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Supporting Information Text

A. Linear wave analysis with anisotropy. In this section, we present the magnon spectrum when the anisotropy is present, and
separately discuss the cases of Ising anisotropy (β > 0) and XY anisotropy (β < 0).

Ising Anisotropy. Following the parametrization in equation (15), The Hamiltonian near the saddle point Ncl
l is

H =(∇xφ1)2 + (∇xφ2)2 − αΦ̂(x) cos(φ1 − φ2)− β(cos2 φ1 + cos2 φ2)
+(∇xu1)2 + (∇xu2)2 + (∇xv1)2 + (∇xv2)2 − v2

1(∇xφ1)2 − v2
2(∇xφ2)2

−1
2αΦ̂(x)

[
2v1v2 + cos(φ1 − φ2)(2u1u2 − u2

1 − u2
2 − v2

1 − v2
2)
]

+ β(u2
1 cos 2φ1 + u2

2 cos 2φ2 + v2
1 cos2 φ1 + v2

2 cos2 φ2) + . . . ,

[1]

where the first line is the 0th order contribution, and the dots in the end represent higher-order terms in u and v. Switching to
the symmetric and anti-symmetric basis, this becomes

H =Hcl + 1
2
[
(∇xus)2 + (∇xua)2 + (∇xvs)2 + (∇xva)2]

− 1
8
{

(v2
a + v2

s)[(∇xφa)2 + (∇xφs)2] + 4vsva∇xφa∇xφs
}

+ α

4 Φ̂(x)
[
−v2

s(1− cosφa) + v2
a(1 + cosφa) + 2u2

a cosφa
]

+ β

4
[
(v2
s + v2

a) + (2u2
s + 2u2

a + v2
s + v2

a) cosφs cosφa − (4usua + 2vsva) sinφs sinφa
]

[2]

where Hcl is defined in equation (10) of the main text.
For the second order terms of the Hamiltonian, we go to the Lagrangian by

L2 = 1
2v2

(
|∂tus|2 + |∂tua|2 + |∂tvs|2 + |∂tva|2

)
− H2, [3]

which leads to the following coupled linear wave equations for u, v’s:

∂2
t us = v2q2

m

[
∇2

xus − β(cosφs cosφaus − sinφs sinφaua)
]
,

∂2
t ua = v2q2

m

[
∇2

xua − αΦ̂(x) cosφaua − β(cosφs cosφaua − sinφs sinφaus)
]
,

∂2
t vs = v2q2

m[∇2
xvs + 1

4
(
vs(∇xφs)2 + vs(∇xφa)2 + 2va∇xφs∇xφa

)
+ α

2 Φ̂(x)(1− cosφa)vs

− β

2 (vs + vs cosφs cosφa − va sinφs sinφa)],

∂2
t va = v2q2

m[∇2
xva + 1

4
(
va(∇xφs)2 + va(∇xφa)2 + 2vs∇xφs∇xφa

)
− α

2 Φ̂(x)(1 + cosφa)vs

− β

2 (va + va cosφs cosφa − vs sinφs sinφa)].

[4]

Taking us/a(x, t) = eiωtus/a(x) and using the Bloch ansatz (with k = k/qm being the dimensionless quasi-momentum
vector),

us/a(x) = ûs/a(x)eik·x, vs/a(x) = v̂s/a(x)eik·x, [5]

we obtain

ω2ûs = −v2q2
m

[
(∇x + ik)2ûs − β(cosφs cosφaûs − sinφs sinφaûa)

]
,

ω2ûa = −v2q2
m

[
(∇x + ik)2ûa − αΦ̂(x) cosφaûa − β(cosφs cosφaûa − sinφs sinφaûs)

]
,

ω2v̂s = −v2q2
m[(∇x + ik)2v̂s + 1

4
(
v̂s(∇xφs)2 + v̂s(∇xφa)2 + 2v̂a∇xφs∇xφa

)
+ α

2 Φ̂(x)(1− cosφa)v̂s

− β

2 (v̂s + v̂s cosφs cosφa − v̂a sinφs sinφa)],

ω2v̂a = −v2q2
m[(∇x + ik)2v̂a + 1

4
(
v̂a(∇xφs)2 + v̂a(∇xφa)2 + 2v̂s∇xφs∇xφa

)
− α

2 Φ̂(x)(1 + cosφa)v̂a

− β

2 (v̂a + v̂a cosφs cosφa − v̂s sinφs sinφa)].

[6]

In the collinear phase, the Neel vectors in the two layers are uniform and point either to the +ẑ or the −ẑ direction. Namely,
there are four possible combinations that are degenerate in energy: (φs, φa) = (0, 0), (2π, 0), and (π, π), (π,−π). The last two
of them satisfying cosφs = cosφa = −1 have the same discrete symmetry as that of the twisted-s phase, i.e. a simultaneous
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spin reflection Nz → −Nz and layer exchange. For this type of solutions, Eq. (6) reduces to a pair of degenerate equations for
(us, va) and (ua, vs):

ω2ûs = −v2q2
m[(∇x + ik)2 − β]ûs,

ω2ûa = −v2q2
m[(∇x + ik)2 + αΦ̂(x)− β]ûa.

[7]

For the other two solutions with cosφs = cosφa = 1, Eq. (6) reduces to a pair of degenerate equations for (us, vs) and (ua, va)
instead. The us and ua modes satisfy the same set of equations as in Eq. (7) upon substituting α→ −α. We will choose the
cosφs = cosφa = −1 case below for concreteness.

The twisted-a phase is the only one that involves the interplay between the symmetric and anti-symmetric modes. As can
be observed from Eq. (6), the us, ua modes are mixed, so are vs and va; the four branches thus combine into two, which we
will simply label as u and v. There is one Goldstone mode in the v-branch.

In the twisted-s phase, the four equations decouple, and there is again one Goldstone mode corresponding to the out-of-plane
rotation vs.

ω2ûs = −v2q2
m

[
(∇x + ik)2 + β cosφa

]
ûs,

ω2ûa = −v2q2
m

[
(∇x + ik)2 − αΦ̂(x) cosφa + β cosφa

]
ûa,

ω2v̂s = −v2q2
m[(∇x + ik)2 + 1

4(∇xφa)2 + α

2 Φ̂(x)(1− cosφa)− β

2 (1− cosφa)]v̂s,

ω2v̂a = −v2q2
m[(∇x + ik)2 + 1

4(∇xφa)2 − α

2 Φ̂(x)(1 + cosφa)− β

2 (1− cosφa)]v̂a.

[8]

The magnon bands in the three phases are shown in figure S1.
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Fig. S1. Top row: The ten lowest magnon bands in the collinear phase for the four branches, where we have chosen cosφs = cosφa = −1. The dimensionless parameters
are α = 1, β = 9. Middle: Magnon bands for the two branches u, v in the twisted-a phase at α = 9, β = 1. Bottom: Twisted-s phase for the four decoupled branches at
α = 2, β = 0.2.

Similar to the isotropic case, the magnon bands flatten at large α due to their confinement in the disconnected domains in a
large potential. Below we show an example α = 19, β = 9 in the twisted-a phase.
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Fig. S2. Flattening of magnon bands in the twisted-a phase at α = 19, β = 9.
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XY Anisotropy. Now we turn to the case d < 0, where the Neel vectors tend to lie in the XY plane. We thereby choose the
following ansatz:

Nl =
√

1− u2
l − v2

l Ncl
l (x) + ulul(x) + vlvl(x),

Ncl
l = sinφlx̂ + cosφlŷ, ul = cosφlx̂− sinφlŷ, vl = ẑ.

[9]

The Hamiltonian at the saddle point Ncl
l is Hcl = 1

2

[
(∇xφs)2 + (∇xφa)2]− αΦ̂(x) cosφa. Classically, the system behaves as if

there is no anisotropy, and φs is uniform everywhere. Near the saddle point, following the same procedure as the section above,
we obtain in the symmetric/anti-symmetric basis:

H2 =1
2
[
(∇xus)2 + (∇xua)2 + (∇xvs)2 + (∇xva)2]− 1

8(v2
a + v2

s)(∇xφa)2

+ α

4 Φ̂(x)
[
−v2

s(1− cosφa) + v2
a(1 + cosφa) + 2u2

a cosφa
]

+ β

2
[
(v2
s + v2

a)
]
,

[10]

where the parametrization β = 2|d|/ρq2
m has been used in the last line, which is slightly modified from that in the main text

(where β = 2d/ρq2
m). The corresponding Lagrangian then leads to the following linear wave equations:

∂2
t us = v2q2

m∇2
xus, ∂2

t ua = v2q2
m

[
∇2

xua − αΦ̂(x) cosφaua
]
,

∂2
t vs = v2q2

m[∇2
xvs + 1

4vs(∇xφa)2 + α

2 Φ̂(x)(1− cosφa)vs − βvs],

∂2
t va = v2q2

m[∇2
xva + 1

4va(∇xφa)2 − α

2 Φ̂(x)(1 + cosφa)vs − βva].

[11]

All the four branches decouple and almost reduce to the the isotropic form as in the main text, up to the constant shift of β in
the v-branches. With the Bloch ansatz, the above equations become

ω2ûs = −v2q2
m

[
(∇x + ik)2ûs

]
,

ω2ûa = −v2q2
m

[
(∇x + ik)2ûa − αΦ̂(x) cosφaûa

]
,

ω2v̂s = −v2q2
m[(∇x + ik)2v̂s + 1

4 v̂s(∇xφa)2 + α

2 Φ̂(x)(1− cosφa)v̂s − βv̂s],

ω2v̂a = −v2q2
m[(∇x + ik)2v̂a + 1

4 v̂a(∇xφa)2 − α

2 Φ̂(x)(1 + cosφa)v̂a − βv̂a].

[12]

There is one Goldstone mode in the ûs branch, corresponding to the rotation in the XY plane. As α increases, we will again
observe the flattening of ua and vs bands. We plot an example in the twisted phase in the figure S3 below.

�

�

�

�

�

�

�

�

�

�

��

��

��

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Fig. S3. The ten lowest magnon bands for the four branches at α = 9, β = 1 in the XY-anisotropy case.

B. General perturbative solution of the Euler Lagrange equations. We will encounter the following energy functional and the
subsequent partial differential equation in different situations in this work and thus we will first present a general study here.
One needs to minimize an energy density functional of the following form:

Hcl = 1
2 |∇xφ|2 − α (ξ(x) + ξ0) cosφ. [13]

ξ(x) is a periodic function defining a triangular lattice, and it has zero mean
∫

unit cell d
2x ξ(x) = 0 over one unit cell. One can

write a Fourier expansion for ξ(x) in terms of the reciprocal lattice vectors q̂ of the above traingular lattice:

ξ(x) =
∑
q̂ 6=0

ξq̂ e
iq̂·x, [14]

We will be seeking solutions for φ that minimize the energy functional above and are periodic with the same period as that
given by ξ(x). There is always a trivial solution φ = 0, with an average energy per unit cell equal to −ξ0α. Here we present a
perturbative calculation of a nontrivial solution when α and ξ0 are small; these two parameters are taken to be small with their
ratio ξ0

α
kept a constant.
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In order to find the function φ that minimizes the above energy functional, we will use the following Euler-Lagrange equation:

∇2
xφ = α (ξ(x) + ξ0) sinφ, [15]

which should be solved with periodic boundary conditions. Since we are interested in the specific limit of both α and ξ0 being
small, while keeping their ratio δ = ξ0

α
a constant, we will add a bookkeeping parameter ε to keep track of orders in our

perturbation; we will ultimately set ε = 1. The equation thus takes the form:

∇2
xφ = ε α (ξ(x) + εξ0) sinφ. [16]

We will find a nontrivial solution as a power series in ε:

φ = φ(0) + ε φ(1) + ε2 φ(2) + . . . [17]

To zeroth order in ε, one needs φ to be a constant, this constant will be determined in higher orders:

φ(0) = const. . [18]

To first order in ε, the differential equation takes the form:

O(ε) :
∑
q̂ 6=0

(
− |q̂|2

)
φ

(1)
q̂ eiq̂·x = α sinφ(0)

∑
q̂ 6=0

ξq̂e
iq̂·x. [19]

It could be satisfied if φ(1) takes the form:

φ(1) = −α sinφ(0)

(∑
q̂ 6=0

1
|q̂|2

ξq̂ e
iq̂·x

)
+ φ(1)[q̂=0], [20]

where φ(1)[q̂=0] denotes a constant needed in the first order solution, this constant should also be fixed using higher orders of
the equation. The second order in ε of the differential equation now reads:

O(ε2) :
∑
q̂ 6=0

(
− |q̂|2

)
φ

(2)
q̂ eiq̂·x = α cosφ(0)

( ∑
q̂1,q̂2 6=0

ξq̂1φ
(1)
q̂2

ei(q̂1+q̂2)·x

)
+ αξ0 sinφ(0). [21]

The left hand side of the above equation does not contain a q̂ = 0 component while the right hand side does:

− α2 cosφ(0) sinφ(0)
∑
q̂ 6=0

1
|q̂|2

|ξq̂|2 + αξ0 sinφ(0). [22]

This needs to vanish so that the second order differential equation holds, and this fixes the value of φ(0):

cosφ(0) = ξ0

α

1∑ 1
|q̂|2 |ξq̂|2

= δ
1∑ 1

|q̂|2 |ξq̂|2
. [23]

This result shows that for values of δ smaller than
∑ 1
|q̂|2 |ξq̂|2, a nontrivial solution could exist. Furthermore, the second

order part of φ could be found also using Eq. (21):

φ(2) = α2 sinφ(0) cosφ(0)

( ∑
q̂1 6=−q̂2

ξq̂1ξq̂2
ei(q̂1+q̂2)·x

|q̂1|2 |q̂1 + q̂2|2

)

− α cosφ(0)

(∑
q̂ 6=0

1
|q̂|2

ξq̂ e
iq̂·x

)
φ(1)[q̂=0] + φ(2)[q̂=0],

[24]

with the constant φ(2)[q̂=0] determined again by higher orders of the differential equation.
This procedure can be carried out order by order, we will just state the result for φ(1)[q̂=0], which could be derived from the

q̂ = 0 component of the ε3 order of the differential equation:

φ(1)[q̂=0] = α

2

(
1− 3 cos2 φ(0))

sinφ(0)

∑
q̂1,q̂3,q̂3

1
|q̂1|2 |q̂2|2

ξq̂1ξq̂2ξq̂3 δq̂1+q̂2+q̂3,0∑
q̂

1
|q̂|2 |ξq̂|2

. [25]

Also, the average energy density per unit cell can be found to be:

Hcl = −α
2

2

(∑
q̂ 6=0

1
|q̂|2
|ξq̂|2

)(
1 + cos2 φ(0))+O

(
α3) , [26]
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where O
(
α3) denotes any cubic power of α and ξ0. This should be compared with the trivial solution energy density, i.e. −ξ0α;

the twisted solution, when it exists, has lower energy to this order and thus it is the true ground state for δ <
∑ 1
|q̂|2 |ξq̂|2. At

δ =
∑ 1
|q̂|2 |ξq̂|2, interestingly, the two solutions coincide and thus this transition is continuous.

Finally we would like to emphasize that the above perturbative expansion works when both α and ξ0 are small with their
ratio δ = ξ0

α
kept constant; δ could be small or order one but the perturbation breaks down for large δ. Below, we will elaborate

on the three cases that the above perturbative calculation has been used in this work.

C. Twisted antiferromagnets. One should consider solving the following Euler-Lagrange equations for a twisted antiferromagnet
as discussed in the main text:

∇2
xφs = β cosφa sinφs, [27]

∇2
xφa =

(
β cosφs + αΦ̂(x)

)
sinφa, [28]

with Φ̂(x) =
∑3

a=1 cos(q̂a · x) and |q̂a| = 1. One can find a nontrivial twisted solution (which we call twisted-s in the main text)
by setting φs = 0 or π; it will be shown below that the φs = π solution has lower energy. Starting from the twsited-s solution,
increasing β at small α results in a transtion to the collinear phase, while on the other hand for large α, with increasing β, one
encounters a transition to the twisted-a phase. We will discuss these two cases separately below.

Transtion from the twisted-s phase to the collinear phase, large angles. At large angles, both α and β are small and we will treat the
Euler-Lagrange equations perturbatively. With choosing β = 0 or π, the equations read:

∇2
xφa = α

(
Φ̂(x)± α δ

)
sinφa, [29]

where + corresponds to φs = 0 and − corresponds to φs = π, and we will be considering the limit where the ratio δ = β
α2 is

kept constant, so that we can use the perturbation series developed above; Φ̂(x) plays the role of ξ(x), and α δ plays the role of
ξ0. The φa solution can be found order by order as discussed above:

φa = cos−1
(
±2

3δ
)
− α sinφ(0)

(
Φ̂(x)−

[1
2 − cot2 φ(0)

])
+O(α2, β). [30]

The energy density can also be calculated which leads to:

Hcl = −3
4α

2
(

1 + 4
9δ

2
)
± 1

6α
3δ
(
1 + 4δ2) +O

(
α4) . [31]

This result is kept to one higher order than the previous section; it is this higher order which shows that φs = π is preferred
energetically and so the − sign should be chosen throughout.

Also, it is worthwhile to note that the limit of δ → 0, corresponds to cosφ(0)
a = 0, which simply means that N1 ·N2 = 0 to

lowest order in α.

Transition from twisted-s phase to the twisted-a phase, small angles. At small angles, where α is large but β is kept still small, one
can take the configuration of φa to be completely determined by satisfying the −αΦ̂(x) cosφa term in the Hamiltonian: cosφa
can be taken equal to sign

[
Φ̂(x)

]
. This forms domains of constant φa, with narrow domain walls between them. On the other

hand, φs should be found using the Euler-Lagrange equations, which reduce to:

∇2
xφs = β cosφa sinφs. [32]

For small β, we can use the perturbation theory developed above, with β, and cosφa = sign
[
Φ̂(x)

]
(remember that φa is not

dynamical in the above equation) playing the roles of α, and ξ(x) + ξ0 respectively in Eq. (15). One can see that a twisted
solution with cosφ(0)

s = ξ0∑
1

|q̂|2 |ξq̂|2
1
β
exists, if β is large enough. It is found numerically that

ξ0 = 1
Au.c.

∫
unit cell

sign
[
Φ̂(x)

]
= −0.21,

which means that domains with antiferromagnetic interlayer exchange have larger area than those with ferromagnetic interlayer
coupling. Furthermore, one can also find numerically that∑ 1

|q̂|2
|ξq̂|2 = 0.71.

These two values show that a twisted solution for φs could appear if β > 0.29; this should correpsond to the β value for
which the transition between twisted-s and twisted-a phases occurs at large α, and it is indeed very close, with a few percent
error actually, to the value found numerically at large α in the phase diagram presented in the main text.
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D. Twisted ferromagnetic CrI3 bilayer. For the properties of the interlayer exchange parameter in a bilayer CrI3 system, we will
be following the numerical results presented in Ref. (1), where first-principles calculations are carried out: it is shown that
the interlayer exchange can vary considerably if the bilayer stacking is altered, and in fact it can change its sign; the pristine
CrI3 bilayer exhibits antiferromagnetic interlayer exchange, but the above statement implies that this can be modified if the
stacking is varied. Remarkably in a twisted bilayer, the displacement between the layers is modulated periodically with a unit
cell given by the moiré length and so all the different kinds of displaced bilayer stacking are realized. With this in mind, one
can use the energy functional discussed in the main text

Hcl =
∑
l

[
ρ

2 (∇Ml)2 − d (Nz
l )2
]
− J ′ Φ (u1(x)− u2(x)) M1 ·M2, [33]

where, as discussed in the main text, the stacking dependence of interlayer exchange, i.e. the function Φ(u1 − u2), could be
extracted from some first principle calculations, for example those carried out in Ref. (1).

We have used the plots presented in Ref. (1), to find the Fourier components of the interlayer exchange which is indeed a
periodic function of the interlayer displacement. It turns out that unlike the antiferromagnetic case initially studied in the
main text, i.e. Φ(x) =

∑3
a=1 cos(qa · x), the present Φ (u1(x)− u2(x)) function needs several harmonics along with a constant

term to be reproduced (see Fig. S4). We will ultimately work with a rescaled Hamiltonian that has a form that is identical to
that in the antiferromagnetic case:

Hcl = 1
2
(
|∇xφs|2 + |∇xφa|2

)
− (αΦ̂(x) + β cosφs) cosφa. [34]

α and β are defined as before and Φ̂(x) = Φ̂0 +
∑

q̂ 6=0 Φ̂q̂ e
iq̂·x, where q̂’s are the rescaled moiré reciprocal lattice vectors.

We have kept the lowest five harmonics along with the constant term here. Furthermore, Φ̂ is normalized in a way that∑
q̂ 6=0

1
|q̂|2
∣∣Φ̂q̂

∣∣2 = 1. Variation of this energy functional leads to the same set of equations

∇2
xφs = β cosφa sinφs, [35]

∇2
xφa =

(
β cosφs + αΦ̂(x)

)
sinφa, [36]

which should be solved to minimize the energy here also. We will only discuss the case of a positive infinitesimal β here, the
case of general positive β should be similar to the antiferromagnetic case. The effect of a positive infinitesimal β is to fix a
value for φs, and in this case it turns out that φs = 0 is energetically favored; this will be justified below.

The only functionality that needs to be determined now is that of φa, and the only parameter is α; this time Φ̂(x) has a
nonzero constant term Φ̂0 as well, and thus at small α the φa configuration is totally controlled by this constant term; we have
derived Φ̂0 = 0.026 > 0 which means that this constant imposes ferromagetic interlayer exchange, and thus the solution at
small α turns out to be φa = 0, with an energy density Hcl = −αΦ̂0. One expects this trivial state to give way to a twisted
solution with lower energy at some value of α; since Φ̂0 is small itself, the transition to a twisted phase happens at a small α
and thus one can set up a perturbative calculation for the twisted solution of φa at small α; this perburbative calculation,
which is discussed in Sec. B of the SM, yields

φa = φ(0)
a + α

(
− sinφ(0)

a

∑
q̂ 6=0

Φ̂q̂

|q̂|2
eiq̂·x + φ(1)[q̂=0]

a

)
+O(α2, α Φ̂0), [37]

with cosφ(0)
a = 1

α
Φ̂0. This means that the twisted solution exists for α above α0 = Φ̂0 = 0.026 to leading order. The energy

density for this state turns out to be Hcl = − 1
2

(
α2 + Φ̂2

0
)
to leading order; this shows that indeed a continuous transition to

the twisted phase happens at α = α0.

Fig. S4. A reproduced plot of interlayer exchange energy per unit cell of bilayer CrI3 as a function of the displacement between the two layers. The data is extracted from
figures in Ref. (1). The two axes show displacement in the two directions in the units of a real space unit cell length; the interlayer exchange is indeed a periodic function. The
blue and red regions show ferromagnetic and antiferromagnetc interlayer exchange.
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For very large values of α similar to what happens in the twisted antiferromagnets discussed in the main text, the twisted
solution implies that φa is either 0 or π almost everywhere, so that cosφa = sign[Φ̂(x)] except for narrow domain wall regions
where Φ̂(x) = 0.

Here we can see why φs = 0 is chosen for an infinitesimal positive β in two different limits: at small α, the constant term Φ̂0
is ferromagnetic and thus the energy will decrease by setting φs = 0; for large α on the other hand, since one is in the extreme
twisted phase, one should note that the area with ferromagnetic interlayer coupling is larger than that with antiferromagnetic
coupling, or in other words

1
Au.c.

∫
unit cell

sign
[
Φ̂(x)

]
> 0,

and thus φs = 0 is again energetically favored. It is worthwhile to mention that this is a coincidence in CrI3, that both small
and large α limits prefer interlayer ferromagnetism; this could well not be the case in other materials in which cases it is
reasonable to expect a transition at intermediate α from φs = 0 to φs = π.
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