Temporal sequences of brain activity at rest are constrained by white matter
structure and modulated by cognitive demands
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SUPPLEMENTARY FIGURE 1. Instantaneous coactivation can deviate from temporal correlation patterns. (a)
Sinusoidal signal X1 with additive Gaussian noise is plotted in blue. Signal X2, generated by subtracting X1 from a slower sine
wave, plus Gaussian noise, is plotted in red. k-means clustering extracts three visually obvious coactivation states (partition
shown in light red, green, and blue). (b) Plot of X1 amplitude (z-axis) vs. X2 amplitude (y-axis), yielding a Pearson’s
r = —0.70. (c) X1 and X2 concatenated into a data matrix, Xa. We concatenated X, with two channels of Gaussian noise
to generate a 4-column data matrix X, in order to use the correlation distance metric. (d) Centroids, or “states,” obtained
through k-means clustering of X,. Three states emerge; the first state consists of low- and high-amplitude activity in X1 and
X2, respectively. The second state consists of low amplitude activity in X2 with near 0 activity in X1. The third state consists
of high amplitude activity in X1 with low amplitude activity in X2. (e) The first 3 principal component (PC) loadings of Xa.
PC1 captures States 1 and 2, but no single PC captures State 3. (f) The cross-correlation structure of Xa, which does not
reveal the states in panel (d). (g) Signal X1, generated by Gaussian noise plus random positive sinusoidal activations is plotted
in blue. Signal X2, generated by Gaussian noise plus synchronized coactivation or coinactivation with X1, is plotted in red.
k-means clustering extracts three visually obvious coactivation states (partition shown in light red, green, and blue). (h) Plot
of X1 amplitude (z-axis) vs. X2 amplitude (y-axis), yielding a Pearson’s r =0.018. (i) X1 and X2 concatenated into a data
matrix Xp. We concatenated Xy with two channels of Gaussian noise to generate a 4-column data matrix X, in order to use
the correlation distance metric. (j) Centroids, or “states,” obtained through k-means clustering of Xy,. Three states emerge;
the first consists of high-amplitude activity in X1 with low-amplitude activity in X2. The second consists of near 0 activity
in X1 and X2. The third consists of high-amplitude activity in both X1 and X2. (k) The first 3 principal component (PC)
loadings of Xy. PC1 does not exist within the data; PC2 mirrors State 1; and both States 2 and 3 are not reflected in any
PCs. (1) Cross-correlation structure of Xy, which does not trivially reveal the cluster centroids in panel (d).



SUPPLEMENTARY FIGURE 2. Choosing the number of clusters. (a) Variance explained by clustering BOLD data for
k =2 to k =11. (b) Gain in variance explained by k-means clustering when k is increased from k — 1 to k. Less than 1%
of additional variance explained is added for k > 5. (¢) Percentage of subjects missing at least one state for rest and n-back.
At k > 5, states begin to be incompletely represented across subjects. (d-f) Split-halves validation of cluster centroids (c),
and state transition and persistence probabilities for rest and n-back (d-e). Pearson correlation coefficients between transition
and persistence probabilities for each pair of split cluster partitions are predominantly » > 0.99, thus showing a high degree of
robustness to sample composition in estimating brain states and their dynamics.



SUPPLEMENTARY FIGURE 3. BOLD data exhibits clustering in regional activation space. We performed k-means
clustering on rest and n-back data from the n = 879 sample studied in the main text at k=5 using the correlation distance
in a 462-region activation space. Here we show silhouette scores for rest and n-back time points from 40 random subjects;
however, results are consistent across random sets of 10 subjects, suggesting marked reliability. Silhouette scores range from -1
to 1 and are computed for each data point, with 1 indicating that a data point is closer to members of its assigned cluster than
to members of the next closest cluster, 0 indicating equidistance between the assigned cluster and the closest cluster, and -1
indicating that the data point is closer to another cluster. (a) Silhouette values for data points from 462 independent, normally
distributed channels. (b) Silhouette values for data from an independent phase randomized (IPR) null model applied separately
to resting state and n-back BOLD data. This null model preserves regional autocorrelation while eliminating non-stationarities
and reducing covariance. (c¢) Silhouette values for actual resting state and n-back BOLD data. (d) Distribution of silhouette
values across all clusters for a null model preserving autocorrelation (red, pipr) and for actual data (blue, pireqr). A two-sample
t-test confirms that silhouette values are larger in the real data, indicating that the data are clustered in regional activation
space beyond what is expected from a signal with the same regional autocorrelations. (e) Cluster centroids at k = 5 using IPR
resting state and n-back BOLD data. (f) Spatial correlation between IPR null centroids in panel e (y-axis) and full sample
centroids (z-axis).



SUPPLEMENTARY FIGURE 4. Similarity between states in rest and n-back. (a) Spatial correlation between cluster
centroids reveals anticorrelation between DMN- and DMN+, between DMN- and FPN+, and between VIS4 and VIS-. (b)
Spatial correlation between centroids calculated separately for rest and n-back reveal high correspondence, consistent with the
identification of recurrent activity patterns common to both scans. (¢) Cluster centroids computed by including equal amounts
of rest and n-back task data as input to the clustering algorithm. Cluster names based on maximum cosine similarity were
identical to the full sample centroids. (d) Spatial correlation between the 6 minute rest and the 6 minute n-back task cluster
centroids and the full sample cluster centroids. Correlation coefficients of > 0.99 were found only on the diagonal, suggesting
1-to-1 correspondence between the two centroid sets. The observed off-diagonal anticorrelations are consist with those observed
in the full sample, as shown in panel (a). (e) Group average state transition probabilities for rest (right) and n-back (left)
using the 6 minute n-back task cluster partition reveals similar structure and high correlation with full sample state transition
probabilities. (f) The y-axis shows the percentage of subjects missing at least one state in their time series for rest (purple)
and for n-back (yellow), for values of k on the z-axis ranging from 2 to 18. There existed at least one subject with missing
states for all £ > 5, supporting the choice of k = 5 for the main text.



SUPPLEMENTARY FIGURE 5. Key findings reproduced at k¥ = 5 using the 234-node Lausanne parcellation. (a)
Cluster centroids at k = 5 are similar to that of the 463-node Lausanne parcellation. (b) State fractional occupancies change
with increasing cognitive load similarly compared to the 463-node parcellation analysis. (c-d) Correlation between structure-
based transition energy prediction (z-axis) and empirically derived transition probability (y-axis) for resting state (left) and the
2-back condition of the n-back task (right), using inputs weighted evenly throughout the whole brain (c) or weighted positively
towards the visual system (d).



SUPPLEMENTARY FIGURE 6. Brain states and dynamics in an independent sample with higher sampling rate
and no global signal regression. (a) Cluster centroids for clustering of rest and n-back task BOLD data from the Human
Connectome Project (HCP) with volumes acquired 4 times as frequently as the PNC and no global signal regression. (b) Spatial
correlation between centroids for HCP and PNC data sets, is high along the diagonal, allowing for unambiguous matching of
brain states between the two samples. (¢) Spatial correlation between HCP centroids. DMN+ and DMN-, along with VIS+ and
VIS-, exhibit strong anticorrelation. (d-e) HCP group average state transition probability matrices for rest (d) and n-back (e)
scans. Off-diagonal elements of HCP rest and n-back transition matrices exhibit Pearson correlations of r = 0.83 and r = 0.76
with the PNC, respectively. HCP persistence probabilities are correlated with PNC persistence probabilities at » = 0.85 and
r = 0.85 for rest and n-back, respectively. (f) Non-parametric permutation testing demonstrating differences between the rest
and n-back group average transition probabilities and persistence probabilities. Extremes of the color axis indicate statistical
significance, with larger values indicating higher transition probabilities in n-back relative to rest. *, Bonferroni-adjusted
p < 0.05 or p > 0.95.



SUPPLEMENTARY FIGURE 7. Brain states after removing high motion frames.

(a) Cluster centroids at k = 5 after removing 76,339 volumes with > 0.1lmm framewise displacement leaving a total of
N = 226916 volumes. (b) Spatial correlation between motion-scrubbed centroids (y-axis) and full sample centroids (z-axis).
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SUPPLEMENTARY FIGURE 8. Functional connectivity does not fully explain spontaneous coactivation. (a)
Group average, mean functional connectivity within and between cognitive systems defined a priori'. We first computed average
functional connectivity matrices by averaging functional connectivity matrices over rest and n-back scans for each subject. Next,
we computed the average edge strength within and between regions in each a priori defined system to yield mean within- and
between-system functional connectivity. Finally, we computed the group average mean within- and between-system functional
connectivity across the n = 879 subjects from the main text, the values of which are displayed in black text overlaying each
heatmap element. * p < 0.05 for a one-sample t-test comparing the mean of the distribution of correlations across subjects to
0. (b) Mean temporal correlation values within regions belonging to the default mode network (DMN), visual system (VIS),
and somatomotor system (SOM) show positive correlations within systems on average. (c¢) Mean temporal correlations between
DMN, VIS, and SOM regions show weakly negative (DMN-VIS, DMN-SOM) or near 0 (VIS-SOM) correlations on average. (d)
Histogram of TRs (individual BOLD frames) exhibiting activity patterns with low activity in the DMN and high activity in
the SOM and VIS systems, as measured by correlation with a binary indicator vector. Despite low temporal correlations, we
still find activity patterns with spatial anticorrelation between these systems. (e-g) BOLD data in regional activation space.
Scatter plots where points are individual BOLD TRs in the DMN- cluster and axes reflect the mean activity across regions in
the DMN, VIS, or SOM for each TR, shown in 2 dimensions for ease of visualization. These plots show that TRs in the DMN-
cluster (Fig. 2a) have simultaneous high activity in VIS and SOM (panel d) in addition to low activity in the DMN (panel

e-f).
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SUPPLEMENTARY FIGURE 9. Brain state transitions are context-dependent and non-random. (a-b) Group
average state transition probability matrices for rest and n-back scans. Overlayed + or - indicates peorr < 0.05 for transitions
occurring more or less, respectively, than expected under an appropriate random null model, after Bonferroni correction over
50 tests (20 transition probabilities and 5 persistence probabilities for rest and n-back). Persistence probabilities are removed
from the diagonal and depicted above the transition matrix. (¢) Non-parametric permutation testing demonstrating differences
between the rest and n-back group average transition probability matrices. *, pcorr < 0.05, after Bonferroni correction over
25 tests: 20 transition probabilities and 5 persistence probabilities. (d) Subject-level distributions of matrix asymmetry scores
demonstrate that resting state transition probabilities are asymmetric relative to n-back. (e) Subject-level distributions of
the correlation between transition probabilities and Euclidean distance between states for rest (left) and n-back (right). (f)
Single-frame lagged, normalized auto mutual information for rest and n-back computed with full state time series (left) or
transition sequence only (right). **, p < 107'°. Paired t-tests were used in panels (d-f). TP, transition probability.
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SUPPLEMENTARY FIGURE 10. Spatial and topological properties of brain structure facilitate selective brain
state stability. (a) Construction of null states preserving symmetry and spatial clustering of activity using sphere-based
permutation?. We compare the minimum control energy required to maintain the brain in each state (persistence energy)
relative to spatially permuted states. () We computed persistence energy for each state and its permuted variants in group
average SC (orange) and found that the DMN+ state required less energy to persist than its permuted variants. We performed
the same test in two null models: a null model preserving topology (blue) and a null model preserving both topology and
spatial constraints (light blue). Orange *, pcorr < 0.05 after Bonferroni correction over each of the 5 states, separately for each
null model. (Deg. Pres.), degree distribution-preserving null model®. Space Pres., degree sequence, edge weight and length
distribution and relationship preserving null model*.
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SUPPLEMENTARY FIGURE 11. Selection of control horizon 7' and weighted control. (a-d) Relationship between
control horizon T (z-axis) and Spearman rank correlation (y-axis) between structurally predicted transition energies and
empirically observed transition probabilities for resting state data (panel a-b) and 2-back task data (panel c-d). (a, ¢) Transition
energies are computed for uniformly weighted inputs. Dashed line represents correlation between transition probabilities and
||xT — Xo||. Teal trace represents Spearman correlation using transition energies obtained from a distribution of null networks
with preserved degree sequence (DP Null). Shaded region represents the full range of this distribution. (b, d) Transition
energies are computed by weighting inputs towards different cognitive systems®. Dashed line represents correlation between
transition probabilities and weighted state-space transition distance, computed as (x7 — x,)T(BxBL) ™' (X7 — X,). Teal trace
represents Spearman correlation using transition energies computed with uniformly weighted inputs, the exact same as the blue
and orange traces in panel a and panel c, respectively. TP, transition probability. E, minimum control energy E,,.
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SUPPLEMENTARY FIGURE 12. Key findings reproduced at k = 6. (a) Cluster centroids at k = 6, similar to k = 5 with
the addition of a SOM+ cluster. (b) State fractional occupancies change with increasing cognitive load similarly compared to
k = 5. (c-d) Group average state transition probability matrices for rest (panel (c¢)) and 2-back condition of the n-back task
(panel (d)) scans. (e) Permutation testing to compare 2-back and rest transition probabilities. *, statistically significant after
Bonferroni correction over 30 transitions. (f-g) Correlation between structure-based transition energy prediction (z-axis) and
empirically derived transition probability (y-axis) for resting state (left) and the 2-back condition of the n-back task (right),
using inputs weighted evenly throughout the whole brain (f) or weighted positively towards the visual system (g). TP, transition
probability.
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SUPPLEMENTARY FIGURE 13. Brain state transitions within task blocks. (a-c) Group average state transition
probability matrices for 0-back (panel a), 1-back (panel b), and 2-back (panel ¢). Persistence probabilities are removed from
the diagonal and depicted above the transition matrix. Heatmap color scale represents the probability of transitioning between
two states from one BOLD frame to the next, or persisting in the same state. (d) Non-parametric permutation testing comparing

transition probabilities in the 2-back to the 0-back block. *, two-tailed non-parametric peorr < 0.05, after Bonferroni correction
over 20 transition probabilities and 5 persistence probabilities.
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Supplementary Notes, Discussion, and Methods

Sample exclusion criteria

We excluded 722 of the initial 1601 subjects for the fol-
lowing reasons: medical problems that may impact brain
function, incidental radiologic abnormalities in brain
structure, poor or incomplete FreeSurfer reconstruction
of T1 images®, high motion in rest or n-back fMRI scans,
high signal-to-noise ratio or poor coverage in task-free
or n-back task BOLD images, and failure to meet a rig-
orous manual and automated quality assurance protocol
for DTI®. Notably, our goal in constructing a sample
was to compare structure-function relationships between
contexts across all subjects in our sample. This analy-
sis required highly stringent inclusion criteria that only
included subjects with high quality data for rest BOLD,
n-back task BOLD, and DTI.

Functional Scan Types

During the resting-state scan, a fixation cross was dis-
played as images were acquired. Subjects were instructed
to stay awake, keep their eyes open, fixate on the dis-
played crosshair, and remain still. Total resting state
scan duration was 6.2 minutes. As previously described”,
we used the fractal n-back task® to measure working
memory function. The task was chosen because it is a
reliable probe of the executive system and is not contam-
inated by lexical processing abilities that also evolve dur-
ing adolescence®!9. The task involved the presentation
of complex geometric figures (fractals) for 500 ms, fol-
lowed by a fixed interstimulus interval of 2500 ms. This
occurred under the following three conditions: 0-back,
1-back, and 2-back, inducing different levels of working
memory load. In the 0-back condition, participants re-
sponded with a button press to a specified target fractal.
For the 1-back condition, participants responded if the
current fractal was identical to the previous one; in the
2-back condition, participants responded if the current
fractal was identical to the item presented two trials pre-
viously. Each condition consisted of a 20-trial block (60
s); each level was repeated over three blocks. The tar-
get/foil ratio was 1:3 in all blocks, with 45 targets and
135 foils overall. Visual instructions (9 s) preceded each
block, informing the participant of the upcoming condi-
tion. The task included a total of 72 s of rest, while a
fixation crosshair was displayed, which was distributed
equally in three blocks of 24 s at the beginning, middle,
and end of the task. Total task duration was 693 s. To
assess performance on the task, we used d’, a composite
measure that takes into account both correct responses
and false positives to separate performance from response

bias!!.

Imaging data acquisition and preprocessing

MRI data were acquired on a 3 Tesla Siemens Tim Trio
whole-body scanner and 32-channel head coil at the Hos-
pital of the University of Pennsylvania. High-resolution
T1-weighted images were acquired for each subject. For
diffusion tensor imaging (DTI), 64 independent diffusion-
weighted directions with a total of 7 b = 0 s/mm? acquisi-
tions were obtained over two scanning sessions to enhance
reliability in structural connectivity estimates'?. All sub-
jects underwent functional imaging (TR = 3000 ms; TE
= 32 ms; flip angle = 90 degrees; FOV = 192 x 192 mm;
matrix = 64 x64; slices = 46; slice thickness = 3 mm; slice
gap = 0 mm; effective voxel resolution = 3.0 x 3.0 x 3.0
mm) during the resting-state sequence and the n-back
task sequence'?!3. During resting-state and n-back task
imaging sequences, subjects’ heads were stabilized in the
head coil using one foam pad over each ear and a third
pad over the top of the head in order to minimize mo-
tion. Prior to any image acquisition, subjects were ac-
climated to the MRI environment via a mock scanning
session in a decommissioned scanner. Mock scanning was
accompanied by acoustic recordings of gradient coil noise
produced by each scanning pulse sequence. During these
sessions, feedback regarding head motion was provided
using the MoTrack motion tracking system (Psychology
Software Tools, Inc., Sharpsburg, PA).

Raw resting-state and n-back task fMRI BOLD data
were preprocessed following the most stringent of cur-
rent standards!#1® using XCP engine'6: (1) distortion
correction using FSL’s FUGUE utility, (2) removal of
the first 4 volumes of each acquisition, (3) template reg-
istration using MCFLIRT'", (4) de-spiking using AFNI’s
3DDESPIKE utility, (5) demeaning to remove linear
or quadratic trends, (6) boundary-based registration to
the individual high-resolution structural image, (7) 36-
parameter global confound regression including frame-
wise motion estimates and signal from white matter and
cerebrospinal fluid, and (8) first-order Butterworth filter-
ing to retain signal in the 0.01 to 0.08 Hz range. Following
these preprocessing steps, we parcellated the voxel-level
data using the 463-node Lausanne atlas'®. We excluded
the brainstem, leaving 462 parcels. Our choice of parcel-
lation scale was motivated by prior work showing that
parcellations of this scale replicate voxelwise clustering
results more than coarser scales with fewer parcels'®. We
excluded any subject with mean relative framewise dis-
placement > 0.5 mm or maximum displacement > 6 mm
during the n-back scan, and mean relative framewise dis-
placement > 0.2 mm for the resting state scan.

All DTI datasets were subject to a rigorous man-
ual quality assessment protocol that has been previously
described®. The skull was removed by applying a mask
registered to a standard fractional anisotropy map (FM-
RIB58) to each subject’s DTT image using an affine trans-
formation. The FSL EDDY tool was used to correct



for eddy currents and subject motion and rotate dif-
fusion gradient vectors accordingly. Distortion correc-
tion was applied using FSL’s FUGUE utility. DSI stu-
dio was then used to estimate the diffusion tensor and
perform deterministic whole-brain fiber tracking with a
modified FACT algorithm that used exactly 1,000,000
streamlines per subject excluding streamlines with length
< 10 mm?®2!, Lausanne 463-node atlas parcels were
extended into white matter with a 4 mm dilation?%2!
and then registered to the first b = 0 volume using an
affine transform®2°. For all analyses, edge weights in the
structural network were defined by the average fractional
anisotropy value for streamlines connecting each pair of
parcels?2.

Split-halves validation of clustering

To ensure that our final clustering solution for £k = 5
was not influenced by outliers or adversely impacted by
model overfitting, we split our sample into two equal par-
titions 500 times and performed k-means clustering sepa-
rately on each half of the dataset. We then matched clus-
ters by computing the cross-correlation between both sets
of centroids, and then by reordering the clusters based
on the maximum correlation value for each cluster. We
plotted those maximum correlation values and found that
most were > 0.99, suggesting a high degree of robustness
and stability in brain states (Supplementary Fig. 2d).
We also computed the state transition probabilities and
state persistence probabilities for each half separately for
rest and n-back, and then computed the correlation be-
tween the transition or persistence probabilities between
the two data set partitions. Similarly, we found very high
correlation values (> 0.99) for state transition probabili-
ties and state persistence probabilities for both rest and
n-back (Fig 2e-f). These observations suggest that our
estimates of brain dynamics are robust to outliers and
consistent across different subsamples of our data.

Functional connectivity does not fully explain instantaneous
coactivation

We posit that the alignment between a priori resting
state functional networks! (RSNs) and our coactivation
patterns cannot be fully explained by analyzing interre-
gional correlations in BOLD signal across time, which is
often called “functional connectivity.” Here, we provide
evidence that suggests that our coactivation patterns are
consistent with but not trivially explained by functional
connectivity. We also provide examples that explain why
temporal correlation does not necessarily explain instan-
taneous coactivation in general, and demonstrate that
k-means clustering is a useful tool for extracting coacti-
vation patterns.

In general, time series data can contain (1) unexpected
coactivation patterns in the presence of temporal corre-
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lation and (2) unexpected coactivation patterns in the
absence of temporal correlation. Here, we provide two
examples that illustrate how k-means clustering can re-
solve dissociation between temporal correlation and in-
stantaneous coactivation in multi-dimensional time se-
ries data. First, we show two stationary signals that
are anticorrelated across time (Supplementary Fig. 1b,
r = —0.70), but exhibit three unexpected coactivation
patterns (rather than two simple “on-off” and “off-on”
patterns) due to fluctuation between variable amplitudes
(Supplementary Fig. la-b). In this example, one sinu-
soidal signal fluctuates between three distinct amplitudes
and the other sinusoidal signal simply fluctuates between
a peak and a trough (Supplementary Fig. 1la). The
combination of these signals yields 3 distinct coactiva-
tion patterns, rather than the 2 patterns that would be
expected from a pair of temporally anticorrelated signals
(Supplementary Fig. 1c-e).

Next, we show two signals that are uncorrelated across
time, but still have multiple spontaneous coactivation
patterns (Supplementary Fig. 1la). Because these two
signals sometimes activate together and at other times
exhibit opposing activity, their temporal correlation is
near 0 (r = 0.018), yet there are 3 unique coactivation
patterns in the time series that k-means faithfully ex-
tracts. Positive temporal correlations could occur either
through simultaneous activation or simultaneous inacti-
vation, while temporal anticorrelation can result from op-
posing activity patterns. One could envision how adding
in additional signals (i.e. dimensions or brain regions)
could provide additional degrees of freedom to construct
a range of coactivation patterns for a given temporal cor-
relation structure. The sensitivity of the k-means ap-
proach to coactivation patterns in these two contexts
supports its use in fMRI data for identifying previously
unknown spontaneous interactions between neural net-
works, as well as the temporal organization of those net-
works.

When we apply k-means clustering to high-dimensional
BOLD data from resting state and n-back scans (Fig.
2a), we identify activity patterns with both expected
and unexpected features based on functional connectiv-
ity. In general, we saw that RSNs show coherent high or
low amplitude activity in each state (Supplementary Fig.
8c). This finding reflects the strong positive correlations
within RSNs (Supplementary Fig. 8a). We also see coac-
tivation patterns consistent with patterns of functional
connectivity between RSNs. For instance, the DMN+
state (Fig. 2a) shows spatial anticorrelation between the
temporally anticorrelated dorsal attention network and
default mode network?® (Supplementary Fig. 8a, mean
r = —0.10, one-sample t-test, df = 878, ¢ = —80.45,
p < 1071%). However, we also identify coactivation pat-
terns that do not trivially reflect functional connectiv-
ity. The DMN- state centroid (Fig. 2a) consists of low
amplitude activity throughout the default mode network
(DMN) with high amplitude activity throughout somato-
motor and visual systems (Fig. 2c). When clustering



on functional connectivity', these three systems emerge
as separate. Mean correlations within these systems are
positive (Supplementary Fig. 8a-b), but correlations be-
tween them are near zero (SOM and VIS) or weakly nega-
tive (DMN with SOM and VIS) (Supplementary Fig. 8c).
Based solely on functional connectivity, one would not
expect these three systems to strongly coactivate or op-
pose one another at the level of individual BOLD frames
(TRs), yet our analysis suggests that there are many TRs
with low DMN activity, high VIS activity, and high SOM
activity (Supplementary Fig. 8d-g). Moreover, VIS and
SOM have two additional configurations of coactivation
represented in the VIS+ and VIS- states (Fig. 2a-c). In
the VIS- state, we see high amplitude SOM activity with
low amplitude VIS activity, suggesting that at times VIS
and SOM systems coactivate and at other times they
oppose one another. In the VIS+ state we see low am-
plitude SOM activity with high amplitude VIS activity.
Purely based on functional connectivity, one might inap-
propriately draw the conclusion that these two RSNs are
independent given their mean correlation of zero, when
in reality they have 3 distinct configurations at the level
of individual time points. The behavior of VIS and SOM
is most consistent with the scenario presented in Sup-
plementary Fig. 1. Overall, these findings suggest that
our analysis identifies recurrent activity patterns whose
spatial organization reflects strong temporal correlations
within RSNs, but also with coactivation between RSNs
that cannot be trivially explained by temporal correla-
tions between RSNs.

Silhouette analysis of clustering

In order to support the use of a discrete model of
brain dynamics, we asked whether individual BOLD time
points from rest and n-back scans exhibited clustering
in a 462-region activation space. We used the silhou-
ette scores of BOLD time points as a measure of clus-
tering in this space. Silhouette scores range from -1
to 1 and are computed for each data point, with 1 in-
dicating that a data point is closer to members of its
assigned cluster than to members of the next closest
cluster, 0 indicating equidistance between the assigned
cluster and the closest cluster, and -1 indicating that
the data point is closer to another cluster. We com-
pared the silhouette scores for real BOLD data points
from the PNC, data points from 462 independent ran-
dom Gaussian distributions, and data points from inde-
pendent phase randomized null time series?* based on
subject-specific BOLD data. This independent phase
randomized null model (IPR) preserves the autocorre-
lation within each region, but destroys covariance be-
tween regions. When we compared the silhouette scores
for clustering of real BOLD data to independent ran-
dom Gaussian and autocorrelation-preserving null data,
we found that the real data had higher mean silhouette
scores than that of the autocorrelation-preserving null
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data (Supplementary Fig. 3a, difference in mean silhou-
ette score actual minus null = 0.047, two sample t-test,
df = 27598, t = 115.03, p < 10~*%). Additionally, the
centroids generated by clustering this null data had little
obvious structure (Supplementary Fig. 3e) and showed
little similarity to the original centroids (Supplementary
Fig. 3f). These findings suggest that BOLD data exhibit
non-trivial clustering in regional activation space.

Impact of scan composition on brain states and dynamics

To ensure that our results were not biased by the fact
that there were a larger number of n-back volumes (225
per scan) than rest volumes (120 per scan), we used the
partition generated by clustering both entire scans to-
gether to compute separate centroids for volumes in rest
or n-back scans. This analysis revealed a mean spatial
Pearson correlation of 0.96 between corresponding cen-
troids (Supplementary Fig. 4b). Next, we generated
a new sample by concatenating the first 6 minutes of
the n-back task data for each subject and the entire 6
minutes of the rest data for each subject. We ran this
sample through the clustering algorithm at £ = 5 and
found that the cluster centroids (Supplementary Fig. 4c)
were highly similar to those computed from the full sam-
ple (mean Pearson r = 0.99; Supplementary Fig. 4d).
We also computed transition probabilities using this clus-
ter partition and identified highly similar group average
transition matrix structure (rest, Pearson r = 0.997, n-
back, Pearson r = 0.989, Supplementary Fig. 4e), sug-
gesting that the temporal order of state labels was largely
unaffected by the scan composition of the sample. More-
over, these results suggest that n-back state transitions
are internally consistent.

Finally, we show that the differences between rest and
n-back in the proportion of subjects with any absent
states (Supplementary Fig. 4f) is attenuated relative to
the full sample (Supplementary Fig. 2e). This finding
suggests that in the full sample, the n-back task data
has better state representation due to better sampling,
rather than poor classification of rest volumes. However,
even with equal samples, the rest dataset still has more
subjects with missing states, suggesting that there may
be more variability in brain dynamics during rest. Im-
portantly, there were still no subjects with absent states
for rest or n-back at k < 5 (Supplementary Fig. 4f), and
there was at least 1 subject with a missing state in rest
or n-back at k > 5 (though bars are very small in Supple-
mentary Fig. 4f). Collectively, these results support the
simultaneous generation of partitions for rest and n-back
volumes and the choice of k = 5 for analysis in the main
text.



Impact of sampling rate, global signal regression, and head
motion on brain states and dynamics

The BOLD data from the PNC was acquired at a
sampling rate of one volume every 3 seconds'?, which
is relatively slow compared with other large data sets,
including the Human Connectome Project?®, which sam-
ples every 0.72 seconds. The standard preprocessing
pipeline for this data set involves regression of head mo-
tion parameters, white matter confounds, cerebrospinal
fluid confounds, and global signal from each voxel’s
time series'®26. It is controversial whether this pro-
cedure, known as “global signal regression,” induces
anticorrelation®7-28,

Thus, we selected 100 unrelated subjects from the min-
imally preprocessed version of the Human Connectome
Project (HCP) data set? and performed the following
preprocessing steps on resting state and n-back working
memory task scans: (1) head motion regression, (2) linear
and quadratic detrending, (3) bandpass filtering to retain
the 0.01 to 0.08 Hz range, and (4) parcellation accord-
ing to the 462 region Lausanne atlas. We concatenated
all 405 volumes from the working memory task with the
first 405 volumes from the resting state over all 100 sub-
jects. We chose to make the number of volumes from
each scan equal so that the clustering algorithm would
not be biased towards one scan or the other.

Next, we performed k-means clustering on this matrix
and computed the centroids (Supplementary Fig. 6a).
Every HCP centroid was maximally correlated with only
one PNC centroid, and vice versa, allowing for unambigu-
ous matching between the two sets of brain states (Sup-
plementary Fig. 6b). The DMN+ and DMN- states were
the most similar to PNC states, while VIS+ and VIS-
exhibited slightly lower correlations (Supplementary Fig.
6b). DMN+ and DMN- states, as well as VIS+ and VIS-
states, exhibited strong anticorrelation with each other
(Supplementary Fig. 6c¢). Nevertheless, the HCP off-
diagonal elements of the transition probability matrices
(i.e. transitions not persistence) for rest and 2-back block
of the n-back task were correlated with PNC transition
probabilities at » = 0.74 and r = 0.57, respectively (Sup-
plementary Fig. 6d-e). This finding suggests that while
there were differences in the spatial activity patterns of
brain states, their dynamic progression through time was
relatively similar. The unexplained variance between the
two samples could be due to differences in age, with the
PNC comprised of developing youths and the HCP com-
prised of healthy adults. Notably, task dynamics were
less similar between the two groups, possibly reflecting
stronger age-related changes in task dynamics relative
to resting state. Moreover, the differences in transition
probabilities between 2-back and rest were highly similar
in HCP and in PNC (Supplementary Fig. 6e), with in-
creased transitions from DMN and FPN states into VIS
states. Overall, these findings suggest that while global
signal regression and sampling rate may impact the spa-
tial activity patterns comprising brain states to some de-
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gree, it does not impact estimation of their dynamics or
the presence of spatial anticorrelation in their activity
patterns.

Finally, we tested whether the identification of re-
current coactivation patterns with k-means clustering
was biased by the inclusion of single frames with sub-
millimeter framewise displacement. We removed 76,339
frames associated with > 0.1 mm framewise displace-
ment, and repeated the clustering on the remaining
226,916 frames using correlation distance and kK = 5. The
resulting centroids (Supplementary Fig. 7a) were nearly
identical to the centroids found in Figure 2a (Supple-
mentary Fig. 7b, all » > 0.99 for corresponding cen-
troids). These findings suggest that high motion frames
minimally impact the clustering process. Therefore, we
included these frames so that we could have the largest
continuous sample of sequential frames from which to
compute transition probabilities and dwell times.

Assessing randomness, asymmetry, autocorrelation, and
distance dependence of brain state sequences

In addition to assessing the relationship between brain
state transitions, cognitive demands, and behavior, we
were also interested to assess important basic proper-
ties of the state tramsition probability matrix. First,
we were interested to validate previous findings which
suggest that the brain does not undergo every possible
transition with equal probability®?. For these analyses,
we begin with a transition matrix (Supplementary Fig.
9a-b) whose ij'"" element indicates the probability that
state ¢ occurs at time t and state j occurs at time t + ¢,
where ¢, is the repetition time (TR) of the scan (here, 3
seconds). The state transition probability matrix houses
several pieces of important information. We refer to the
diagonal entries in the transition probability matrix as
the persistence probabilities, because they indicate the
probability of remaining in a given state, and we refer
to the off-diagonal entries in the transition probability
matrix as the transition probabilities, because they indi-
cate the probability of transitioning between two distinct
states. Given this structure, we were interested to deter-
mine whether the brain dynamics that we observed could
occur in a uniformly random distribution of states and
state transitions. To test the randomness of persistence
probabilities, we generated subject-level null state time
series that preserved fractional occupancy but shuffled
the temporal sequence of states; for example, if the state
time series was given by the vector [1 1 2 2 3 3], then we
would permute the order of the entries in that vector uni-
formly at random, yielding a distribution of vectors with
the same proportion of each state, i.e. [1 213 3 2]. By
comparing the observed persistence probabilities to the
persistence probabilities in this null model, we can test
whether the observed persistence probabilities would be
expected based solely on fractional occupancy. We av-
eraged together all subjects to generate a distribution



of group average null persistence probabilities and com-
pared them to the empirically observed group average
persistence probabilities.

To test the randomness of transition probabilities, we
generated null state time series that preserved only the
states involved in transitions and reduced sequences of
repeating states to a single state. We removed repeating
states to control for the potentially independent effects
of state persistence, which is equivalent to temporal au-
tocorrelation, in estimating transition probabilities. For
example, if the state time series was given by the vec-
tor V' = [112233], then we would reduce that original
vector to the new vector V; = [123], and subsequently
permute the new vector uniformly at random. Specifi-
cally, for subject ¢ = 1,..,..N, we reduce the state se-
quence vector V; to a transition sequence vector V;, by
eliminating repeating states, compute a transition matrix
T;, and average across all subjects to generate a group
average transition matrix T = % Zf\il T; that excludes
state persistence (i.e. diagonal entries of T; are equal to
0). Next, we shuffle V;, uniformly at random to generate
Vi, , compute a transition matrix 7;,,, and average across
all subjects to generate a group average null transition
matrix T, = % Zf\]:l T, that excludes state persistence.
We generate a distribution of 7, by independently shuf-
fling V4, for each subject many times and averaging them
across subjects. Finally, we compare each element of T to
the corresponding element in a distribution of 7}, to com-
pute a two-tailed, non-parametric p-value for each transi-
tion. These analyses demonstrated that almost all of the
observed persistence and transition probabilities in both
resting state and the n-back task were unexpected under
these uniformly random null models (all peorr < 0.05 ex-
cept for DMN- to DMN+ during n-back, Supplementary
Fig. 9a-b).

Next, we assessed the properties of these transition
matrices, such as the matrix symmetry, which reflects
whether transitions from state 1 — 2 occur as frequently
as transitions from state 2 — 1, and so forth for every
state pair. Specifically, we quantified the asymmetry
of a k-by-k transition matrix A as:

k k
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z:l;*l,g;éz
k
Z Z
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In calculating this asymmetry score, we exclude the ele-
ments along the diagonal of A so as to only capture direc-
tional bias in transitions between pairs of states, without
including the probability of persisting in each state. The
values of this score range from 0 to 1, where 0 represents
a matrix that is symmetric about the diagonal and 1 rep-
resents a matrix in which the upper triangle is —1x the
lower triangle.

We were also interested in how much information
about future states was contained within the current
state. Drawing from information theoretic approaches
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to analysis of discrete signals, we computed the nor-
malized auto mutual information (NMI) between lagged
state time series to answer this question. Here, we asked
whether the current state contains information about the
subsequent state by computing NMI between the origi-
nal state time series and a state time series lagged by one
element. First, we created two copies of the state time
series. Then, we removed the first element from one, X,
and the last element from the other, Y, to generate two
vectors of equal length such that X; = Y;y1. We com-
puted the NMI between X and Y as:

— H(X]Y)
H(X) ’

where H(X) is the entropy of X and H(X][Y) is the con-
ditional entropy of X given Y. Where k is the number
of brain states,

and
k k
H(X[Y) =) Y P(X =iAY = j)xlog(P(X = iAY =
=1 j5=1

In normalizing by H(X), we ensure that the NMI ranges
from 0 to 1, with O representing two completely indepen-
dent signals and 1 representing two identical signals.

We anticipated that stimulus driven activity in the n-
back task that occurs independently of the current brain
state would result in a reduction of directional, asym-
metric state transitions relative to resting state and a
reduction in the dependency of state transitions on the
current state. Indeed, using the normalized measure of
matrix skewness described above, we found that tran-
sition probabilities at rest were more asymmetric than
during the n-back task (Supplementary Fig. 9d; paired
t-test, pnpack—rest = —0.062, df = 878, t = —24.96,
p < 1071%)s. Additionally, using the normalized auto-
mutual information metric described above, we found
that the current brain state carried less information
about the subsequent state during the n-back task rel-
ative to rest, even when controlling for autocorrelation
(Supplementary Fig. 9f: normalized auto mutual infor-
mation, pppeck—rest = —0.028, df = 878, t = —20.88,
Peorr < 10719). Consistent with our hypothesis, we also
found that the Euclidean distance between states was
anticorrelated with the transition probabilities between
states (Supplementary Fig. 9e). Interestingly, however,
the effect was stronger for n-back than for rest (Sup-
plementary Fig. 9e; paired t-test, pnpack—rest = —0.17,
df = 878, t = —22.74, p < 1071%), suggesting that the
brain is more prone to transition between distant states
while at rest.



Transition probabilities within task blocks

In addition to computing transition probabilities
across the entire n-back task scan, we also computed
transition probabilities within each task block. Because
the instances of a specific task block (i.e. 0-back, 1-back,
2-back) are not continuous, we counted the number of
each transition found within all instances of a given task
block, and then we divided the counts by the total num-
ber of possible transitions within all instances of that task
block (Supplementary Fig. 13a-c). Similar to the anal-
ysis of transition probabilities in the entire n-back scan,
we found that in the 2-back block, transitions from the
DMN+ and DMN- states into the VIS+ state were in-
creased relative to the 0-back block (Supplementary Fig.
13d). Interestingly, we saw that transitions from DMN+
and DMN- states in to FPN+ states increased from 0-
back to 2-back (Supplementary Fig. 13d), although in
the resting state these transitions were more frequent
relative to the entire n-back scan (Fig. 4c). However,
transitions from VIS4 to FPN+ did not differ between
the two conditions, while transitions into DMN+ and
DMN- states decreased (Supplementary Fig. 13d). These
findings suggest that increasing cognitive load biases the
traversal of some trajectories in state space without af-
fecting others.

Spatially embedded null models

To assay the specificity of brain state activity patterns
themselves, we compared P, for actual brain states to
P, for a distribution of null brain states. We generated
null states using a recent method developed to find over-
lap between activation maps while accounting for spa-
tial clustering of activity?. Following this method?, we
projected node-level data to a cortical surface, inflated
the surface to a sphere using FreeSurfer tools, applied
a rotation to the sphere, collapsed it back to a cortical
surface, and extracted node-level data by averaging over
vertices belonging to each region. This process preserves
the spatial grouping and relative locations of regions with
similar activity while still changing their absolute loca-
tions. Importantly, reflected versions of the same rota-
tion are applied for each hemisphere, thus also preserving
the symmetry of the original activity pattern.

To assay the specificity of our findings to higher order
topological features found in real structural brain net-
works, we compared P, estimates to a recently developed
network null model?, which preserves several important
spatial and topological features. This model exactly pre-
serves the degree sequence and edge weight distribution,
while approximately preserving the edge length distribu-
tion and edge length-weight relationship. We also com-
pared our findings to a more commonly used topological
null model® which preserves only the degree distribution,
but not the degree sequence, of the network.
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Comparing transition energies and transition probabilities
using control theory

A main goal of the present work was to provide a mech-
anistic description for how the brain’s large-scale white
matter architecture constrains its progression through
activation space. To accomplish this goal, we began
with a simple model of linear, time-invariant dynam-
ics along the white matter structural connectome esti-
mated from diffusion tractography. We represent the
volume-normalized, fractional anisotropy-weighted struc-
tural network as the graph G = (V, &), where V and &
are the vertex and edge sets, respectively. Let A;; be
the weight associated with the edge (4,7) € &, and de-
fine the weighted adjacency matrix of G as A = [A;;],
where A;; = 0 whenever (i,5) ¢ £. We associate a real
value with each of the IV brain regions to generate a vec-
tor describing the activity in each node at time ¢, and
we define the map x : Ry — RY to describe the dy-
namics of activity in network nodes over time. Here we
employ a simplified noise-free linear continuous-time and
time-invariant model of such dynamics:

x(t) = Ax(t) + Bu(t) , (1)

where x describes the activity (i.e. voltage, firing rate,
BOLD signal) of brain regions over time. Thus, the vec-
tor x has length N, where N is the number of brain
regions in the parcellation, and the value of x; describes
the activity level of that region. The matrix A is sym-
metric, with the diagonal elements satisfying A;; = 0.
Prior to calculating control energy, we divide A by &3(A)
and subtract 1 from the diagonal elements of A, where
&o(A) is the largest eigenvalue of A. This step makes the
system marginally stable by ensuring that the maximum
eigenvalue of the system is equal to 0. The input matrix
B identifies the control input weights, which we set to the
N x N identity matrix by default. For certain analyses
(Fig. 5d, Supplementary Fig. 11b and d, Supplementary
Fig. 5d, Supplementary Fig. 12d), a set of brain regions
K C V that belong to a particular cognitive system! was
given increased weight, such that

vy
B, — c ifq E/C. 7 )
1 otherwise

and c is a positive, real scalar value, which we set equal
to 2 here. The input u: R>g — RM denotes the control
strategy.

To compute the minimum control energy required to
drive the system from an initial activity pattern x, to a
final activity pattern x; over some time 7', we compute
an invertible controllability Gramian W for controlling
the network A from the set of network nodes K (in our
case, every node in the network), where:
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where T is the time horizon, which specifies the time over
which input to the system is allowed. After computing
the controllability Gramian, we can solve for the min-
imum control energy E,, by computing the quadratic
product between the inverted controllability Gramian
and the difference between x, and x7:

Em = (e2Txy —x0)TW 1 (eATx, —x7) . (4)

In Fig. 5b, we computed the k x k transition energy
matrix T, as the minimum energy required to transi-
tion between all possible pairs of the k clustered brain
states, given the white matter connections represented in
A. We refer to the on-diagonal elements of T, as persis-
tence energies, because they quantify the energy required
to maintain x, in the special case where x, = x7. We
refer to the off-diagonal elements of T, as transition en-
ergies, because they quantify the energy required to move
between all pairs of x, and xp where x, # Xp.

First, we sought to determine whether the brain states
that we observed (Fig. 2a) were easier to maintain (1)
compared to null states and (2) in real brain networks
compared to null brain networks. Thus, we compared
the persistence energy for the actual states to that of
null brain states? with preserved symmetry and spatial
clustering (Supplementary Fig. 10a). We found that the
persistence energy of the DMN+ state was significantly
lower than that of its respective null states (Supplemen-
tary Fig. 10b: one-tailed non-parametric test, DMN+,
Peorr = 0.045, 1000 sphere-permuted null states). The
DMN- state also required lower persistence energy than
many of its respective null states, although this result was
not significant after Bonferroni correction over all states
(Fig. 5b, one-tailed non-parametric test, peorr = 0.05,
1000 sphere-permuted null states). Crucially, the DP and
SLP null models did not exhibit selectively increased sta-
bility in DMN states, suggesting that DMN-driven states
may arise in part due to complex features of white matter
topology that allow for their stability.

Next, we hypothesized that the off-diagonal elements
of the empirically observed state transition matrix at rest
(Fig. 4a) would be anticorrelated with the off-diagonal
elements of T.. This hypothesis was based on the notion
that the brain would empirically prefer trajectories in
state space requiring smaller magnitude control inputs to
achieve. Note that we ignored the diagonal of T, which
captures whether persistence energies explain observed
state dwell times, a question that we were not sufficiently
powered to ask with only k£ = 5 states but that should
be revisited in future studies.

The choice of the control horizon T is critical for the
calculation of T,. When control inputs are uniformly dis-
tributed across the brain such that B is the identity ma-
trix, then as T approaches 0, the minimum control energy
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E,,, becomes proportional to the squared Euclidean norm
of X7 —x%,. ||x7—%,||? is the state space distance between
the initial and final state in the transition. At longer
time horizons, both ||x7 — x,||?> and the topology of A
determine E,,. When By is not the identity matrix, E,,
becomes proportional to (x7 —x,)T(BxBL) ! (x7 — x,)
as T approaches 0.

However, because the units of the edge weights of A,
obtained from deterministic tractography performed on
diffusion-weighted imaging data, are not measured in ac-
tivity per unit time, the value of T is arbitrary relative
to A and the real time in which neural activity was mea-
sured through BOLD fMRI. Therefore, we chose 7" in a
data-driven fashion by computing transition energies for
a range of T values using a group representative struc-
tural A matrix, and computing the Spearman rank cor-
relation between transition energies and the group aver-
age transition probability matrix from resting state {MRI
data (Supplementary Fig. 11a). We used the Spearman
rank correlation rather than the Pearson correlation in
order to reduce the effect of outliers on estimating the re-
lationship between transition probability and transition
energy. We found that the strongest negative correlation
value was obtained for 7" = 5, but similarly strong neg-
ative correlations were found for the range T' = [5, 10]
(Supplementary Fig. 11a). Accordingly, we used T' =5
for the analyses presented in Fig. 5b-c, Fig. 6¢, and Sup-
plementary Fig. 10b. We also carried out the same anal-
ysis using a distribution of null networks with preserved
degree sequence (see Fig. 5b), which revealed that there
was no 1" value yielding a correlation between transition
energies and observed resting state transition probabili-
ties as strongly negative as when we used the real struc-
tural connectivity matrix (Supplementary Fig. 11a).

In addition to controlling the brain with uniformly
weighted inputs, we also asked whether transition en-
ergies obtained using a non-uniform distribution of in-
puts might better explain the observed transition prob-
abilities. Specifically, we hypothesized that accounting
for external visual input during the fractal n-back task
might provide a more accurate estimation of the input
energy needed to achieve each transition. We weighted
the inputs towards one cognitive system' at a time while
still allowing input into every brain region, and then re-
computed the Spearman correlation between transition
energies and transition probabilities for the resting state
(Supplementary Fig. 11b) and the 2-back condition of
the n-back task (Supplementary Fig. 11d). This analysis
revealed that accounting for visual input in computing
transition energies improved our ability to explain the
observed brain state transition probabilities during the
2-back condition (Supplementary Fig. 11d VIS-weighted
subpanel, orange trace is lower than teal trace), and
abolished our ability to explain resting state transition
probabilities (Supplementary Fig. 11b VIS-weighted sub-
panel, blue trace is greater than 0 and dashed line is
near 0). However, we did not find a clear role for brain
structure in this relationship, as evidenced by the fact



that transition energy did not explain transition prob-
ability any better than the weighted distance between
states (Supplementary Fig. 11d, orange trace does not
dip below dashed line). Thus, we present results in
Fig. 5d for T = 0.001, where E,, is proportional to
(x7 — %,)T(BxBE) ' (xr — x,). Nevertheless, this find-
ing suggests a specificity of the constraints of state-space
transition distance on the brain’s empirically observed
progression through state space. Resting state transition
probabilities can be explained by unweighted state-space
distance (Supplementary Fig. 1la, dashed line, Spear-
man’s r = —0.32) but not by visual system-weighted
state-space distance (Supplementary Fig. 11b, VIS-
weighted dashed line, Spearman’s r = —0.06); 2-back
transition probabilities can be explained by unweighted
state-space distance (Supplementary Fig. 1lc, dashed
line, Spearman’s r = —0.61), but are explained best by
visual system-weighted state-space distance (Supplemen-
tary Fig. 11b, VIS-weighted dashed line, Spearman’s
r = —0.80). This result suggests that visual input allows
the brain to deviate from the constraints of state-space
distance found at rest, while an equal consideration of
visual inputs alongside other inputs is key to explaining
resting state transitions. Resolving the effect of struc-
ture on brain dynamics during a task may require full
knowledge of all input sources, which could potentially
be uncovered through a data-driven approach?'.

Impact of parcellation and cluster number

The choice of parcellation scale may impact analyses
involving tractography, where relative region sizes may
bias estimates of connectivity. We chose a relatively
fine-grained parcellation with 462 nodes because previ-
ous coactivation pattern analyses'® at this scale produced
cluster assignments similar to those obtained by clus-
tering at the voxel level. However, we were interested
to know whether we would obtain the same results us-
ing a coarser parcellation scale. Therefore, we repeated
the clustering procedure and subsequent control theoretic
analyses using the Lausanne 234 node parcellation'®.

First, this analysis revealed brain states whose spa-
tial maps were virtually identical to those generated us-
ing the 462 node parcellation (Supplementary Fig. 5a).
The fractional occupancy of these states also changed
with cognitive load in a similar fashion (Supplementary
Fig. 5a) compared to the results in Fig. 3d. Similar to
the results presented in the main text, we found a neg-
ative relationship between transition energies and em-
pirically observed brain state transition probabilities at
rest (Supplementary Fig. 5c, Spearman’s r = —0.62,
psrp < 0.001, ppp < 0.001) with a weak positive rela-
tionship between transition energies and transition prob-
abilities from the 2-back condition (Supplementary Fig.
5¢, Spearman’s r = 0.21, pspp = 1, ppp = 0.85). We
also found that discounting the weight of the visual sys-
tem in calculating state-space transition distance allowed
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us to better explain 2-back transition probabilities (Sup-
plementary Fig. 5d, Spearman’s r = —0.78, psrp = 1,
ppp = 1), and reduced our ability to explain resting state
transition probabilities (Supplementary Fig. 5d, Spear-
man’s r = —0.31, psrp < 0.001, ppp < 0.001). These
results suggest that one can quantify the constraints of
white matter architecture on brain state transitions at
rest at multiple scales of region definition, supporting
the generalizability of our findings.

A limitation of k-means clustering is the need to spec-
ify an absolute number of clusters. While the data sug-
gests that & = 5 is the optimal solution, one could cer-
tainly choose to analyze this data at multiple scales. Be-
cause of a recent study®? in which k = 6 was identified
as the optimal solution by the same heuristic, we repro-
duce our results at £k = 6 in the interest of facilitating
comparison between the two studies.

At k = 6, cluster centroid brain states interestingly
become grouped into 3 anticorrelated pairs (DMN+ and
DMN-, VIS+ and VIS-; FPN+ and SOM+), similar to
Ref.32. The states were also highly similar to those at
k = 5, with the DMN- state from k = 5 essentially
“split” into the SOM+ and DMN- state at k = 6. The
DMN- state at k = 6 state houses concurrent high ampli-
tude activity in the dorsal attention network and visual
system with low amplitude activity in the default mode
network (Supplementary Fig. 12a). This appearance of
“split” brain states is consistent with hierarchical state
organization®%33, which becomes apparent at different
clustering scales. As WM load increased from 0-back
to 2-back, we saw a decrease in DMN+ fractional oc-
cupancies with a concurrent increase in FPN+ and VIS
state fractional occupancies (Supplementary Fig. 12b).
Direct transitions between anticorrelated states were in-
frequent (Supplementary Fig. 12c-d), with a drastic shift
in transition probabilities towards VIS states and away
from DMN states during 2-back relative to rest (Sup-
plementary Fig. 12e). Similar to k = 5, at £k = 6
we found that 2-back task performance was related to
2-back state transitions from the VIS- state into states
with coherent frontoparietal and default mode activity
(Supplementary Fig. 12e). Specifically, we found that
transitions from VIS- into DMN- and FPN+ were pos-
itively associated with performance, consistent with the
high amplitude dorsal attention network activity and low
amplitude DMN activity found in the DMN- state (Sup-
plementary Fig. 12a). Additionally, transitions from the
VIS- state to the SOM+ state were negatively associ-
ated with performance, consistent with the frontoparietal
deactivation found in the SOM+ state (Supplementary
Fig. 12a). We again found a strong negative correla-
tion between transition energies and resting state transi-
tion probabilities (Supplementary Fig. 12f, Spearman’s
r = —0.87, psrp < 0.001, ppp < 0.001) that was spe-
cific to the topology of white matter, supporting the no-
tion that the constraints of white matter on state-space
progression generalizes across multiple scales of states.
Similar to our results at £k = 5, we found that discount-
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the weight of the visual system in calculating the

state-space distance of transitions allowed us to better
explain the state transitions observed during the 2-back
task, during which visual stimuli are frequently deliv-
ered (Supplementary Fig. 12g, Spearman’s r = —0.75,
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psrp = 0.4, ppp = 0.7). Overall, this analysis suggests
that our main findings hold true at near optimal values
of k, and that much can be learned from studying the
states of the brain at different scales.
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