we did structural equation modeling instead of 

estimates from separate regression and linear mixed models to estimate mediation since this can slightly increase 

the efficiency of the estimation and simplifies the use of multiple mediators and the modeling of their interplay 

[19]. To assess the fit of all structural equation models, we provide the root mean square error of approximation 

(RMSEA), the comparative fit index (CFI) and the standardized root mean square residual (SRMR). An 

RMSEA<0.5, a CFI>0.95 and an SRMR<0.08 indicate a good fit to the data [17].  

We modeled the effect of p.P522R on Aβ1–42 and pTau181 taking into account the effect of Aβ1–42 on pTau181 that 

is postulated by the amyloid cascade hypothesis [21]. All three variables were allowed to predict the cognitive 

decline that was derived using latent growth curve models. In the second series of models, pTau181 was replaced 



by tTau. We did not include tTau and pTau181 in a single model due to the high correlation between the two 

biomarkers in our sample (r=0.82). 

Since the structural equation model does not allow a straightforward implementation of link functions taking into 

account unequal interval scaling in cognitive tests as implemented in the latent process linear mixed models 

described above, the normalized version of the MMSE was used [43]. This version of the MMSE is corrected for 

unequal interval scaling due to a transformation derived from several large cohort studies. 

The latent growth curve models used to model the cognitive decline in the normalized MMSE require data to be 

assessed at fixed time points that should not show large inter-individual variation and reasonable overlap of 

observations at different time points for the same individuals (covariance coverage) to result in a successful 

estimation. We, therefore, included data that were assessed in yearly intervals for up to 4 years which reflects a 

common follow-up scheme across cohorts. One additional assessment after 6 months was included due to 

sufficient covariance coverage. 

All estimations were performed using full information maximum likelihood (FIML) that can handle missing data 

which is missing at random. We modeled the cognitive decline using three latent factors representing cognitive 

level at baseline, linear and quadratic change over time, respectively. The need for a quadratic slope was 

assessed using the Akaike information criterion (AIC) and sample-size adjusted BIC. 

Indirect effects were calculated as the product of the effect of p.P522R on a CSF biomarker and the effect on the 

cognitive change from baseline. Due to the use of a linear and quadratic change of the normalized MMSE over 

time, we assessed the indirect effects at different time points across the observed trajectory (i.e. the change from 

baseline after 1 year, 2 years, 3 years and 4 years). For the indirect effect of pTau181 and tTau we used the 

following formula: 

Indirect effect = a(b1Ls+b2Lq) 

a=effect of p.P522R on CSF pTau181 or tTau 

b1=effect of CSF biomarker on the linear slope of cognitive change over time 

b2= effect of CSF biomarker on quadratic of cognitive change over time 

Ls=loading of the linear slope on the time point of interest 

Lq=loading of the quadratic slope on the time point of interest 

 

For Aβ1–42, we also considered the effect of this biomarker on pTau181 and tTau, respectively, as mentioned 

above. Therefore we applied the formula: 

 

Indirect effect = a11(b11Ls+b12Lq)+a21c(b21Ls+b22Lq) 

a11=effect of p.P522R on Aβ1–42 

a21=effect of p.P522R on pTau181 or tTau 

b11=effect of Aβ1–42 on the linear slope of cognitive change over time 

b21=effect of pTau181 or tTau on the linear slope of cognitive change over time 

b12= effect of Aβ1–42 on quadratic of cognitive change over time 

b22= effect of pTau181 or tTau on quadratic of cognitive change over time 

c=effect of Aβ1–42  on pTau181 or tTau 

Ls=loading of the linear slope on the time point of interest 

Lq=loading of the quadratic slope on the time point of interest 

 

Finally, 95%-Confidence intervals for the indirect effects were derived using 1000 bootstrap samples [30]. When 

examining the interaction effect of p.P522R and CSF biomarkers significance of the interaction was assessed 

using a multivariate Wald test on the effect of the interaction on the linear and the quadratic slope. 

 

Supplementary text 6.5: Selection of covariates 

When assessing the influence of p.P552R, we considered age, gender, education, APOE-ε4 status and cohort as 

covariates. Education was operationalized as participation in secondary education. APOE-ε4 status was defined 

as the presence or absence of the APOE ε4 allele. 



We chose the covariates to exclude the possibility that a random association between these standard 

demographic variables and p.P522R might bias our results. Likewise, APOE-ε4 as the strongest genetic risk 

factor for AD might influence our results due to a random co-occurrence of p.P522R and APOE-ε4. Since none 

of these variables is thought to mediate the effect of p.P522R on the outcomes under study (i.e. CSF AD 

biomarkers and cognitive decline) inclusion for these variables might increase the statistical power to detect 

associations [36]. Cohort was included as a covariate to control for residual differences between samples that 

were not removed by harmonization strategies (i.e. common neuropsychological test across cohorts, statistical 

harmonization of continuous CSF AD biomarkers; [65]). In the CSF analyses, CSF sample was used instead of 

recruiting cohort as a covariate since batch effects are expected to be the most important source of heterogeneity 

between samples. 

In some analyses, additional covariates were included. In the analysis of the cognitive decline in the 3C study, 

study center was included as an additional fixed effect to control for the difference between the study centers as 

it is common practice in analyses of the 3C study. In LASA, the platform used for genotyping was included to 

control for differences between assessment methods of p.P522R. This was not necessary for other cohorts 

because here, identical genotyping procedures were applied. 

Importantly, in the case of the detection of significant associations of p.P522R, analyses were repeated without 

adjustment for covariates to examine the sensitivity of the results to covariate selection. 

 

Supplementary text 6.6: Enrichment analyses for the gene co-expression network 

Fisher's exact test were applied to assess enrichments for genes co-expressed with PLCG2 and other gene lists. 

We assumed a total population size of 19,080 genes since according to the number of all genes examined by the 

GeneFriends tool [54]. 

To assess the enrichment of PLCG2-related genes co-expressed with APOE or TREM2, respectively, we used 

Fisher's exact test (two-sided). When computing these tests, APOE, TREM2, and PLCG2 themselves were not 

considered as a part of the population because those genes were chosen to construct the co-expression network.  

To assess the enrichment of differentially expressed genes in microglia under neurodegenerative conditions 

among genes in the gene set shared between APOE, TREM2, and PLCG2, we first derived lists of those 

differentially expressed genes from the literature. From the work of Keren-Shaul and colleagues [22], 500 mouse 

genes differentially expressed in disease-associated compared to homeostatic microglia (see supplementary table 

1 of the publication by Keren-Shaul and colleagues [22]) were merged to their human homologs using the 

homologene package in R and the genes included in the GeneFriends database. This resulted in a list of 320 

genes. From the work of Friedman and colleagues [14], we extracted human genes differentially expressed in 

microglia of wild type compared to hMAPT -P301S mice (see supplementary data 2 of the publication by 

Friedman and colleagues [14]) were extracted. Of those 318 were included in the GeneFriends database. 

Regarding differential expressions in human AD patients, we selected the list of the genes published by Mathys 

and colleagues [33] (see supplementary table 7 of the publication by Mathys et al. 2019 [33]) yielding 75 genes 

that were also included in the GeneFriends database. For all analyses on differentially expressed genes in 

microglia under neurodegenerative conditions, we considered APOE, TREM2, and PLCG2 as part of the 

underlying population of genes. 

 

  



Supplementary Table 2. Estimated association of p.P522R in PLCG2 and the APOE-ε4 allele with the 

cognitive decline in the Mini-Mental State Examination derived from the pooled analysis of the MCI 

cohorts 

 
Main analysis

 a
 

Shortened follow-up 

interval (<=6 years)
 a

 
Unadjusted analysis 

 
Est/ χ² SE/df p Est/ χ² SE/df p Est/ χ² SE/df p 

Effect of p.P522R in PLCG2 on the cognitive decline    

p.P522R 
b
 0.132 0.270 0.626 0.217 0.281 0.441 0.333 0.301 0.268 

p.P522R*time 0.186 0.090 0.038 0.222 0.089 0.012 0.250 0.094 0.008 

p.P522R*time^2 0.005 0.012 0.653 -0.004 0.031 0.906 -0.002 0.013 0.860 

Multivariate Wald  test 7.83 2 0.020 6.58 2 0.037 8.95 2 0.011 

Effect of APOE-ε4 on the cognitive decline    

APOE-ε4 b -0.749 0.076 3.96*10-23 -0.747 0.077 3.01*10-21    

APOE-ε4*time -0.259 0.026 1.38*10-23 -0.252 0.025 5.62*10-23    

APOE-ε4*time^2 -0.007 0.004 0.124 -0.0003 0.009 0.972    

Multivariate Wald Test 138.33 2 9.27*10-37 100.18 2 1.77*10-22    

 

Note. Sample size n=3595. Unequal interval scaling was adjusted using a beta-link function. A Brownian motion 

process zero-mean Gaussian stochastic process was used to model the correlation between observations besides 

the random effects. Multivariate Wald test refers to the joint test of the interaction of the genotype (i.e. p.P522R 

or APOE-ε4) with polynomials of time. 

a: Analysis adjusted for cohort, age at baseline, sex, education, and APOE-ε4 status.  

b: effect on cognitive function at the median of observation time (i.e. two years). 

Est=Estimate; SE=Standard error; p=p-value; df=degrees of freedom; χ²=statistic of the multivariate Wald test. 

 

  



Supplementary Figure 2. Cohort-specific effects of p.P522R on the cognitive decline in the Mini-Mental 

State Examination 

 

Note. a: Fundacio ACE (FACE), b: German study on aging, cognition, and dementia (AgeCoDe), c: 

Alzheimer’s disease neuroimaging (ADNI) cohort, d: Dementia competence network (DCN) cohort e: 

Amsterdam Dementia cohort (ADC). In the ADC cohort, only one carrier provided more than 1 year of follow-

up (and up to 4 years of follow-up) so that the displayed trajectory relies almost completely on one observation 

and is therefore prone to overfitting and measurement error. f: Difference between p.P522R carrier and non-

carrier on the cognitive change from baseline. Differences were derived based on the p.P522R*time and 

p.P522R*time² terms of the linear mixed model with a latent process using the pooled sample of all cohorts but 

an interaction effect between p.P522R and polynomials of time and cohort. Differences are displayed on the 

scale of the latent process that was standardized using the expected variance of the latent process of the last time 

point considered (i.e. 12 years after baseline, see supplementary text 6.2). The prediction was not derived from 

stratified analyses to avoid different scaling of the latent process across cohorts due to the difference in the 

estimated link function relating the latent process to the observed MMSE values. 



Supplementary Table 3. Estimated association of p.P522R in PLCG2 and APOE-ε4 with the cognitive decline in the Mini-Mental State Examination derived from the 

analysis of each MCI sample separately 

 
FACEa AgeCoDeb DCNc ADCd ADNIe 

 

Est/ 

χ² 

SE/ 

df 
p 

Est/ 

χ² 

SE/ 

df 
p 

Est/ 

χ² 

SE/ 

df 
p 

Est/ 

χ² 

SE/ 

df 
p 

Est/ 

χ² 

SE/ 

df 
p 

Effect of p.P522R in PLCG2 on the cognitive decline          

p.P522R f 1.108 0.705 0.116 -0.518 0.361 0.152 0.084 0.654 0.897 -1.579 1.314 0.230 0.395 0.581 0.496 

p.P522R*time 0.414 0.217 0.056 0.073 0.124 0.557 0.123 0.324 0.705 0.922 0.846 0.276 0.181 0.172 0.293 

p.P522R*time^2 -0.019 0.035 0.584 0.010 0.016 0.499 0.094 0.186 0.614 0.712 0.517 0.168 -0.002 0.035 0.946 

Multivariate 
Wald  test 

3.991 2 0.136 2.079 2 0.354 0.265 2 0.876 1.905 2 0.386 1.588 2 0.452 

Effect of APOE-ε4 on the cognitive decline          

APOE-ε4 f -0.745 0.155 1.42*10-6 -0.445 0.145 0.002 -0.484 0.195 0.013 -0.367 0.156 0.018 -1.272 0.154 1.64*10-16 

APOE-ε4*time -0.306 0.047 9.29*10-11 -0.199 0.052 0.00013 -0.061 0.117 0.599 -0.084 0.067 0.219 -0.340 0.049 2.58*10-12 

APOE-ε4*time^2 -0.004 0.008 0.566 -0.011 0.008 0.192 0.033 0.062 0.596 0.005 0.024 0.812 0.0001 0.010 0.993 

Multivariate 

Wald Test 
59.346 2 1.39*10-13 27.907 2 8.71*10-7 1.817 2 0.403 1.726 2 0.421 62.162 2 3.17*10-14 

 

Note. The analyses were adjusted for cohort, age at baseline, sex, education and APOE-ε4 status. Unequal interval scaling was adjusted using a beta-link function. A Brownian 

motion process zero-mean Gaussian stochastic process was used to model correlation between observations besides the random effects. Multivariate Wald test refers to the joint 

test of the interaction of the genotype (i.e. p.P522R or APOE-ε4) with polynomials of time. 

a: sample size n=1092. 

b: sample size n=927. 

c: sample size n=529. 

d: sample size n=431. 

e: sample size n=616. 

f: effect on cognitive function at the median of observation time  (i.e. two years). 

Est=Estimate; SE=Standard error; p=p-value; df=degrees of freedom; χ²=statistic of the multivariate Wald test.  



Supplementary Table 4. Results from a linear mixed model with a latent process using the pooled sample 

of MCI patients and including the interaction between p.P522R and APOE-ε4 

 
Est SE p 

APOE-ε4 -0.751 0.076 6.08*10-23 

p.P522R 0.134 0.325 0.679 

APOE-ε4*p.P522R 0.029 0.479 0.952 

APOE-ε4*time -0.262 0.026 8.56*10-24 

p.P522R *time 0.120 0.110 0.28 

APOE-ε4*p.P522R*time 0.185 0.175 0.290 

APOE-ε4*time² -0.006 0.004 0.208 

p.P522R*time² 0.019 0.014 0.193 

APOE-ε4*p.P522R*time² -0.043 0.026 0.094 

Multivariate Wald Test χ² df p 

Interaction APOE-ε4* p.P522R*polynomials of time 2.87 2 0.238 

Note: Est=Estimate; SE=Standard error; p=p-value; df=degrees of freedom; χ²=statistic of the multivariate Wald 

test; 

 

  



Supplementary Table 5. Associations of p.P522R in PLCG2 with cognitive decline in multiple 

neuropsychological domains in population-based samples 

3 City Study 
MMSEa 

 (n=5870) 

Episodic memory 

 (Benton test. 

n=5837)b 

Verbal fluency 

 (Isaac Set Test. 

n=5858)d 

 
Est/ χ² SE/df p Est/ χ² SE/df p Est/ χ² SE/df p 

p.P522R 0.026 0.117 0.821 0.078 0.10 0.416 0.117 0.145 0.418 

p.P522R*time -0.014 0.017 0.400 -0.003 0.01 0.804 0.012 0.019 0.523 

p.P522R*time^2 0.0002 0.002 0.904 -0.0002 0.002 0.915 0.002 0.0004 0.848 

Multivariate Wald Test 0.710 2 0.701 0.106 2 0.948 0.534 2 0.766 

LASA 
MMSEa 

 (n=2216) 

Episodic memory 

 (15-WT test. 

n=2213) a 

 

 Est/ χ² SE/df p Est/ χ² SE/df p    

p.P522R -0.098 0.160 0.540 -0.105 0.204 0.607    

p.P522R*time 0.003 0.013 0.802 0.019 0.017 0.254    

p.P522R*time^2 -0.001 0.001 0.371 - - -    

Multivariate Wald Test 0.989 2 0.610 - - -    

AgeCoDe 
MMSEa 

 (n=1965) 

Episodic memory 

 (CERAD DR. 

n=1961)b 

Verbal fluency 

 (CERAD animal fluency. 

n=1969)c 

 
Est/ χ² SE/df p Est/ χ² SE/df p Est/ χ² SE/df p 

p.P522R 0.105 0.223 0.639 -0.350 0.324 0.281 -0.273 0.297 0.358 

p.P522R*time 0.035 0.035 0.311 -0.032 0.041 0.434 -0.015 0.038 0.699 

p.P522R*time^2 -0.002 0.005 0.718 0.002 0.006 0.713 -0.005 0.006 0.356 

Multivariate Wald Test 1.217 2 0.544 0.740 2 0.691 0.90 2 0.636 

Note: Est=Estimate; SE=Standard error; p=p-value; df=degrees of freedom; χ²=statistic of the multivariate Wald 

test; LASA=Longitudinal aging study Amsterdam; AgeCoDe= German study on aging, cognition and dementia; 

MMSE=Mini Mental State Examination; CERAD=Consortium to Establish a Registry for Alzheimer's Disease 

neuropsychological test battery; DR=delayed recall; 15-WT test=Dutch version of the Auditory Verbal Learning 

Test (15-word test). 
a
 unequal interval scaling of the outcome was adjusted using a beta-link function. 

b
 unequal interval scaling of the outcome was adjusted using a I-spline function with 6 equidistant interior knots. 

c
 unequal interval scaling of the outcome was adjusted using a I-spline function with 4 interior knots placed at 

the quartiles of the outcome distribution. 
d
 unequal interval scaling of the outcome was adjusted using a I-spline function with 3 equidistant interior knots. 

In the 3C study and AgeCoDe, a Brownian motion process residual error structure was used. In LASA, a first-

order autoregressive residual error structure was applied. Multivariate Wald test refers to the joint significance 

test of the interaction of the genotype (i.e. p.P522R or APOE-ε4) with the polynomials of time.  



Supplementary figure 3. Effect of p.P552R in PLCG2 on the cognitive decline in the Three-City study (3C)  

 

Note. A) Effect of cognitive decline in global cognitive function measured by the Mini-Mental State Examination. 

B) Effect of cognitive decline in episodic memory measured by the Benton test. 

C) Effect of cognitive decline in semantic memory  measured by the Isaac Set test.  



Supplementary figure 4. Effect of p.P552R in PLCG2 on the cognitive decline in the Longitudinal Ageing Study Amsterdam (LASA)  

 

Note. A) Effect of cognitive decline in global cognitive function measured by the Mini-Mental State Examination. 

B) Effect of cognitive decline in episodic memory measured by the delayed recall measure of the Auditory Verbal Learning Test.   



Supplementary figure 5. Effect of p.P552R in PLCG2 on the cognitive decline in the AgeCoDe cohort  

 

Note. A) Effect of cognitive decline in global cognitive function measured by the Mini-Mental State Examination. 

B) Effect of cognitive decline in episodic memory measured by CERAD word list delayed recall. 

C) Effect of cognitive decline in semantic memory measured by CERAD verbal fluency task. 

  



Supplementary Table 6. Associations of p.P522R with CF levels of AD biomarkers 

Type of analysis Aβ1-42 levels pTau181 levels tTau levels 

 

N 

 (p.P522R) 
Est.  (SE) p d  (95%-CI) 

N 

 (p.P522R) 
Est.  (SE) p d  (95%-CI) 

N 

 (p.P522R) 
Est.  (SE) p d  (95%-CI) 

European MCI patients 

main 11 -0.06  (0.06) 0.273 -0.33 (-0.93 to 0.26) 11 -0.12 (0.06) 0.068 -0.56 (-1.16 to 0.04) 11 -0.11 (0.07) 0.113 -0.48 (-1.08 to 0.11) 

unadjusted 11 -0.09  (0.07) 0.192 -0.40 (-0.99 to 0.20) 11 -0.12 (0.07) 0.095 -0.51 (-1.1 to 0.09) 11 -0.11 (0.07) 0.151 -0.44 (-1.03 to 0.16) 

ADNI MCI patients 

main 7 0.02  (0.07) 0.802 0.10  (-0.65 to 0.85) 7 -0.10  (0.08) 0.184 -0.51  (-1.26 to 0.24) 7 -0.13  (0.08) 0.110 -0.61  (-1.37 to 0.14) 

unadjusted 7 0.02  (0.08) 0.798 0.10  (-0.65 to 0.85) 7 -0.08  (0.08) 0.325 -0.38  (-1.13 to 0.37) 7 -0.11  (0.09) 0.237 -0.45  (-1.20 to 0.30) 

Pooled MCI patients 

main 18 -0.02 (0.04) 0.686 -0.10 (-0.56 to 0.37) 18 -0.12 (0.05) 0.015 -0.58 (-1.05 to -0.11) 18 -0.12 (0.05) 0.017 -0.57 (-1.04 to -0.10) 

unadjusted 18 -0.04 (0.05) 0.415 -0.19 (-0.66 to 0.27) 18 -0.10 (0.05) 0.049 -0.47 (-0.93 to 0.00) 18 -0.11 (0.06) 0.063 -0.44 (-0.91 to 0.02) 

Note. Main analyses were adjusted for age, gender, APOE-ε4 status and origin of the CSF samples. The unadjusted analyses included no additional covariates to p.P522R.  

N(p.P522R)= Number of p.P522R carrier. Est= Estimate, SE= Standard error, P= p-value, d= standardized mean differences (Cohen’s d), 95%-CI= 95% Confidence interval, tTau levels= total Tau levels in CSF, MCI= 

Mild cognitive impairment.  

 

 

 

 



Supplementary Table 7. Interaction of p.P522R with CSF sample. 

 
Aβ1-42 levels pTau181 levels tTau levels 

MCI patients χ² (df) p χ² (df) p χ² (df) p 

Interaction p.P522R x CSF sample 2.74 (2) 0.254 1.75 (2) 0.417 2.59 (2) 0.273 

 
Est.  (SE) p Est.  (SE) p Est.  (SE) p 

p.P522R 0.03(0.07) 0.722 -0.11(0.08) 0.149 -0.14(0.08) 0.094 

Bonn Sample 0.04(0.04) 0.329 -0.01(0.04) 0.797 0.03(0.05) 0.441 

Erlangen sample -0.03(0.01) 0.046 0.00(0.02) 0.88 0.03(0.02) 0.046 

Amsterdam sample -0.02(0.01) 0.106 0.00(0.02) 0.95 0.04(0.02) 0.015 

p.P522R*Bonn Sample
a
 - - - - - - 

p.P522R*Erlangen Sample -0.13(0.1) 0.186 -0.05(0.11) 0.665 -0.02(0.11) 0.883 

p.P522R*Amsterdam Sample 0.07(0.15) 0.641 0.17(0.17) 0.312 0.25(0.17) 0.149 

Note. Analyses were adjusted for age, gender, APOE-ε4 status. 

a: The Bonn sample included no p.P522R carrier. 

Aβ1-42 levels=amyloid beta 1-42 levels in CSF, pTau181 levels =phosphorylated tau levels in CSF, tTau levels= total Tau levels in CSF, Est== 

Estimate, SE= Standard error. P= p-value. d= standardized mean differences (Cohen’s d), 95%-CI= 95% Confidence interval, tTau levels= 

total Tau levels in CSF, MCI= Mild cognitive impairment, df=degrees of freedom; χ²=statistic of the multivariate Wald test. 

 



Supplementary Table 8. Effect of p.P522R on CSF biomarkers of AD in comparison to the effect of APOE-ε4 

Type of analysis Aβ1-42 levels pTau181 levels tTau levels 

 
N (c) Est.  (SE) p d   (95%-CI) N (c) Est.  (SE) p d   (95%-CI) N (c)a Est.  (SE) p d   (95%-CI) 

p.P522R 18 -0.02 (0.04) 0.686 -0.10 (-0.56 to 0.37) 18 -0.12 (0.05) 0.015 -0.58 (-1.05 to -0.11) 18 -0.12 (0.05) 0.017 -0.57 (-1.04 to -0.10) 

APOE-ε4 593 -0.17 (0.01) 1.36*10-52 -0.91 (-1.02 to -0.79) 593 0.12 (0.01) 3.51*10-22 0.56 (0.45 to 0.67) 578 0.15 (0.01) 2.29*10-29 0.67 (0.55  to 0.78) 

Note. Analyses were adjusted for age, gender, APOE-ε4 status and origin of the CSF samples. 

N(c)= Number of p.P522R or APOE-ε4 carrier, Est=Estimate, SE= Standard error, P= p-value. d= standardized mean differences (Cohen’s d), 95%-CI= 95% Confidence interval, Aβ1-42 levels=amyloid beta 1-42 levels in 

CSF, pTau181 levels =phosphorylated tau levels in CSF, tTau levels= total Tau levels in CSF, MCI= Mild cognitive impairment.  

 

Supplementary Table 9. Interaction of p.P522R with APOE- ε4 

 Aβ1-42 levels pTau181 levels tTau levels 

 
χ² df p χ² df p χ² df p 

Interaction p.P522R x APOE- ε4 1.25 1 0.264 0.06 1 0.811 1.77 1 0.184 

 
N (p.P522R) Est.  (SE) p N (p.P522R) Est.  (SE) p N (p.P522R) Est.  (SE) p 

p.P522R 18 -0.08 (0.07) 0.255 18 -0.11 (0.07) 0.149 18 -0.20 (0.08) 0.011 

APOE- ε4 18 -0.17 (0.01) 1.12*10-52 18 0.12 (0.01) 5.33*10-22 18 0.15 (0.01) 3.74*10-28 

APOE- ε4*p.P522R 18 0.1 (0.09) 0.265 18 -0.02 (0.1) 0.811 18 0.14 (0.1) 0.184 

Note. Analyses were adjusted for age, gender, APOE-ε4 status and origin of the CSF samples. 

N(p.P522R)= Number of p.P522R carrier. Est=Estimate, SE= Standard error, P= p-value, Aβ1-42 levels=amyloid beta 1-42 levels in CSF, pTau181 levels =phosphorylated tau levels in CSF, tTau levels= total Tau levels in 

CSF, MCI= Mild cognitive impairment.  

 

 



Supplementary Table 10. Association of p.P522R and APOE-ε4 with the categories of the ATN framework 

in a multinomial regression model 

 
AD pathologic change 

(A+T-) 

non-AD pathologic change 

(A- T+ or N+) 

normal AD biomarkers 

(A-T-N-) 

Patients per group (N(p.P522R)) 129 (7) 
 

279 (2) 
 

323 (4) 
 

Patients per group (N(APOE-ε4)) 129 (62)  279 (95)  323 (82)  

 
OR  (95%-CI) p OR  (95%-CI) p OR  (95%-CI) p 

main 6.28 (3.32-11.88) 0.004 0.93 (0.39-2.24) 0.938 1.81 (0.86-3.83) 0.425 

unadjusted   5.93 (3.28-10.75) 0.003 0.75 (0.32-1.73) 0.728 1.3 (0.66-2.55) 0.700 

Note. Patients with an AD (A+T+N+) were chosen as the reference category and ORs indicate the enrichment in the respective ATN 

category in comparison to patients with AD. Therefore an OR>1 indicates that the carrying p.P522R is positively associated with this 

category. The references group consisted of 522 individuals of which 5 were p.P522R carriers.  

The main analysis was adjusted for age, gender, and APOE-ε4. The unadjusted analyses included no additional covariates to p.P522R. 

A=amyloid beta 1-42. T= phosphorylated tau. N=total tau. N(p.P522R)= Number of p.P522R carrier. N(APOE-ε4)= Number of APOE-ε4 

carrier. OR=Odds ratio. 95%-CI= 95% Confidence interval. p=p-value. 

 

 

Supplementary Table 11. Test statistics for the smooth term in the varying-coefficient generalized additive 

model representing the effect of p.P522R on tau pathology or neurodegeneration conditional on Abeta1-42 

levels  

  
pTau181 levels tTau levels 

  
F edf Ref.df p F edf Ref.df p 

main MCI 4.389 2.0 2.0 0.013 3.929 2.0 2.0 0.020 

unadjusted MCI 4.068 2.0 2.0 0.017 3.741 2.0 2.0 0.024 

Note. The main analyses were adjusted for age, gender, APOE-ε4 status and origin of the CSF samples. The unadjusted analyses included no 

additional covariates to p.P522R.  

Aβ1-42 levels=amyloid beta 1-42 levels in CSF, pTau181 levels =phosphorylated tau levels in CSF, tTau levels= total Tau levels in CSF, F=F- 

value of the test statistic. Edf=effective degrees of freedom of the smooth term. Ref.df= nominator degrees of freedom to compute the p-

value of the F-statistic. p: p-value. tTau levels: total Tau levels in CSF. MCI: Mild cognitive impairment. 



Supplementary Table 12. Results from structural equation model of the relationship between p.P522R, 

cognitive decline, and CSF Abeta1-42 levels as well as pTau181 and total Tau levels in CSF 

 

pTau181 levels
 a

 tTau levels 
b
 

 
Est SE p 

 
Est SE p 

Abeta1-42 on p.P522R 0.086 0.078 0.271 Abeta1-42  on p.P522R 0.086 0.078 0.271 

pTau181 on p.P522R -0.225 0.105 0.033 tTau on p.P522R -0.224 0.115 0.051 

pTau181 on Abeta1-42  -0.341 0.035 2.42*10-22 tTau on Abeta1-42  -0.365 0.038 1.04*10-21 

I on p.P522R -1.943 3.256 0.551 I on p.P522R -2.458 3.249 0.449 

S on p.P522R 2.399 5.749 0.676 S on p.P522R 2.067 5.651 0.715 

Q on p.P522R -0.254 1.426 0.859 Q on p.P522R -0.162 1.423 0.910 

I on Abeta1-42  4.117 1.021 5.53*10-5 I on Abeta1-42  3.168 1.016 0.002 

S on Abeta1-42  3.965 1.254 0.002 S on Abeta1-42  3.753 1.254 0.003 

Q on Abeta1-42  -0.338 0.315 0.283 Q on Abeta1-42  -0.307 0.314 0.327 

I on pTau181 -2.553 0.916 0.005 I on tTau -5.000 0.824 1.30*10-9 

S on pTau181 -2.158 1.124 0.055 S on tTau -2.528 1.029 0.014 

Q on pTau181 0.011 0.295 0.971 Q on tTau 0.090 0.259 0.728 

 

 

Note. a: Model fit indices: RMSEA=0.017, CFI=0.996, SRMR=0.059, see supplementary text 5.4. 

b: Model fit indices: RMSEA=0.016, CFI=0.996, SRMR=0.056, see supplementary text 5.4. 

Est=Estimate, SE=Standard error, p=p-value. pTau181 levels =phosphorylated tau levels in CSF, tTau levels= total Tau levels in CSF, 

MCI=Mild cognitive impairment. Analyses were adjusted for age, gender, APOE-ε4 status and origin of the CSF samples. 

 

 

 

Supplementary Table 13. Estimation of an indirect effect of p.P522R ion the cognitive change in the 

normalized MMSE from baseline mediated by pTau181 and total Tau levels in CSF 

pTau181 levels Est CI- CI+ Total Tau levels Est CI- CI+ 

1-year change on p.P522R 0.484 0.002 1.160 1-year change on p.P522R 0.546 -0.040 1.271 

2-year change on p.P522R 0.963 0.067 2.142 2-year change on p.P522R 1.052 -0.080 2.317 

3-year change on p.P522R 1.438 0.100 3.097 3-year change on p.P522R 1.517 -0.114 3.140 
4-year change on p.P522R 1.908 0.124 4.110 4-year change on p.P522R 1.942 -0.132 4.069 

Aβ1-42 levels Est CI- CI+ Aβ1-42   levels Est CI- CI+ 

1-year change on p.P522R 0.296 -0.213 0.967 1-year change on p.P522R 0.278 -0.192 0.903 

2-year change on p.P522R 0.535 -0.374 1.737 2-year change on p.P522R 0.504 -0.347 1.582 

3-year change on p.P522R 0.715 -0.502 2.265 3-year change on p.P522R 0.680 -0.469 2.108 
4-year change on p.P522R 0.838  -0.538  2.625 4-year change on p.P522R 0.804 -0.551 2.610 

Note. Aβ1-42 levels=amyloid beta 1-42 levels in CSF, pTau181 levels =phosphorylated tau levels in CSF, tTau levels= total Tau levels in CSF, 

Est=Estimate,CI+=upper bound of the bootstrap 95% confidence interval based on 1000 draws. CI-=lower bound of the bootstrap 95% 

confidence interval based on 1000 draws.  



Supplementary Table 14. Interaction analyses between p.P522R and CSF biomarkers concerning the 

cognitive decline in the normalized MMSE  

Aβ1-42 levels
a
 pTau181 levels

b
 tTau levels

c
 

 
χ² df p 

 
χ² df p 

 
χ² df p 

Wald test 

for interaction 
8.856 2 0.012 

Wald test 

for interaction 
0.680 2 0.712 

Wald test 

for interaction 
0.290 2 0.865 

 
Est SE p 

 
Est SE p 

 
Est SE p 

I on p.P522R -0.625 3.669 0.865 I on p.P522R -2.515 3.788 0.507 I on p.P522R -2.530 3.899 0.516 

S on p.P522R 0.813 4.548 0.858 S on p.P522R 2.367 4.780 0.621 S on p.P522R 0.533 5.010 0.915 

Q on p.P522R 0.807 1.242 0.516 Q on p.P522R -0.157 1.252 0.900 Q on p.P522R 0.067 1.313 0.960 

I on Abeta1-42   5.013 0.971 2.44*10-7 I on pTau181 -3.624 0.880 3.82*10-5 I on tTau -5.861 0.825 1.24*10-12 

S on Abeta1-42   4.697 1.158 4.99*10-5 S on pTau181 -3.504 1.058 0.001 S on tTau -3.565 1.003 3.79*10-4 

Q on Abeta1-42   -0.316 0.297 0.287 Q on pTau181 0.129 0.268 0.632 Q on tTau 0.161 0.260 0.535 

I on 

p.P522R* 

 Abeta1-42   

-9.112 11.902 0.444 

I on 

p.P522R* 

pTau181 

-5.995 8.509 0.481 

I on 

p.P522R*  

tTau 

-0.816 7.182 0.910 

S on 

p.P522R*  

Abeta1-42   

44.833 15.187 0.003 

S on 

p.P522R* 

 Tau181 

4.480 9.846 0.649 

S on 

p.P522R*  

tTau 

-3.725 8.880 0.675 

Q on 

p.P522R*  

Abeta1-42   

-11.940 4.186 0.004 

Q on 

p.P522R*  

pTau181 

-0.346 2.465 0.888 

Q on 

p.P522R* 

 tTau 

0.545 2.242 0.808 

Note. All analyses were adjusted for age, gender, education, APOE-ε4 and CSF sample. CSF biomarkers were analyzed in separate models. 

a: model fit indices: RMSEA=0.018, CFI=0.994, SRMR=0.054, see supplementary text 5.4. 

b: model fit indices: RMSEA=0.016, CFI=0.995, SRMR=0.058, see supplementary text 5.4. 

c: model fit indices: RMSEA=0.018, CFI=0.994, SRMR=0.055, see supplementary text 5.4. 

Aβ1-42 levels=amyloid beta 1-42 levels in CSF, pTau181 levels =phosphorylated tau levels in CSF, tTau levels= total Tau levels in CSF, 

N(p.P522R)=Number of p.P522R carrier. Est= Estimate, SE: Standard error. p: p-value. tTau levels: total Tau levels in CSF.  df=degrees of 

freedom; χ²=statistic of the multivariate Wald test.  

  



Supplementary Figure 6. Plot of the interaction effect between p.P522R and Abeta1-42 levels in CSF 

concerning the cognitive decline over 4 years in the normalized MMSE. 

 

Note. The effect of p.P522R on the cognitive decline was evaluated at meaningful levels of Abeta1-42 in CSF. For 

high amyloid pathology, we chose Abeta1-42 CSF levels of 600pg/ml which is the cut-off for amyloid positivity 

in the CSF sample used as the reference (i.e. the DCN cohort) in the harmonization procedure for CSF 

measurements (see supplementary text 3.2). For low amyloid pathology, we selected one SD above the sample 

mean, which was 1070 pg/ml in this sample. 

 

 

  



Supplementary Table 15. Enriched pathways in the co-regulation network of PLCG2 

Gene Ontology (GO) 

biological process 

pathway ID 

pathway description Enrichment FDR p-value 

GO:0002250 adaptive immune response 3.3572 <10-16 

GO:0002449 lymphocyte-mediated immunity 3.2614 <10-16 

GO:0001906 cell killing 3.0954 <10-16 
GO:0002285 lymphocyte activation involved in immune response 3.0609 <10-16 

GO:0002440 production of molecular mediator of immune response 2.9131 <10-16 

GO:0001819 positive regulation of cytokine production 2.7451 <10-16 
GO:0002237 response to molecule of bacterial origin 2.7408 <10-16 

GO:0002521 leukocyte differentiation 2.6672 <10-16 

GO:0002446 neutrophil-mediated immunity 2.6400 <10-16 
GO:0001818 negative regulation of cytokine production 2.6366 <10-16 

Note. FDR=false discovery rate. 

Supplementary Table 16. Enriched pathways in the co-regulation network of APOE 

Gene Ontology (GO) 

biological process 

pathway ID 

pathway description Enrichment FDR p-value 

GO:0050727 regulation of inflammatory response 7.6917 6.3474e-7 

GO:0072376 protein activation cascade 18.109 6.3474e-7 

GO:0002526 acute inflammatory response 12.020 0.0000027578 
GO:0002576 platelet degranulation 13.118 0.0000055631 

GO:0006959 humoral immune response 8.4142 0.000011671 

GO:0051604 protein maturation 6.3237 0.00016886 
GO:0010038 response to metal ion 5.1998 0.0025467 

GO:0002697 regulation of immune effector process 4.8586 0.0039744 

GO:0007272 ensheathment of neurons 9.3334 0.0041462 
GO:0052547 regulation of peptidase activity 4.4285 0.0069136 

Note. FDR=false discovery rate. 

Supplementary Table 17. Enriched pathways in the co-regulation network of TREM2 

Gene Ontology (GO) 

biological process  

pathway ID 

pathway description Enrichment FDR p-value 

GO:0002683 negative regulation of immune system process 8.1190 0.0000038106 

GO:0050727 regulation of inflammatory response 7.9166 0.000044576 

GO:0002764 immune response-regulating signaling pathway 11.611 0.00011007 
GO:0002526 acute inflammatory response 5.8925 0.00033348 

GO:0036230 granulocyte activation 11.809 0.00033348 

GO:0006959 humoral immune response 5.7158 0.00037289 
GO:0050866 negative regulation of cell activation 8.5887 0.00045555 

GO:0070661 leukocyte proliferation 6.4062 0.00094674 

GO:0002694 regulation of leukocyte activation 7.3966 0.00094674 
GO:0002697 regulation of immune effector process 5.4014 0.00094674 

Note. FDR=false discovery rate. 

Supplementary Table 18. Enriched pathways in the shared co-regulation network of APOE, TREM2, and 

PLCG2  

Gene Ontology (GO) 

biological process  

pathway ID 

pathway description Enrichment FDR p-value 

GO:0050727 regulation of inflammatory response 12.307 0.0026615 

GO:0072376 protein activation cascade 32.193 0.0026615 

GO:0002683 negative regulation of immune system process 10.680 0.0037252 
GO:0002526 acute inflammatory response 19.232 0.0081362 

GO:0048771 tissue remodeling 19.232 0.0081362 

GO:0006959 humoral immune response 12.239 0.038857 
GO:0001818 negative regulation of cytokine production 11.570 0.041260 

GO:0002446 neutrophil-mediated immunity 7.4642 0.041338 

GO:0036230 granulocyte activation 7.4045 0.041338 
GO:0032102 negative regulation of response to external stimulus 9.4929 0.060951 

Note. FDR=false discovery rate. Boldly printed processes are Gene Ontology parent terms of complement 

activation. 



Supplementary Table 19. The overlap between genes from the APOE-TREM2-PLCG2 shared gene set and 

genes differentially expressed in microglia under neurodegenerative conditions  

Neurodegenerative condition Overlapping genes 

Human AD patients[33] APOE, C1QA, C1QB, CD14, SPP1, TYROBP, 

VSIG4 

5XFAD AD mouse model[22] APOE, GPNMB, LPL, SPP1, TMEM176A, 

TREM2, TYROBP 

hMAPT-P301S tauopathy mouse model[14] APOE, C1QB, C3, GPNMB, LPL, SPP1 
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