

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Gender makes the difference in exertional heat illness: A Systematic Review

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-031825
Article Type:	Research
Date Submitted by the Author:	20-May-2019
Complete List of Authors:	Alele, Faith; James Cook University, College of Healthcare Sciences Malau-Aduli, Bunmi; James Cook University, College of Medicine and Dentistry Malau-Aduli, Aduli; James Cook University, College of Public Health, Medical and Veterinary Sciences Crowe, Melissa; James Cook University, Division of Tropical Health and Medicine
Keywords:	OCCUPATIONAL & INDUSTRIAL MEDICINE, ACCIDENT & EMERGENCY MEDICINE, Heat Stroke, Armed Forces, Women
	·

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 3	4	Condon malvos the difference in exertional heat illness. A Systematic Deview
4 5	T	Gender makes the difference in exercional near inness: A Systematic Keview
6 7	2	Type of article: Review
8 9	3	Authors
10	4	Faith O. Alele ^{1*}
11	5	MPHTM, MBBS
12 13	6	Faith.alele@mv.jcu.edu.au
14	7	+61426156266
15	,	
16	ð	
17	9	A/Prof Bunmi S. Malau-Aduli ²
18	10	PhD, MSc, BSc (Hons)
19	11	Bunmi.malauaduli@jcu.edu.au
20	12	
21	13	A/Prof Aduli FO Malau-Aduli ³
22	14	DED MSc DSc (Hors)
23	14	PIID, MISC, BSC (HOIIS)
24	15	Aduli.malauaduli@jcu.edu.au
25	16	
26	17	Dr Melissa Crowe ⁴
27	18	PhD BSc (Hons)
28	10	Malissa crowa@iou adu au
29	19	<u>Menssa.erowe(a/jeu.edu.au</u>
30	20	
32 33	21	¹ College of Healthcare Sciences, James Cook University, Townsville QLD 4811, Australia
34 35	22	² College of Medicine and Dentistry, James Cook University, Townsville QLD 4814, Australia
36	23	³ College of Public Health, Medical and Veterinary Sciences, James Cook University,
37	24	Townsville OI D 4811 Australia
38	24	Townsvine QLD 4011, Australia
39	25	⁴ Division of Tropical Health and Medicine, James Cook University, Townsville OLD 4811,
40	26	Australia
41	20	
42 43	27	
44 45	28	*Corresponding author:
46	29	Faith O. Alele, College of Healthcare Sciences, James Cook University, Townsville OLD 4811
47	30	Australia Townsville OI D 4811 Australia
48	30	Australia, Townsville QED 4011, Australia
49 50	31	Tel: +61426156266
51 52	32	Email: <u>faith.alele@my.jcu.edu.au</u>
53 54	33	
55 56	34	Word count: 3992
57	35	
58 59		
60	36	Abstract

Page | 1

BMJ Open

Objectives: The aim of this review is to describe the epidemiology of all heat related illnesses
in women compared to men in the armed forces and to identify risk factors and gender
differences in heat illness and heat tolerance.

40 Design: A systematic review of multiple databases (MEDLINE, Emcare, CINAHL,
41 PsycINFO, Informit, and Scopus) was conducted from inception of the databases to the 1st of
42 April 2019.

43 Eligibility criteria: Studies investigating heat illness and heat tolerance in women in the armed
44 forces.

Results: Twenty-seven (27) studies were included in the review. Measures used to describe heat illness were proportions and incidence rates. The average proportion of heat stroke events in women was lower than in men (12% vs 88%). In addition, men had significantly higher heat stroke incidence compared to women (median = 0.27, interquartile range = 0.11 vs median = 0.15, interquartile range = 0.03; U= 10.50, P < 0.001). However, the incidence of other heat injuries was similar between men and women (median = 1.41, interquartile range = 0.37 vs median = 1.62, interquartile range = 0.97; U = 47.50, P = 0.058). Investigated factors associated with heat illness and tolerance included gender, age, level of education, ethnicity, body mass index (BMI), maximal aerobic capacity (VO_{2max}) , positive sickle cell trait, being in service for less than 1 year, and unit of service. Women were more likely to be heat intolerant compared to men using the standard heat tolerance test.

56 Conclusion: The findings of this review suggest that women have a greater risk of heat illness 57 and show higher rates of heat intolerance than men on the standard heat tolerance test. There 58 is a need to re-evaluate the heat tolerance test protocol for women with further investigation of 59 the factors that make women more susceptible to heat illness than men.

60 Article summary

2		
3	61	Strengths and limitations of this study
4		σ v
5		
6 7	62	• This is the first known systematic review investigating the impact of gender on
/ 8		
9	63	exertional heat illness and heat tolerance in the armed forces.
10		
11	64	• We conducted a comprehensive search and identified potential risk factors that are
12		
13	65	associated with exertional heat illness.
14		
15 16	66	• Most of the included studies utilized retrospective data with an increased likelihood of
17		Ĩ
18	67	misclassification bias which may have underestimated or overestimated the association
19	-	
20	68	between heat-related illness and risk factors
21		
22	69	• We could not perform a metanalysis due to the heterogeneity in the study designs
23	05	the could not periorin a metallaryous due to the neterogeneity in the study designs.
24 25		
26	70	Trial registration None
27		
28	71	Kay words
29	/1	Key words
30		
31	72	Heat stress; Heat stroke; Heat exhaustion; Heat tolerance; Women; Armed Forces
32 33		
34		
35	73	
36		
37	74	
38	, ,	
39 40		
40	75	
42		
43		
44	76	
45		
46		
47 79	77	
49		
50		
51	78	
52		
53		
54 57	79	
55 56		
57	0.0	Indua du ation
58	80	Introduction
59		
60		

Page 5 of 38

BMJ Open

Heat illness is a spectrum of disorders that arise when there is a disruption in the regulation of body temperature.[1] These illnesses may arise from a combination of prolonged exposure to heat/humidity and increased metabolic activity.[2] When body temperature rises, conduction, convection, radiation and evaporation mechanisms help to cool the body and maintain normothermia.[1] However, heat loss is susceptible to prevailing environmental conditions and type of clothing worn. Without adequate cooling a number of syndromes may occur ranging from heat cramps, heat syncope and heat exhaustion through to heat stroke, a potentially lifethreatening disorder.[1]

Heat stroke is a medical emergency.[3] It is characterized by elevated core temperature of 40°C and above, central nervous system disturbances and multi-organ damage that may result in death.[3] Heat stroke has been classified as either classic or exertional.[4] Classical heat stroke is insidious in onset and occurs in vulnerable populations such as young children, the elderly and patients with chronic diseases.[5] On the other hand, exertional heat stroke occurs more rapidly and affects apparently healthy, active people such as athletes, factory workers, construction workers, agricultural workers, firefighters and military recruits.[6, 7] The workers in these industries often require high levels of physical exertion to perform jobs and tasks. A combination of rigorous activities and extreme exposure to heat places the workers at increased risk of heat stress and heat stroke.[8]

99 However, the ability to cope with heat stress varies between individuals.[3] Individuals who 100 are unable to cope with heat stress may have elevated body temperature under extreme 101 conditions in the heat, which may cause heat exhaustion or heat stroke.[3] The inability to 102 withstand heat stress during exertion in hot environments is defined as heat intolerance.[3] 103 Evidence in the published literature suggests that heat stroke may be preceded or accompanied 104 by a state of heat intolerance.[3] The Israeli Defence Force developed the heat tolerance test 105 in 1979 as an index of the ability of soldiers to cope with exertional heat.[9] Individuals who

have suffered heat stroke are sent for a heat tolerance test after a minimum recovery period of
6 to 8 weeks as part of the return to duty process.[9] Criteria used to define heat intolerance
include an elevation in rectal temperature above 38.5°C and heart rate above 150 bpm or when
rectal temperature or heart rate fail to stabilize during the test. The current heat tolerance test
criteria are based on previous studies by Shapiro et al.[10] and Epstein et al.,[11] which utilised
only male military participants.[10, 11]

Globally, increasing numbers of women are joining the armed forces following the inclusive approach to recruiting and creation of more roles for women.[12] Women are required to operate in austere environments with heat illnesses becoming more frequent.[12] This has raised the question about gender differences in thermoregulation during heat stress.[12] During prolonged heat exposure, the body's thermal inertia is determined by complex interactions between the body's morphological characteristics (body composition, body mass and surface area) and heat load. Evidence suggests that women differ from men in thermal responses to heat.[13] These difference may be because women have a lower rate of whole body evaporative heat loss, higher body fat mass, body mass ratio, [14] number of sweat glands and lower aerobic fitness.[15] In addition, hormonal variations due to menstrual cyclic patterns and the use of contraceptive pills may all be associated with the differences in response to heat stress.[16]

Although these gender differences exist, they have not been considered when conducting the heat tolerance test (HTT) for women who have had a heat stroke.[15] Furthermore, heat illness can impact defence operational effectiveness and may result in acute loss of manpower and possible medical discharge from service.[17] A previous review on the risk of heat illness in women compared with men focused on the general population.[18] The findings of the review suggested that men are at increased risk of heat illness compared to women.[18] However, there is a dearth of research investigating heat illness in women compared to men in the armed forces.

131 Therefore, the aims of this systematic review are:

To describe the epidemiology of heat stroke and other heat related illnesses in womencompared to men in the armed forces.

To identify predisposing risk factors and gender differences in heat illness and heat tolerance

137 Methods

Search Strategy

This review utilised the Preferred Reporting Items for Systematic Review and Meta-analysis protocols (PRISMA-P) 2015 statement [19] and explored all literature published in English from inception of the different databases to the 1st of April 2019. Databases searched included MEDLINE, CINAHL, PsycINFO, Emcare, Informit and Scopus. A preliminary search was conducted in Medline, Emcare and CINAHL to identify relevant key words contained in the titles, abstracts and subject descriptors. These search terms were used to conduct the search in other databases without subject headings. The search strategy used in Medline is presented in supplemental table 1. No review protocol exists.

147 Eligibility criteria

Studies included in the review were assessed according to the following inclusion criteria: Peerreviewed literature comparing heat illness in women to men in the Armed Forces. Exclusions included literature discussing heat illness in other occupations, or studies where data on heat illness in women could not be separated from men or studies reporting heat illness in men or literature reviews, conference abstracts and grey literature. In addition, additional primary data sources were identified from the reference lists of the included studies using a hand-searchtechnique.

155 Selection of studies and data extraction

FA and BMA identified all included studies and data extraction was performed using a standard abstraction form. Data extracted from the studies included: study location and design, population, proportion and incidence of heat illnesses, factors associated with heat illness and heat tolerance, and heat tolerance in men and women. All authors cross-checked the extracted data for consistency.

Quality assessment

The methodological quality assessment was assessed by FA in consultation with MC using the modified quality assessment tool for studies with diverse designs (QATSDD) critical appraisal tool.[20] Any disagreement about any article was reviewed by BMA and AMA and discussed until consensus was reached. The QATSDD tool is a 16-item tool which assesses the quality of diverse studies (both quantitative and qualitative).[20] The tool was modified to exclude two items relating to qualitative studies as well as two items relating to quantitative studies that were not applicable to the studies included in the review. The items excluded comprised statistical assessment of reliability and validity of measurement tool(s) (Quantitative only), fit between stated research question and format and content of data collection tool e.g. interview schedule (Oualitative), assessment of reliability of analytical process (Oualitative only) and evidence of user involvement in design. Each criterion in the modified QATSDD tool was awarded a score of 0 to 3 with 0 = not at all, 1 = very slightly, 2 = moderately and <math>3 = complete. The scores of each criterion were summed to assess the methodological quality of included studies with a maximum score of 36. The criteria included were (1) theoretical framework; (2) statement of aims/objectives; (3) description of research setting; (4) evidence of sample size;

Page 9 of 38

BMJ Open

(5) representative sample of target group of a reasonable size, (6) description of procedure for
data collection; (7) rationale for choice of data collection tool(s); (8) detailed recruitment data;
(9) fit between research question and method of data collection (Quantitative only); (10) fit
between research question and method of analysis (Quantitative only); (11) good justification
for analytical method selected; and (12) strengths and limitations. For ease of interpretation,
the scores were converted to percentages and classified as low (<50%), medium (50-80%) or
high (>80%) quality of evidence.

184 Data analysis and synthesis

Data analysis was conducted using SPSS version 25. Heat illness was reported as either all heat related illnesses or heat stroke versus other heat illnesses. Measures used to describe heat illness were proportions and rates. The mean proportion of heat stroke and other heat illness were reported for studies published between 1995 and 1997. A Mann-Whitney U test was used to assess the median differences in the incidence of heat stroke and other heat illnesses between men and women from 2006 to 2018. Level of significance was set at 0.05. The incidence rates and proportions of all heat related illness (where heat stroke was not differentiated from other heat illnesses) were reported using frequency tables. Due to the heterogeneity of the included studies, a meta-analysis was not conducted.

5 194

Results

An initial search identified 3801 papers. After removing duplicates, screening titles and abstracts, 47 papers remained for full text review with twenty-seven (27) included in the systematic review (Figure 1). Twenty-five (25) of the reviewed articles originated from the United States of America, while the other two studies were conducted in the United Kingdom and Israel respectively (Supplemental Table 2). All included studies were conducted among

armed forces personnel, however, one study focused on armed force personnel with sickle cell trait (SCT),[21] while another study included university staff and armed forces personnel in the study.[22] Twenty-four (24) articles examined heat illnesses and injuries in women and men. Eight (8) of these studies described all heat related illnesses in men and women, [21, 23-29] while 16 studies included information on heat stroke and other heat injuries (including "heat exhaustion" and "unspecified effects of heat") in relation to both genders.[30-45] Six (6) studies identified risk factors associated with heat stroke, [21, 25, 28, 29, 46, 47] and 2 studies compared heat tolerance in men and women.[15, 47]

209 Epidemiology of heat stroke and other heat related illnesses in women compared to men

Table 1 shows the proportions and incidences of all heat-related illness in men and women in the armed forces. Six (6) studies reported higher incidences and proportions of heat illness in men compared to women[21, 23, 25, 26, 28, 29] while two studies reported higher incidences of heat illness in women. [24, 27] Between 1995 and 1997, the mean proportion of all reported heat stroke events in women was approximately 12% compared to 88% of heat stroke events in men. Similarly, men reported a higher mean proportion of heat exhaustion (96%) compared to women (4%).[31-33] Between 2006 and 2018, overall median incidence for heat illness was higher than heat stroke for both men and women (Figure 2). However, men had significantly higher heat stroke incidence compared to women with a mean rank of 19.19 for men and 7.81 for women (median = 0.27, IQR = 0.11 vs median = 0.15 respectively, IQR = 0.03; U= 10.50, P < 0.001). Although, the incidence of other heat injuries was similar between men and women; there was a trend for women to report a slightly higher median incidence of other heat injuries compared to men (median = 1.41 IQR = 0.37 vs median = 1.62, IQR = 0.97; mean rank = 10.65vs 16.35, U = 47.50, P = 0.058).

Table 1: Proportion and incidence of heat related illnesses in women and men in the Defence Force

Reference, year	Country	Study design Study duration	Study duration	Population	All heat injuries	
					Women	Men
Dickson. 1994[23]	UK	Descriptive epidemiology	1981-1991 (10yrs)	Royal Air force, Royal Navy and Army (1448 cases)	11.43*	41.87
Army Medical Surveillance Activity, 1998[24]	USA	Descriptive epidemiology	1997 – 1998 (1 year)	US Army (1433 cases) 1997	12.8ŧ	8.6‡
Army Medical Surveillance Activity, 2000[27]	USA	Descriptive epidemiology	1997 – 1999 (2 years)	US Army and Marine Corps (3386 cases)	15.8‡	12.0‡
				Army (1896 cases) Marine Corps (1104 cases)	2.0† 4 4†	1.5† 2.0†
Army Medical Surveillance Activity, 2002[25]	USA	Descriptive epidemiology	1990 – 1997 (7 years)	US Army (2290 cases)	14.0%§	86.0%
[]		Case control	1998 - 2001	US Army (5021 cases and 10,042 controls)	20.7%§	79.3%
Army Medical Surveillance Activity,	USA	Descriptive epidemiology	2002 (1 year)	US Army (1816 cases)	3.5†	5.1†
Carter et al,	USA	Cross-	1980 - 2002	US Army (5246 cases)	13.7%§	86.39
Bedno et al, 2014[29]	USA	Analytical cross-sectional	2005 - 2006	US Armed Forces (80 exertional heat illness cases) 9455 men 1913 women	0.680%	0.719
Singer et al, 2018[21]	USA	Retrospective cohort	1992 - 2012	SCT and non-SCT US Armed Forces SCT: 214 exertional heat illness	13 89†	14 79
				cases Non-SCT: 577 exertional heat illness cases	13.14†	7.79
226 § Proporti	ons and incid	dences reported are	e of the total cases	reported in the articles		
227 * Incidend	ce rate report	ed per 100,000 per	son-years; + Inciden	ce rate per 100,000 person- months;		
228 † Incidenc	e rate reporte	ed per 1000 person-	years			
$229 \qquad UK = Unit$	ted Kingdom	; USA = United Sta	ates of America			
230						
231						
232						
233						

235	As shown in Table 2, six (6) studies identified the risk factors associated with heat-related
236	illness and heat tolerance.[21, 25, 28, 29, 46, 47] However, one study identified the risk for
237	heat illness in association with SCT status.[21] The odds of females experiencing heat illness
238	ranged from 1.04 to 1.36 and were 3.68 times more likely to be heat intolerant (using the
239	standard heat tolerance test protocol) compared to males.[21, 25, 28, 29, 47] Other identified
240	risk factors for heat illness (Table 2) included younger and older age,[21, 25] lower level of
241	education,[25] ethnicity,[25, 28] higher body mass index (BMI),[46] lower VO _{2max} ,[47] being
242	SCT positive,[21] being in service for less than 1 year,[25] and serving in combat units as an
243	infantry or gun crew soldier.[25, 28]
244	
245	
246	
247	
248	
249	
250	
251	
252	
253	
254	
233	

Reference, year	Country	Study design and duration	Study population	Risk factors	OR or IDR (95% CI)
Army Medical Surveillance Activity, 2002[25]	USA	Case-control	US Army	Female	1.5 (1.4 - 1.7)
		1998 – 2001 (3 years)	5021 cases and 10,042 controls	Age < 20 years	2.1 (1.4 - 3.1)
				Other ethnicity*	1.2 (1.0 -1.4)
				Combat	1.5 (1.4 - 1.6)
				Lower level of education	2.0(1.2 - 3.1)
				Less than 1 year of service	2.3(2.0-2.6)
Carter et al. 2005[28]	USA	Cross-sectional	US Army	Female	1.21(1.09 - 1.40)
		1980 – 2002 (22 years)		Infantry soldiers and gun crew men	2.69 (1.71 – 2.89)
			5246 cases of heat illness; 4521 males and 725 females	African and Hispanic ethnicity	0.76 (0.71 – 0.82)
				Northern state of origin	1.69(1.42 - 1.90)
Vallace et al, 2006[46]	USA	Case-control	US Marine Corps	BMI $\ge 26 \text{ kg/m}^2 \text{ (males)}$	2.10 (1.59 - 2.78
, L J		1988 – 1996 (8 years)	Male (627 cases and 1679 controls)	Run time \geq 12.9 minutes (males)	5.61 (3.73 – 8.45)
			Female (49 cases and 123 controls)	Run time \geq 6.9 minutes (females)	5.30 (1.59 - 17.64)
Bedno et al, 2014[29]	USA	Analytical cross-sectional 2005 - 2006	US Armed Forces 9455 men (67 exertional heat illness cases) 1913 women (13 exertional heat illness cases	Female	1.04 (0.57 – 1.89)
Kazman et al, 2015[47]	USA	Analytical cross-sectional (Duration not stated)	Military and university community members	Female	3.68 (1.21 – 11.24)
		``````````````````````````````````````	55 males and 20 females	VO _{2max}	0.9 (0.76 – 0.96)
Singer et al, 2018[21] +	USA	Retrospective cohort study	SCT and non-SCT US Armed Forces	Female	1.36 (1.17 – 1.50)
			SCT: 214 exertional heat illness cases	SCT positive	1.24 (1.06 – 1.45)
			Non-SCT: 577 exertional heat illness cases	Age at enlistment: 30+ years	1.57 (1.07 – 2.33)
				Marines vs Army	1.51 (1.15 – 2.13)
				Occupation: Combat vs repair/engineer	1.57 (1.15 – 2.13)
<ul><li>257 *non- White, non-Black</li><li>258 associated with EHI at</li></ul>	ck, non-Hispar nd SCT status	nic; OR = Odds ratio; IDR = Incider	Non-SCT: 577 exertional heat illness cases	Age at enlistment: 30+ years Marines vs Army Occupation: Combat vs repair/engineer fidence Interval; USA = United States of Ameri	1.57 (1.07 - 1.51 (1.15 - <u>1.57 (1.15 -</u> ca; ‡ The risk t

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

# 259 Heat tolerance in women and men

Two studies compared heat tolerance in males and females using the most commonly used test, the HTT developed by the Israeli Armed Forces.[15, 47] The findings reported in Table 3 revealed that a greater proportion of women were classified as heat intolerant compared to men (45% vs 18% and 66% vs 25.79%).[15, 47] In addition, women had higher baseline temperature (37.18°C vs 37.07°C and 37.1°C vs 36.9°C respectively)[15, 47] and heart rate (82.11 bpm vs 73.94 bpm and 76 bpm vs 68 bpm). In addition, the endpoint heart rates for women were higher compared to their male counterparts (141.5 bpm vs 126.5 bpm and 137 bpm vs 122 bpm respectively).[15, 47] The end point temperature varied between the two studies; one study reported a higher endpoint temperature for females[15] and the other study reported similar endpoint temperature between males and females.[47]

#### Table 3: Heat tolerance in women and men 270

]	Reference, year	Country	Study design and duration	Study population	Parameters	Women	Men
Ι	Druyan et al, 2012[15]	Israel	Retrospective cross-sectional	170 males and 9 females			
			2008 – 2010 (2 years)		Heat intolerance rate	66.6%	25.79%
					Baseline T _{rec} (° C)	$37.18\pm0.09$	$37.07 \pm 0.02$
					Endpoint $T_{rec}$ (° C)	$38.14 \pm 0.14$	$37.93 \pm 0.02$
					Baseline HR (bpm)	$82.11 \pm 4.88$	$73.94 \pm 1.17$
	Zarman at al		Analytical grass spatianal	Military and university	Endpoint HR (bpm)	$141.50 \pm /.84$	$\frac{126.50 \pm 1.}{1.00}$
	15[47]	USA	(duration not stated)	community members:	fieat intolerance rate	4370	1070
2	.015[47]		(duration not stated)	55 males and 20			
				females			
					Baseline T _{rec} (° C)	$37.1 \pm 0.4$	$36.9\pm0.4$
					Endpoint T _{rec} (° C)	$38.1 \pm 0.4$	$38.1\pm0.4$
					Baseline HR (bpm)	$76 \pm 15.0$	$68 \pm 12.1$
					Endpoint HR (bpm)	$137 \pm 20.1$	$122 \pm 20.2$
							D
							Page
			For peer review only - http://	/bmjopen.bmj.com/site/abo	ut/guidelines.xhtml		

# Assessment of methodological quality

The QATSDD scores ranged from 0 to 97.2% (Supplemental Table 3). Only six studies scored above 50% and included details about recruitment, data analysis, strengths and limitations of the research. The other studies had lower scores because they lacked detailed justification for the analytical methods, data collection, analysis, strengths and limitations. However, results of the methodological assessment should be interpreted with caution. Although the tool assesses methodological quality, it is more likely to be dependent on how the paper was written. In this review, 80% of the studies included were military reports on heat-related illnesses in the Armed Forces. These reports were published in a peer-reviewed journal and were retrospective analyses of data collected by Defence Medical Surveillance Systems. These studies may not have reported details about data collection, strengths and limitations, but they presented valid information on heat- related illness. 

# **Discussion**

The findings of this review suggest a higher rate of heat stroke in men compared to women in the armed forces. On the other hand, the incidence of other exertional heat injuries (heat exhaustion and unspecified heat illnesses) were similar for both men and women. However, women were more likely to be heat intolerant compared to men. Other risk factors found to be associated with exertional heat illness include age, lower level of education, ethnicity, higher BMI, lower VO_{2max}, positive SCT, shorter duration of service, and service unit. The association between these factors and exertional heat illness is weak given the small number of articles that investigated the relationship. 

The reported higher incidence of heat stroke in men compared to women could possibly indicate that men may have comparatively tolerated working in the heat beyond the endurance limits than women.[17] Conversely, the women may not have ignored the early warning signs of heat illness and may have sought earlier treatment compared to men. This reinforces the presumption that women are more inclined to make use of health services and report ill health than men.[48] In addition, the consultation rates of men were 30% lower than women, confirming the assumption that men are less likely to consult and may present at a later stage with more severe forms of diseases.[48] Although, previously published literature have reported a higher rate of all types of heat illnesses in men in the general population (including some armed forces personnel) compared to women; heat stroke was not considered separately from other forms of heat illnesses.[18] 

However, despite the lower rate of heat stroke, women had a greater risk of heat illness and
were more likely to be heat intolerant than men.[21, 25, 28, 29, 47] The higher risk of exertional
heat illness in women may likely be due to differences in physiological and physical
characteristics between men and women.[49] Physiological characteristics such as hormones,

use of contraceptive pills and lower evaporative heat loss may make women more susceptible
to heat illness. [14, 16] Physical characteristics such as lower aerobic fitness and greater body
fat are predictors of exertional heat illness.[49] Generally, men have less body fat and greater
lean body mass compared to women. Furthermore, women have lower aerobic fitness levels
and lower overall work capacity which may contribute to the increased risk of exertional heat
illness.[49]

Other risk factors for heat illness and intolerance identified in the studies include higher BMI,[46] lower VO_{2max} [47] age,[21, 25] lower level of education,[25] non-White, non-Black, non-Hispanic ethnic groups, [25] less than one year of service, [25] service unit. [25, 28] and positive SCT.[21] Individuals with higher BMI (indicating higher body fat) have been reported to be at increased risk of exertional heat illness and are less heat tolerant.[50] Evidence shows that high body fat increases metabolic heat production and decreases heat loss leading to heat illness.[51] However, individuals with a low BMI may or may not be fit. Individuals with low aerobic fitness levels are likely to exert themselves beyond their physical limit and are at increased risk of heat illness.[51] During exercise, relative physiological strain is increased, peripheral blood flow decreases which in turn hinders thermoregulation and increasing the risk of heat illness.[51] 

The association between age, duration of service, occupational roles, level of education and heat illness may be explained by the level of aerobic fitness. Age as a risk factor varied in this review, with younger age and older age (at enlistment) considered as factors that increase the risk of heat illness.[21, 25] Evidence suggests that aerobic fitness decreases with older age, especially if older adults are sedentary.[52] However, aerobic fitness improves with regular physical exercise and the age related differences between younger and older adults are reversed.[53] The younger Armed Forces personnel in the review had been in service for less than a year and may not be as physically fit as the older and long serving personnel.[25] The 

Page 19 of 38

#### **BMJ** Open

physical fitness requirements for recruits vary from the fitness standards for longer serving personnel. For example, in Australia, Army recruits are required to pass the pre-enlistment fitness assessment (PFA) which comprises of push-ups, sit-ups and the beep test during the initial stages of their training.[54] In contrast, the older serving personnel undergo regular fitness training which consists of push-ups, sit-ups, 2.4 km run, 5km walk and weight lifting.[55] The intense and regular training the older personnel have undergone may be responsible for their higher level of fitness and lower risks of heat illness.[56] Furthermore, occupational roles such as serving as in Marine Corps and physically demanding jobs such as infantry, combat and gun crew had an increased risk of heat illness compared to personnel in administrative or support jobs. This may be associated with the rigorous and strenuous training requirements for these jobs.[29] 

Similarly, the association between lower level of education and heat illness may be due to aerobic fitness. Research has identified educational attainment as a major predictor of health outcomes.[57] Education provides the opportunity for individuals to learn more about their health and to make healthy lifestyle choices. Individuals with a higher level of education are more likely to engage in healthy behaviours such as healthy diet and regular exercise.[57] Regular exercise is necessary to maintain and improve aerobic fitness. [58] High aerobic fitness may reduce the risk of exertional heat illness; however, some fit individuals may be at increased risk of heat illness because of their ethnic status. The effect of ethnicity on heat illness varied in this review. One study reported that minor ethnic groups (non-White, non-Black, non-Hispanic) were more susceptible to heat illness[25], while another study reported that Caucasians had an increased risk of heat illness compared to other ethnic groups.[28] Genetic adaptation may play a role in the differences between ethnic groups.[59] Evidence shows that a disruption in the cell protective mechanism of heat shock proteins may increase the risk of heat illness.[59] 

Another role genetics plays in predisposition to heat illness was evident in the review with SCT positive armed force members at increased risk of exertional heat illness compared to SCT negative members.[21] SCT is an inherited blood disorder where an individual has a wild type haemoglobin A and haemoglobin S. Individuals with the SCT are considered heterozygous for the sickle cell mutation in the subunit beta gene of the haemoglobin.[60] Evidence has linked positive SCT with exercise related adverse health outcomes such as exertional heat illness (including exertional rhabdomyolysis, heat stroke and hyperthermia) in military personnel.[60] However, the biological pathway by which SCT is associated with heat illness is still unknown.[21] More in depth research is needed to elucidate the role of genetics in exertional heat illness. 

The risk of heat illness is dependent on thermal tolerance.[3] The HTT is conducted for members of the armed forces after a heat stroke event as part of the return to duty process.[9] The test criteria defines heat intolerance as peak rectal temperature  $> 38.5^{\circ}$ C, peak heart rate > 150 bpm, or the inability of these values to reach a plateau.[10, 11] However, using the current protocol, there were more women in the armed forces classified as heat intolerant than men.[15, 47] In addition, women had higher baseline temperature and heart rate compared to men. The higher baseline core temperature increases the likelihood of being intolerant and at-risk of heat illness.[47] Two studies acknowledge that sex differences in thermoregulation may account for the higher intolerance rates in women.[15, 47] Given that the test protocol was developed using male subjects, there is a need to re-evaluate the criteria for women to reduce false positive results.[15, 47] 

379 Strengths and limitations

To the authors' current knowledge, this is the first known systematic review investigating theimpact of gender on exertional heat illness and heat tolerance in the armed forces. In addition,

Page 21 of 38

#### **BMJ** Open

we identified potential risk factors that are associated with exertional heat illness. However, the heterogeneity in the study designs contributed to the variable methodological quality of the included studies. Most of the articles in this review were military reports and may not be considered of high methodological quality when assessed using a formal critical appraisal tool. In addition, most of the included studies utilized retrospective data as the data source with an increased likelihood of incompleteness and inaccuracy. There is a likelihood that misclassification bias could have been introduced into the studies. Three studies that explored the risk factors associated with heat-related illness used retrospective data. [25, 28, 46] The retrospective data may have been misclassified or incomplete at the time of entry and may have introduced misclassification bias into the studies. This type of bias may underestimate or overestimate the association between heat-related illness and risk factors. Although the risk factors associated with heat illness were discussed; the review provided limited evidence of these factors, given the few numbers of studies that investigated the association. Furthermore, we included only studies published in English language; studies published in other languages were excluded. 

397 Implication for policy and future research

This systematic review demonstrates that there is limited research on exertional heat illness in women in the Armed Forces. Although men had a higher reported incidence of heat stroke; this may be a reflection that women are more likely to report poorer health earlier than men.[48] Further research is needed to establish if this reflects physiological or behavioural differences. Given that women have an increased risk of heat illness; they should be encouraged to participate in cardiovascular training programs to improve physical fitness. Nonetheless, more research is needed to understand the roles of underlying factors such as menstrual cycle phase, use of contraceptive pills and cardiovascular function in heat illness.[15, 47] Furthermore, the limited evidence revealed that more women were classified as heat intolerant using the current 

> 407 heat tolerance test protocol. The current criteria may be unfair to women given that it was 408 developed using male participants. Therefore, it is important that the protocol is re-evaluated 409 for women or a new protocol is developed that puts the gender specific factors into 410 consideration.[15] The re-evaluation of the protocol for women would reduce false positive 411 results and the likelihood of ending the careers of these otherwise healthy women.[15]

# 412 Conclusion

In conclusion, this review shows that men experienced a higher incidence of heat stroke but women in the armed forces may have a greater risk of heat illness and are more likely to be heat intolerant than their male counterparts using the standard heat tolerance test. Further research is needed to evaluate the heat tolerance test protocol for women and to further investigate the influence of gender differences on heat intolerance and heat illness.

### 418 Authors' contribution

All authors contributed substantially to the study concept, design, data extraction, quality
 assessment and writing of the manuscript.

- 421 Conceptualization: Faith O. Alele, Bunmi S. Malau-Aduli, Aduli E. Malau-Aduli, Melissa
   422 Crowe
- ⁹ 423 **Methodology**: Faith O. Alele, Bunmi S. Malau-Aduli, Aduli E. Malau-Aduli, Melissa Crowe
- ¹ 424 Writing Original draft: Faith O. Alele

425 Writing – review & editing: Faith O. Alele, Bunmi S. Malau-Aduli, Aduli E. Malau-Aduli,
 426 Melissa Crowe

- ⁶ 427 All authors read and approved the manuscript for submission.
- 48 428 Funding: The first author (FA) is supported by the Australian Government International
   49 429 Research Training Program Scholarship
- **Competing Interests:** The authors declare that they have no competing interests.
- ⁵³ 431 **Patient consent for publication:** Not required
- 55 432 **Data sharing statement**: There are no additional or unpublished data available.

57 433

o 19 434

2		
3 4	435	References
5	126	1 Backer IA Stewart IK Heat related illness Am Fam Phys 2011:82(11):1225 1220
6	430	<ol> <li>Deckel JA, Stewalt LK. Heat-related filless. All Fall Flys 2011,05(11):1525-1550.</li> <li>Viang L Dang P. Disanialla D. Hanson A. Health impacts of workplace heat exposure:</li> </ol>
7	437	2. Along J, Felig D, Fisaliello D, Halsell A. Health Impacts of workplace heat exposure.
8	438	an epidemiological review. Ind Health $2014,52(2).91-101$ .
9 10	439	3. Epstein Y. Heat intolerance: Predisposing factor or residual injury? Med Sci Sports
11	440	Exerc 1990;22(1):29-35.
12	441	4. Grubenhoff JA, du Ford K, Roosevelt GE. Heat-related illness. Clin Pediatr Emerg Med
13	442	2007;8(1):59-64.
14	443	5. Mehta SR, Jaswal DS. Heat Stroke. Medical journal, Armed Forces India
15 16	444	2003;59(2):140-3.
17	445	6. Hanna EG, Kjellstrom T, Bennett C, Dear K. Climate change and rising heat:
18	446	population health implications for working people in Australia. Asia Pac J Public Health
19	447	2011;23(2_suppl):14S-26S.
20	448	7. Hollowell DR. Perceptions of, and reactions to, environmental heat: a brief note on
21	449	issues of concern in relation to occupational health. Glob Health Action Published Online First:
22	450	31 December 2010:3 doi:10.3402/gha.v3i0.5632.
24	451	8. Xiang J. Hansen A. Pisaniello D. Bi P. Extreme heat and occupational heat illnesses in
25	452	South Australia 2001–2010 Occup Environ Med 2015: 72:580-586 doi:10.1136/0emed-2014-
26	453	102706 [nublished Online First 18 June 2015]
27	155	9 Moran DS Heled V Still I I age A Shaniro V Assessment of heat tolerance for post
28 29	454	evertional beat stroke individuals. Med Sci Monit 2004:10(6):Cr252-7
30	455	10 Shanira V Magazanik A Udaggin P Ban Baruah G Shyartz E Shoanfald V Haat
31	450	inteleronee in former beststrelse notiente. Ann Intern Med 1070:00(6):012.6
32	457	11 Exercise V. Chamine V. Daill C. Data of surface and to many ratio and events officiantee
33	458	11. Epstein Y, Snapiro Y, Brill S. Role of surface area-to-mass ratio and work efficiency
34 25	459	in neat intolerance. J Appl Physiol Respir Environ Exerc Physiol 1983;54(3):831-6.
36	460	12. Kazman JB, Heled Y, Lisman PJ, Druyan A, Deuster PA, O'Connor FG. Exertional
37	461	Heat Illness: The Role of Heat Tolerance Testing. Curr Sports Med Rep 2013;12(2):101-5.
38	462	13. Kenney WL. A review of comparative responses of men and women to heat stress.
39	463	Environ Res 1985;37(1):1-11.
40 41	464	14. Shapiro Y, Pandolf KB, Avellini BA, Pimental NA, Goldman RF. Physiological
41	465	responses of men and women to humid and dry heat. J Appl Physiol 1980;49(1):1-8.
43	466	15. Druyan A, Makranz C, Moran D, Yanovich R, Epstein Y, Heled Y. Heat tolerance in
44	467	women-Reconsidering the criteria. Aviat Space Environ Med 2012;83(1):58-60.
45	468	16. Tenaglia SA, McLellan TM, Klentrou PP. Influence of menstrual cycle and oral
46	469	contraceptives on tolerance to uncompensable heat stress. Eur J Appl Physiol Occup Physiol
47 48	470	1999;80(2):76-83.
49	471	17. Hunt AP, Billing DC, Patterson MJ, Caldwell JN. Heat strain during military training
50	472	activities: The dilemma of balancing force protection and operational capability. Temperature
51	473	(Austin) 2016;3(2):307-17.
52	474	18. Gifford RM, Todisco T, Stacey M, Fujisawa T, Allerhand M, Woods DR, et al. Risk of
53 54	475	heat illness in men and women: A systematic review and meta-analysis. Environ Res
55	476	2019:171:24-35.
56	477	19 Moher D Shamseer L Clarke M Ghersi D Liberati A Petticrew M et al Preferred
57	478	reporting items for systematic review and meta-analysis protocols (PRISM $\Delta$ -P) 2015
58	<u>470</u>	statement Syst Rev 2015:4(1):1
59 60	775	Sutement. Syst Rev 2013, 7(1).1.
50		

1

2 3 20. Sirriyeh R, Lawton R, Gardner P, Armitage G. Reviewing studies with diverse designs: 480 4 481 the development and evaluation of a new tool. J Eval Clin Pract 2012;18(4):746-52. 5 21. Singer DE, Byrne C, Chen L, Shao S, Goldsmith J, Niebuhr DW. Risk of Exertional 482 6 7 Heat Illnesses Associated with Sickle Cell Trait in U.S. Military. Mil Med 2018;183(7-8):e310-483 8 e7 doi:10.1093/milmed/usx085 [published Online First: 8 February 2018]. 484 9 485 22. Kazman JB, Purvis DL, Heled Y, Lisman P, Atias D, Van Arsdale S, et al. Women and 10 486 exertional heat illness: identification of gender specific risk factors. US Army Med Dep J 11 12 487 2015:58-66. 13 488 23. Dickinson JG. Heat illness in the services. J R Army Med Corps 1994;140(1):7-12. 14 24. Army Medical Surveillance Activity. Reported heat and cold injuries, United States 489 15 Army, January 1997 - December 1997. MSMR 1998;4(1):16. 490 16 25. Army Medical Surveillance Activity. Heat-associated injuries, US Army 1991-2002. 491 17 18 MSMR 2002;8(4):2-7. 492 19 Army Medical Surveillance Activity. Heat-related injuries, US Army, 2002. MSMR 493 26. 20 2003;9(4):2-4. 494 21 Army Medical Surveillance Activity. Heat-related injuries among active duty soldiers 27. 22 495 23 and Marines, 1997-1999. MSMR 2000;6(3):2-3. 496 24 Carter Iii R, Cheuvront SN, Williams JO, Kolka MA, Stephenson LA, Sawka MN, et 497 28. 25 al. Epidemiology of hospitalizations and deaths from heat illness in soldiers. Med Sci Sports 498 26 Exerc 2005;37(8):1338-44. 499 27 28 Bedno SA, Urban N, Boivin MR, Cowan DN. Fitness, obesity and risk of heat illness 500 29. 29 among army trainees. Occup Med (Lond) 2014;64(6):461-7. 501 30 Army Medical Surveillance Activity. Heat-related injuries, U.S. Army, 2005. MSMR 502 30. 31 2006;12(5):2-4. 503 32 33 Army Medical Surveillance Activity. Cases of Heat and Cold Weather Injuries, United 504 31. 34 505 States Army, 1994. MSMR 1995;1(1):18. 35 Army Medical Surveillance Activity. Reported heat and cold weather injuries, United 32. 506 36 States Army, Jan-Dec 1995. MSMR 1996;2(1):16. 507 37 Army Medical Surveillance Activity. Reported heat and cold weather injuries, United 38 508 33. 39 States Army, January, 1996 - December, 1996. MSMR 1997;3(1):14. 509 40 Armed Forces Health Surveillance Branch. Heat-related Injuries, U.S. Armed Forces, 34. 510 41 2006. MSMR 2007;14(2):14-5. 511 42 Armed Forces Health Surveillance Branch. Update: Heat injuries among U.S. military 43 512 35. 44 members, 2007. MSMR 2008;15(2):2-3. 513 45 36. Armed Forces Health Surveillance Branch. Update: Heat injuries among active 514 46 component members, U.S. Armed Forces, 2008. MSMR 2009;16(3):8-9. 515 47 Armed Forces Health Surveillance Branch. Update: Heat injuries, active component, 48 516 37. 49 517 U.S. Armed Forces, 2009. MSMR 2010;17(3):6-8. 50 38. Armed Forces Health Surveillance Branch. Update: Heat injuries, active component, 518 51 U.S. Armed Forces, 2010. MSMR 2011;18(3):6-8. 519 52 520 39. Armed Forces Health Surveillance Branch. Update: Heat injuries, active component, 53 54 U.S. Armed Forces, 2011. MSMR 2012;19(3):13-5. 521 55 522 40. Armed Forces Health Surveillance Branch. Update: Heat injuries, active component, 56 U.S. Armed Forces, 2012. MSMR 2013;20(3):17-20. 523 57 524 41. Armed Forces Health Surveillance Branch. Update: Heat injuries, active component, 58 59 U.S. Armed Forces, 2013. MSMR 2014;21(3):10-3. 525 60

3 42. Armed Forces Health Surveillance Branch. Update: Heat injuries, active component, 526 4 527 U.S. Armed Forces, 2014. MSMR 2015;22(3):17-20. 5 43. Armed Forces Health Surveillance Branch. Update: Heat injuries, active component, 528 6 7 U.S. Army, Navy, Air Force, and Marine Corps, 2015. MSMR 2016;23(3):16-9. 529 8 Armed Forces Health Surveillance Branch. Update: Heat Illness, Active Component, 530 44. 9 U.S. Armed Forces, 2016. MSMR 2017;24(3):9-13. 531 10 Armed Forces Health Surveillance Branch. Update: Heat illness, active component, 532 45. 11 U.S. Armed Forces, 2017. MSMR 2018;25(4):6-12. 12 533 13 Wallace RF, Kriebel D, Punnett L, Wegman DH, Wenger C, Gardner JW, et al. Risk 534 46. 14 factors for recruit exertional heat illness by gender and training period. Aviat Space Environ 535 15 Med 2006;77(4):415-21. 536 16 Kazman JB, Purvis DL, Heled Y, Lisman P, Atias D, Van Arsdale S, et al. Women and 17 537 47. 18 exertional heat illness: identification of gender specific risk factors. US Army Med Dep J 538 19 2015:58-66. 539 20 48. Wang Y, Hunt K, Nazareth I, Freemantle N, Petersen I. Do men consult less than 540 21 women? An analysis of routinely collected UK general practice data. BMJ open 22 541 23 2013;3(8):e003320 doi:10.1136/bmjopen-2013-003320 [published Online First: 21 August 542 24 543 2018] 25 49. Epstein Y, Yanovich R, Moran DS, Heled Y. Physiological employment standards IV: 544 26 integration of women in combat units physiological and medical considerations. Eur J Appl 27 545 28 Physiol 2013;113(11):2673-90. 546 29 Selkirk GA, McLellan TM. Influence of aerobic fitness and body fatness on tolerance 547 50. 30 to uncompensable heat stress. J Appl Physiol (1985) 2001;91(5):2055-63. 548 31 Cleary M. Predisposing risk factors on susceptibility to exertional heat illness: clinical 549 51. 32 33 decision-making considerations. J Sport Rehabil 2007;16(3):204-14. 550 34 Huang G, Gibson CA, Tran ZV, Osness WH. Controlled endurance exercise training 551 52. 35 and VO2max changes in older adults: a meta-analysis. Prev Cardiol 2005;8(4):217-25. 552 36 Woo JS, Derleth C, Stratton JR, Levy WC. The Influence of Age, Gender, and Training 53. 553 37 on Exercise Efficiency. J Am Coll Cardiol 2006;47(5):1049-57. 38 554 39 The Australian Army. Physical Fitness Assessment 2018. [Accessed 5 April 2019]. 54. 555 40 https://www.army.gov.au/army-life/army-careers/army-recruit-training-Available from: 556 41 centre-kapooka/soldier-training/physical-fitness. 557 42 The Australian Army. The Army Physical Training Continuum: The Australian Army.; 43 558 55. 44 2018 [Accessed April 2019]. 559 5 Available from: 45 https://content.defencejobs.gov.au/pdf/army/Army Physical Continuum Information.pdf. 560 46 McLellan TM. The importance of aerobic fitness in determining tolerance to 561 56. 47 uncompensable heat stress. Comp Biochem Physiol Part A Mol Integr Physiol 48 562 49 563 2001;128(4):691-700. 50 57. Zimmerman EB, Woolf SH, Haley A. Understanding the relationship between 564 51 education and health: a review of the evidence and an examination of community perspectives. 565 52 566 2015. [Accessed 5 April 2019]. Available from: 53 54 http://www.ahrq.gov/professionals/education/curriculum-tools/population-567 55 health/zimmerman.html 568 56 Gormley SE, Swain DP, High R, Spina RJ, Dowling EA, Kotipalli US, et al. Effect of 569 58. 57 intensity of aerobic training on VO2max. Med Sci Sports Exerc 2008;40(7):1336-43. 570 58 59 60

571 59. Moran DS, Eli-Berchoer L, Heled Y, Mendel L, Schocina M, Horowitz M. Heat
572 intolerance: does gene transcription contribute? J Appl Physiol 2006;100(4):1370-6.
573 60. Nelson DA, Deuster PA, Carter R, Hill OT, Wolcott VL, Kurina LM. Sickle Cell Trait,
574 Rhabdomyolysis, and Mortality among U.S. Army Soldiers. N Engl J Med 2016;375(5):435575 42.

¹¹₁₂ 577 **Figure legends** 

578 Figure 1: PRISMA flow chart of the study selection protocol

Figure 2: Comparison of the incidence rate of heat stroke and other heat illnesses between women and men. This figure shows the median incidence rate for heat stroke and other heat injuries between 2006 and 2018. Men had significantly higher heat stroke incidence compared to women with a mean rank of 19.19 for men and 7.81 for women (median = 0.27, IQR = 0.11 vs median = 0.15, IQR = 0.03; U= 10.50, P < 0.001). However, there was no significant difference between men and women, in the incidence of other heat injuries (median = 1.41 IQR = 0.37 vs median = 1.62, IQR = 0.97; mean rank = 10.65 vs 16.35, U = 47.50, P = 0.058.



Figure 1: PRISMA flow chart of the study selection protocol



Page | 1

1. 2. 3.	
<u> </u>	Women (MeSH)
3.	Gender expression
5.	Gender identity (MeSH)
4	Gender
<del></del>	Wom\$
5.	Sav
	Hoat strak*
<u> </u>	Hoststrok*
0.	
9.	Heat collapse
10.	
11.	Heat prostration
12.	Heat cramp
13.	Heat cramps
14.	Heat stress disorder
15.	Heat stress disorders (MeSH)
16.	Thermal stress
17.	Heat illness
18.	Heat illnesses
19.	Heat injury
20.	Heat injuries
21.	Heat related diseases 🚬
22.	Heat disorder
23.	Heat disorders
24.	Heat related disorder
25.	Heat related disorders
26.	Heat related illness
27.	Heat related illnesses
28	Heat related injuries
29	Heat related injury
30	Environmental heat illness
30.	Heat stress
27	Heat adaptation
32.	Heat tolerance
21	Heat tolerances
<u> </u>	Heat resistance
<u> </u>	Thermal registrance
<u> </u>	Thermonosistence
<u> </u>	Thermoresistance
38.	I nermotolerance (MeSH)
39.	Heat endurance
40.	1 OR 2 OR 3 OR 4 OR 5 OR 6
41.	7 OR 8 OR 9 OR 10 OR 11 OR 12 OR 13 OR 14 OR 15 OR 16 O
	17 OR 18 OR 19 OR 20 OR 21 OR 22 OR 23 OR 24 OR 25 OR 2
	OR 27 OR 28 OR 29 OR 30 OR 31 OR 32 OR 33 OR 34 OR 35 O
	36 OR 37 OR 38 OR 39

# Supplemental Table 2 Summary of all included studies

Reference, year	Country	Study design and duration	Population	Study findings [§]
Dickson. G, 1994	UK	Descriptive epidemiology 1981-1991	Royal Airforce, Royal Navy and Army; 1448 all heat injuries cases [®]	Women All heat injuries: 11.43 [#] Men All heat injuries: 41.87 [#]
Army Medical Surveillance Activity, 1995	USA	Descriptive epidemiology; 1994	US Army; 23 heat stroke cases 12 heat exhaustion cases	Women         Heat stroke: 13%         Heat exhaustion: 0%         Men         Heat stroke: 87%         Heat exhaustion: 100%
Army Medical Surveillance Activity, 1996	USA	Descriptive epidemiology; 1995	US Army; 81 heat stroke cases 39 heat exhaustion cases	Women Heat stroke: 17.3% Heat exhaustion: 7.7% <u>Men</u> Heat stroke: 82.7% Heat exhaustion: 92.3%
Army Medical Surveillance Activity, 1997	USA	Descriptive epidemiology; 1996	US Army; 45 heat stroke cases 24 heat exhaustion cases	Women       Heat stroke: 4.4%       Heat exhaustion: 4.2%       Men       Heat stroke: 95.6%       Heat exhaustion: 95.8%
Army Medical Surveillance Activity, 1998	USA	Descriptive epidemiology; 1997 - 1998	US Army; 1433 all heat injuries cases (1997-1998) ^P 1997	Women       All heat injuries: 12.8‡       Men       All heat injuries: 8.6‡
			1998	<u>Women</u> All heat injuries: 15.8 [‡] <u>Men</u> All heat injuries: 12.0 [‡]

Page 31 of 38

1

BMJ Open

Army Medical Surveillance Activity, 2000	USA	Descriptive epidemiology; 1997 - 1999	US Army and Marine Corps; 3386 all heat injuries cases [₱]	
			Army (1896 cases)	<u>Women</u> All heat injuries: 2.0† <b>Men</b>
			Marine Corps (1104 cases)	All heat injuries: 1.5† <u>Women</u> All heat injuries: 4.4†
				<u>Men</u> All heat injuries: 2.0†
Army Medical Surveillance Activity,	USA	Descriptive epidemiology 1990 - 1997	US Army; 2290 all heat injuries cases ^P	Women All heat injuries: 14.0%
2002				<u>Men</u> All heat injuries: 86.0%
		Case – control 1998 - 2001	US Army; 5021 cases and 10,042 controls (all heat	Women All heat injuries: 20.7%
			injuries)*	<u>Men</u> All heat injuries: 79.3% <u>Risk factors</u> Female: OR; 1.5 (1.4 - 1.7)
				Age < 20 years: OR; 2.1 (1.4 - 3.1) Other ethnicity*: OR; 1.2 (1.0 -1.4) Combat: OR; 1.5 (1.4 - 1.6) Lower level of education: OR; 2.0 (1.2 - 3.1)
Army Medical	USA	Descriptive epidemiology:	US Army:	Less than 1 year of service: OR; $2.3 (2.0 - 2.6)$ Women
Surveillance Activity, 2003	0.511	2002	1816 all heat injuries cases ^P	All heat injuries: 3.5 [†]
				Men
Carter et al, 2005	USA	Cross-sectional 1980 - 2002	US Army; 5246 all heat injuries cases [®] 4521 males and 725 females	Women         All heat injuries: 13.7%         Men         All heat injuries: 86.3%
		For peer review	only - http://bmjopen.bmj.com/site/about/g	<u>KISK TACTORS</u> uidelines.xhtml

				Infantry soldiers and gun crew men: IDR; 2.69 $(1.71 - 2$ African and Hispanic ethnicity: IDR; 0.76 $(0.71 - 0.82)$ Northern state of origin: IDR; 1.69 $(1.42 - 1.90)$
Army Medical Surveillance Activity, 2006	USA	Descriptive epidemiology; 2005	US Armed Forces; 204 heat stroke cases 958 heat exhaustion cases	Women Heat stroke: 0.26† Heat exhaustion: 2.89†
				<u>Men</u> Heat stroke: 0.48† Heat exhaustion: 1.98†
Wallace et al, 2005	USA	Case-control 1988 - 1996	US Army; 5246 cases of heat illness; 4521 males and 725 females	Risk factorsFemalesRun time $\geq 6.9$ minutes:
				OR; $5.30(1.59 - 17.64)$ <i>Males</i> Pun time > 12.9 minutes:
				OR; 5.61 $(3.73 - 8.45)$
			· 01	BMI $\geq$ 26 kg/m ² : OR; 2.10 (1.59 - 2.78)
Army Medical Surveillance Activity, 2007	USA	Descriptive epidemiology; 2006	US Armed Forces; 259 heat stroke cases 1854 heat exhaustion cases	<u>Women</u> Heat stroke: 0.14† Heat exhaustion: 1.49†
				Men Heat stroke: 0.22† Heat exhaustion: 1.34†
Army Medical Surveillance Activity, 2008	USA	Descriptive epidemiology; 2007	US Armed Forces; 329 heat stroke cases 1853 heat exhaustion cases	Women Heat stroke: 0.14† Heat exhaustion: 1.62‡
2000				Men Heat stroke: 0.26†
Army Medical	USA	Descriptive epidemiology; 2008	US Armed Forces; 299 heat stroke cases 1467 heat exhaustion cases	Women       Heat stroke: 0.16†       Heat exhaustion: 1.35‡
Surveillance Activity, 2009			$1 \pm 07$ field CAllaustion Cases	

Page 33 of 38

BMJ Open

Army Medical Surveillance Activity, 2010	USA	Descriptive epidemiology; 2009	US Armed Forces; 323 heat stroke cases 2038 other heat injuries cases*	<u>Women</u> Heat stroke: 0.15† Other heat injuries: 1.78† <u>Men</u>
Army Medical Surveillance Activity, 2011	USA	Descriptive epidemiology; 2010	US Armed Forces; 311 heat stroke cases 2576 other heat injuries cases*	Heat stroke: 0.22† Other heat injuries: 1.35† <b>Women</b> Heat stroke: 0.12† Other heat injuries: 2.32†
Army Medical	USA	Descriptive epidemiology;	US Armed Forces;	Men Heat stroke: 0.23† Other heat injuries: 1.67† Women
2012		2011	2652 other heat injuries cases*	Other heat injuries: 2.63† <u>Men</u> Heat stroke: 0.27† Other heat injuries: 1.68†
Druyan et al, 2012	Israeal	Retrospective cross- sectional 2008 – 2010	Israeli Defence Forces; 170 males and 9 females	Heat tolerance parametersWomenHeat intolerance rate: $66.6\%$ Baseline Trec (° C): $37.18 \pm 0.09$ Endpoint Trec (° C): $38.14 \pm 0.14$ Baseline HR (bpm): $82.11 \pm 4.88$ Endpoint HR (bpm): $141.50 \pm 7.84$ MenHeat intolerance rate: $25.79\%$ Baseline Trec (° C): $37.07 \pm 0.02$ Endpoint Trec (° C): $37.93 \pm 0.03$ Baseline HR (bpm): $73.94 \pm 1.17$ Endpoint HR (bpm): $126.50 \pm 1.79$
Army Medical Surveillance Activity, 2013	USA	Descriptive epidemiology; 2012	US Armed Forces; 365 heat stroke cases 2257 other heat injuries cases*	<b>Women</b> Heat stroke: 0.15† Other heat injuries: 2.35† <u>Men</u> Heat stroke: 0.27† Other heat injuries: 1.44†
		For peer review of	only - http://bmjopen.bmj.com/site/about/g	guidelines.xhtml

Army Medical Surveillance Activity, 2014	USA	Descriptive epidemiology; 2013	US Armed Forces; 324 heat stroke cases 1701 other heat injuries cases*	<u>Women</u> Heat stroke: 0.15† Other heat injuries: 1.30† <u>Men</u> Heat stroke: 0.24† Other heat injuries: 1.19†
Bedno et al, 2014	USA	Analytical cross-sectional	US Armed Forces; 80 exertional heat illness cases	Women       Heat illness: 0.680%       Men       Heat illness: 0.71%
Army Medical Surveillance Activity, 2015	USA	Descriptive epidemiology; 2014	US Armed Forces; 314 heat stroke cases 1410 other heat injuries cases*	Women Heat stroke: 0.14† Other heat injuries: 1.31† <u>Men</u> Heat stroke: 0.27† Other heat injuries: 1.21†
Kazman et al, 2015	USA	Analytical cross-sectional	Military and university community members; 55 males and 20 females	Heat tolerance parametersWomenHeat intolerance rate: 45%Baseline Trec (° C): $37.1 \pm 0.4$ Endpoint Trec (° C): $38.1 \pm 0.4$ Baseline HR (bpm): $76 \pm 15.0$ Endpoint HR (bpm): $137 \pm 20.1$ MenHeat intolerance rate: $18\%$ Baseline Trec (° C): $36.9 \pm 0.4$ Endpoint Trec (° C): $38.1 \pm 0.4$ Baseline Trec (° C): $38.1 \pm 0.4$ Baseline HR (bpm): $68 \pm 12.1$ Endpoint HR (bpm): $122 \pm 20.2$ Risk factorsFemale: OR; $3.68 (1.21 - 11.24)$ VO _{2max} : OR; $0.9 (0.76 - 0.96)$
Army Medical Surveillance Activity, 2016	USA	Descriptive epidemiology; 2015	US Armed Forces; 417 heat stroke cases 1625 other heat injuries cases*	Women Heat stroke: 0.16† Other heat injuries: 1.54† <u>Men</u> Heat stroke: 0.35† Other heat injuries: 1.48‡
	USA	Descriptive epidemiology; 2016	US Armed Forces; 401 heat stroke cases 2135 other heat injuries cases*	Women Heat stroke: 0.19† Other heat injuries: 1.90†
-------------------------------------------------------------------------------------------------------------------------------------------	---------------------------------------------------------------------------------	--------------------------------------------------------------------------------------------------------------------------------------------------------	------------------------------------------------------------------------------	-----------------------------------------------------------
2017			2155 oner near injunes cases	Men Heat stroke: 0.33† Other heat injuries: 1.61†
Army Medical	USA	Descriptive epidemiology;	US Armed Forces;	Women
Surveillance Activity,		2017	464 heat stroke cases	Heat stroke: 0.25 [†]
2018			1699 heat exhaustion cases	Other heat injuries: 1.38 ⁺
				Men
				Heat stroke: 0.41 [†]
				Other heat injuries: 1.41 ⁺
Singer et al, 2018	USA	Retrospective cohort	SCT and non-SCT US Armed Forces	Women
C .		1992 - 2012	SCT: 214 exertional heat illness cases	Exertional heat illness: 13.89 ⁺
				Men
				Exertional heat illness: 14.79 ⁺
			Non-SCT: 577 exertional heat illness cases	Women
				Exertional heat illness: 13.14 ⁺
				Men
				Exertional heat illness: 7.79 ⁺
* Incidence rate rep * Other heat injuries P heat injuries inclu SCT = Sickle cell tr US = United States UK = United Kingd	orted per 14 s include "I de heat stro ait of America dom; USA =	000 person-years. heat exhaustion" and "unspec oke and other heat injuries. h; 2006 to date, heat injuries <i>United States of America</i>	cified effects of heat". was reported in the US Armed Forces (Arr	my, Navy, Air Force and Marine Corps).

1

YIII CONTRACTOR	1	2	3	4	5	6	1	8	9	10	11	12	Total score	% of total score
Dickinson' 94[23]	0	1	2	0	1	3	0	0	3	2	0	2	14/36	38.9
AMSA'95[31]	0	0	0	0	0	0	0	0	0	0	0	0	0/36	0
AMSA' 96[32]	0	0	0	0	0	0	0	0	0	0	0	0	0/36	0
AMSA'97[33]	0	0	0	0	0	0	0	0	0	0	0	0	0/36	0
AMSA'98[24]	2	1	1	0	0	0	0	0	2	2	0	0	8/36	22.2
AMSA'00[27]	2	1	2	0	0	1	0	0	2	3	0	0	11/36	30.6
AMSA'02[25]	3	0	2	0	1	1	0	0	2	0	2	0	11/36	30.6
AMSA'03[26]	2	1	1	0	1	1	0	0	2	2	0	0	10/36	27.8
Carter et al' 05[28]	3	3	3	2	2	3	1	2	3	3	2	0	27/36	75
AMSA'06[30]	2	1	1	0	1	1	0	0	2	2	0	0	10/36	27.8
Wallace et al' 06[46]	3	3	3	2	2	3	1	2	3	3	2	2	29/36	80.6
AMSA'07[34]	1	1	1	0	0	1	0	0	2	2	0	0	8/36	22.2
AMSA' 08[35]	1	1	1	0	0	1	0	0	2	2	0	0	8/36	22.2
AMSA' 09[36]	1	1	1	0	0	1	0	0	2	2	0	0	8/36	22.2
AMSA' 10[37]	1	1	2	0	0	1	0	0	2	2	0	2	11/36	30.6
AMSA' 11[38]	2	1	2	0	0	1	0	0	2	2	0	2	12/36	33.3
Druyan et al'12[15]	3	3	3	1	0	2	0	3	3	2	2	1	23/36	63.9
AMSA' 12[39]	2	1	2	0	0	1	0	0	2	2	0	2	12/36	33.3
AMSA' 13[40]	2	2	2	0	0	2	0	0	2	2	0	2	14/36	38.9
AMSA' 14[41]	2	2	2	0	0	2	0	0	2	3	0	2	15/36	41.7
AMSA' 15[42]	3	2	2	0	0	2	0	0	2	3	0	2	16/36	44.4
Bedno et al, 2015[29]	3	3	3	2	2	3	3	3	3	3	3	3	34/36	94.4
Kazman et al' 15[47]	3	3	3	2	2	3	2	3	3	3	3	3	33/36	91.7
AMSA' 16[43]	3	2	2	0	0	2	0	0	2	3	0	2	16/36	44.4
AMSA' 17[44]	3	2	2	0	0	2	0	0	2	3	0	2	16/36	44.4
AMSA' 18[45]	3	2	2	0	0	2	0	0	2	3	0	2	16/36	44.4
Singer et al.18[21]	3	3	3	3	3	3	2	3	3	3	3	3	35/36	97.2
<ol> <li>(1) Theoretical framework</li> <li>(2) Aims/objectives;</li> <li>(3) Description of research</li> <li>(4) Sample size;</li> <li>(5) Representative sample</li> <li><i>QATSDD rating scale:</i> 0=</li> </ol>	;; setting of target g <i>not at all;</i>	group 1=very sla	ightly; 2=	<ul> <li>(6) Procedu</li> <li>(7) Rationa</li> <li>(8) Detaile</li> <li>(9) Fit betw</li> <li>(10) Fit betw</li> <li>moderately</li> </ul>	QAT ure for da ale for ch d recruiti ween rese tween rese tween rese	<b>SDD C</b> iata colle noice of ment da earch qu search q <i>plete; A</i>	riteria ection data collect ta estion and WSA = Arr	tion tool(s method of d method o <i>ny Medico</i>	) f data colle of analysis ul Surveilla	ection (Qu (Quantita unce Activ	antitative ative only) <i>ity</i>	only)	(11) Good justifica (12) Strengths and	ation for analytical meth l limitations.
(5) Representative sample QATSDD rating scale: 0=	of target g not at all;	group 1=very sla	ightly; 2=	(10) Fit ber moderately	tween res ; 3=com	search q plete; A	uestion and $MSA = Arr$	d method o ny Medico	of analysis al Surveillo	(Quantita ance Activ	ntive only) ity	•••		

## PRISMA 2009 Checklist

1 5 5	Section/topic	#	Checklist item	Reported on page #
7	TITLE	-		
3	Title	1	Identify the report as a systematic review, meta-analysis, or both.	1
	ABSTRACT	-		
2   2   2	Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	2
	Rationale	3	Describe the rationale for the review in the context of what is already known.	5
	Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	6
20	METHODS			
22	Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	6
25	Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	6
27	Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	6
29 30 31 32	Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	6, supplementary file 1
33	Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	Figure 1
36	Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	7
38	Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	7
+( 11 12	Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	7
13	Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	8
+4 15	5		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

BMJ Open

Page 38 of 38



## PRISMA 2009 Checklist

Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I ² ) for each meta-analysis.	8
		Page 1 of 2	
Section/topic	#	Checklist item	Reported on page #
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	7
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	N/A
RESULTS			
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	Figure 1
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	8, Supplementary file 2
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	15, 16
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	10,12, 14, Supplementary file 2
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	9,10,11,12, 13, 14
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	16
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	N/A
DISCUSSION			
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	17, 18, 19
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	20, 21
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	21, 22
FUNDING			

- 46
- 47

Page 39 of 38

RIS MA

BMJ Open

Funding	27Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.22
<i>rom:</i> Moher D, Libera	ti A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(6) d1000097
on for to high an an price	For more information, visit: www.prisma-statement.org.
	Page 2 of 2
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

# **BMJ Open**

## Gender makes the difference in exertional heat illness in the armed forces: A systematic review and meta-analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-031825.R1
Article Type:	Original research
Date Submitted by the Author:	30-Aug-2019
Complete List of Authors:	Alele, Faith; James Cook University, College of Healthcare Sciences Malau-Aduli, Bunmi; James Cook University, College of Medicine and Dentistry Malau-Aduli, Aduli; James Cook University, College of Public Health, Medical and Veterinary Sciences Crowe, Melissa; James Cook University, Division of Tropical Health and Medicine
<b>Primary Subject Heading</b> :	Occupational and environmental medicine
Secondary Subject Heading:	Sports and exercise medicine
Keywords:	OCCUPATIONAL & INDUSTRIAL MEDICINE, ACCIDENT & EMERGENCY MEDICINE, Heat Stroke, Armed Forces, Women





I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3 4 5	1	Gender makes the difference in exertional heat illness in the armed forces:
5 6 7 8	2	A systematic review and meta-analysis
9 10	3	Type of article: Review
11 12	4	Authors
13	5	Faith O. Alele ^{1*}
14	6	MPHTM, MBBS
15 16	7	Faith.alele@my.jcu.edu.au
17	8	+61426156266
18	9	
19	10	A/Prof Bunmi S. Malau-Aduli ²
20	11	PhD, MSc, BSc (Hons)
21	12	Bunmi.malauaduli@jcu.edu.au
23	13	
24	14	A/Prof Aduli EO. Malau-Aduli ³
25	15	PhD_MSc_BSc (Hons)
26	16	Aduli malauaduli@icu edu au
27	17	<u>I tuun muuuuuun tojou.ouu.uu</u>
29	18	Dr Melissa Crowe ⁴
30	10	PhD BSc (Hong)
31	20	Malissa crowa (ijeu adu au
32 33	20	<u>inclissa.clowe(ajeu.cuu.au</u>
34 35 36	22	¹ College of Healthcare Sciences, James Cook University, Townsville QLD 4811, Australia
37 38	23	² College of Medicine and Dentistry, James Cook University, Townsville QLD 4814, Australia
39 40	24 25	³ College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville QLD 4811, Australia
41 42 43	26 27	⁴ Division of Tropical Health and Medicine, James Cook University, Townsville QLD 4811, Australia
44 45	28	
46 47	29	*Corresponding author:
48 49 50	30 31	Faith O. Alele, College of Healthcare Sciences, James Cook University, Townsville QLD 4811, Australia, Townsville QLD 4811, Australia
51 52	32	Tel: +61426156266
55 55	33	Email: <u>faith.alele@my.jcu.edu.au</u>
55 56 57	34	
57 58 50	35	Word count: 4723
60	36	

### 37 Abstract

Objectives: The aim of this review is to describe the epidemiology of all heat related illnesses
in women compared to men in the armed forces and to identify risk factors and gender
differences in heat illness and heat tolerance.

**Design:** Systematic review and meta-analysis.

42 Data sources and eligibility criteria: A search of multiple databases (MEDLINE, Emcare,
43 CINAHL, PsycINFO, Informit, and Scopus) was conducted from inception of the databases to
44 1 April 2019 for studies investigating and comparing heat illness and heat tolerance in women
45 and men in the armed forces.

Results: Twenty-seven (27) studies were included in the systematic review and 13 of these studies were included in the meta-analysis. Meta-analysis of the 13 studies identified a 43% decreased risk of heat stroke in women compared to men (risk ratio = 0.56, 95% CI 0.47 to 0.66). The overall risk of other heat illnesses (heat exhaustion and unspecified effects of heat and light) was 26% higher in women compared to men (risk ratio = 1.26, 95% CI 1.15 to 1.38). The factors significantly associated with heat illness were gender, age, level of education, ethnicity, body mass index (BMI), positive sickle cell trait, being in service for less than 1 year, and unit of service. Although there was a higher proportion of women who were heat intolerant compared to men; this finding needs to be interpreted with caution due to the limited evidence.

55 Conclusion: In relation to armed forces personnel, the findings of this review suggest that men 56 experienced a higher risk of heat stroke than women. However, women have a greater risk of 57 other heat illnesses. Despite the limited evidence, further research is required to investigate the 58 influence of gender differences on heat intolerance and heat illness.

### 60 Article summary

### 61 Strengths and limitations of this study

- This is the first known systematic review and meta-analysis investigating the impact of gender on exertional heat illness and heat tolerance in the armed forces.
- We conducted a comprehensive search and identified potential risk factors that are associated with exertional heat illness.
- Most of the included studies utilized retrospective data with an increased likelihood of
   misclassification bias which may have underestimated or overestimated the association
   between heat-related illness and risk factors.

**Trial registration** None

70 Key words

Heat stress; Heat stroke; Heat exhaustion; Heat tolerance; Women; Armed forces

#### 80 Introduction

Heat illnesses are disorders that arise after prolonged exposure to heat/humidity and/or increased physical activity.[1] When body temperature rises, conduction, convection, radiation and evaporation mechanisms help to cool the body and maintain normothermia.[1] However, heat loss is susceptible to prevailing environmental conditions and type of clothing worn. Without adequate cooling heat illnesses may occur including exercise-associated muscle cramps (EAMC), heat syncope, heat exhaustion and heat stroke, a potentially life-threatening disorder.[1]

Heat stroke is a medical emergency.[2] The condition is characterized by elevated core temperature of 40°C and above, central nervous system disturbances and multi-organ damage that may result in death.[2] Heat stroke has been classified as either classic or exertional.[3] Classical heat stroke is insidious in onset and occurs in vulnerable populations such as young children, the elderly and patients with chronic diseases.[4] On the other hand, exertional heat stroke occurs more rapidly and affects apparently healthy, active people such as athletes, factory workers, construction workers, agricultural workers, firefighters and military recruits.[5] The workers in these industries often require high levels of physical exertion to perform jobs and tasks. A combination of rigorous activities and extreme exposure to heat places the workers at increased risk of heat stress and heat stroke.[6] 

98 However, the ability to cope with heat stress varies between individuals.[2] Individuals who 99 are unable to cope with heat stress may be affected by heat exhaustion or heat stroke as a result 100 of a combination of factors including an elevation in body temperature, cardiovascular 101 insufficiency , hypotension and fatigue [7]. The inability to withstand heat stress during 102 exertion in hot environments is defined as heat intolerance.[2] Evidence in the published 103 literature suggests that heat intolerance may be as a direct result of heat stroke or due to

predisposing inherent factors (genetics).[2] The Israeli Defence Force developed the heat tolerance test in 1979 as an index of the ability of soldiers to cope with exertional heat.[8] Individuals who have suffered heat stroke are sent for a heat tolerance test after a minimum recovery period of 6 to 8 weeks as part of the return to duty process.[8] Criteria used to define heat intolerance include an elevation in rectal temperature above 38.5°C and heart rate above 150 bpm or when rectal temperature or heart rate fail to stabilize during the test. The current heat tolerance test criteria are based on previous studies by Shapiro et al.[9] which utilised only male military participants.[8, 9] According to these studies, the heat tolerance test is a useful tool to determine return to duty and to prevent subsequent exertional heat stroke. [8,9] Given that heat stroke may be fatal; it is essential to identify individuals who are at high risk of exertional heat illness. [8] 

Globally, increasing numbers of women are joining the armed forces as inclusive approaches to recruiting are adopted and more roles for women are created.[10] Women are required to operate in austere environments with heat illnesses becoming more frequent.[10] This has raised the question about gender differences in thermoregulation during heat stress.[10] During prolonged heat exposure, the body's thermal inertia is determined by complex interactions between morphological characteristics (body composition, body mass and surface area) and heat load. Evidence suggests that women differ from men in thermal responses to heat.[11] These difference may be because women have a lower rate of whole body evaporative heat loss, higher body fat mass, body mass ratio, [12] number of sweat glands and lower aerobic fitness.[13] In addition, hormonal variations due to menstrual cyclic patterns and the use of contraceptive pills may all be associated with the differences in response to heat stress.[14] 

Although these gender differences exist, they have not been considered when conducting the
 heat tolerance test (HTT) for women who have had a heat stroke.[13] Furthermore, heat illness
 can impact defence operational effectiveness and may result in acute loss of manpower and

Page 7 of 49

1 2

#### **BMJ** Open

possible medical discharge from service.[15] A previous review of the risk of heat illness in

women compared with men focused on the general population.[16] The findings of the review

suggested that men are at increased risk of heat illness compared to women.[16] However, no

systematic review has investigated gender differences among armed forces personnel in

relation to heat illness. Given that heat intolerance may predispose to or accompany heat stroke,

Therefore, the objective of this systematic review and meta-analysis was to provide a

comprehensive summary of the epidemiology of heat illness and heat intolerance in women

To determine the relative risk of heat illness in women compared to men in the armed

To identify predisposing risk factors associated with heat illness and heat tolerance in

it is important to understand the role gender plays in heat intolerance.

and men in the armed forces.

Specific aims were

Methods

**Search Strategy** 

forces and

the armed forces

3 4	129
5 6	130
7 8 0	131
) 10 11	132
12 13	133
14 15 16	134
17 18 19	135
20 21	136
22 23	137
24 25 26	138
27 28 29	139
30 31	140
32 33 34	141
35 36 37	142
38 39	143
40 41 42 43	144
44 45 46	145
47 48 49	146
50 51	147
52 53	148
54 55 56	149
57 58	150
59 60	151

60

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

This review utilised the Preferred Reporting Items for Systematic Review and Meta-analysis

(PRISMA) guidelines [17] and the MOOSE (Meta-analysis Of Observational Studies in

Epidemiology) checklist [18] to explore all literature published in English from inception of

the different databases to 1 April 2019. Databases searched included MEDLINE, CINAHL,

PsycINFO, Emcare, Informit and Scopus. A preliminary search was conducted in Medline,

Emcare and CINAHL to identify relevant key words contained in the titles, abstracts and

subject descriptors. These search terms were used to conduct the search in other databases
without subject headings. The search strategy used in Medline is presented in supplemental
Table 1. No review protocol exists.

#### 155 Eligibility criteria

Studies included in the review were assessed according to the following inclusion criteria: Peerreviewed literature comparing heat illness in women to men in the armed forces or reporting heat tolerance in women and men of the armed forces. Exclusions included literature discussing heat illness in other occupations, or studies where data on heat illness in women could not be separated from men or studies reporting heat illness in men or literature reviews, conference abstracts and grey literature. In addition, additional primary data sources were also identified from the reference lists of the included studies using a hand-search technique (Figure 1).

163 Selection of studies and data extraction

FA and BMA identified all included studies and data extraction was performed using a standard
abstraction form. Data extracted from the studies included: study location and design,
population, proportion and incidence of heat illnesses, factors associated with heat illness and
heat tolerance, and heat tolerance in men and women. All authors cross-checked the extracted
data for consistency.

#### 169 Quality assessment

The methodological quality assessment was assessed by FA in consultation with MC using the modified quality assessment tool for studies with diverse designs (QATSDD) critical appraisal tool.[19] Disagreement about any article was reviewed by BMA and AMA and discussed until consensus was reached. The QATSDD tool is a 16-item tool which assesses the quality of diverse studies (both quantitative and qualitative).[19] The tool was modified to exclude two items relating to qualitative studies as well as two items relating to quantitative studies that Page 9 of 49

#### **BMJ** Open

were not applicable to the studies included in the review. The items excluded were statistical assessment of reliability and validity of measurement tool(s) (Quantitative only), fit between stated research question and format and content of data collection tool e.g. interview schedule (Qualitative), assessment of reliability of analytical process (Qualitative only) and evidence of user involvement in design. Each criterion in the modified QATSDD tool was awarded a score of 0 to 3 with 0 = not at all, 1 = very slightly, 2 = moderately and <math>3 = complete. The scores of each criterion were summed to assess the methodological quality of included studies with a maximum score of 36. The criteria included were (1) theoretical framework; (2) statement of aims/objectives; (3) description of research setting; (4) evidence of sample size; (5) representative sample of target group of a reasonable size, (6) description of procedure for data collection; (7) rationale for choice of data collection tool(s); (8) detailed recruitment data; (9) fit between research question and method of data collection (Quantitative only); (10) fit between research question and method of analysis (Quantitative only); (11) good justification for analytical method selected; and (12) strengths and limitations. For ease of interpretation, the scores were converted to percentages and classified as low (<50%), medium (50-80%) or high (>80%) quality of evidence.

Patient and public involvement

There was no public or patient involvement in this study. 

#### Data analysis and synthesis

In this review, the International Classification of Diseases ICD 9 or ICD 10 diagnosis codes [20, 21] for the effects of heat and light were used to classify heat illnesses. All included studies in the review utilized either the ICD 9 or ICD 10 codes to classify heat illnesses depending on the year of publication. Heat illnesses were categorised as all heat illnesses, heat stroke and other heat illnesses (including heat exhaustion and unspecified effects of heat and light). For 

this analysis, all heat illness was defined as cases where diagnosis of heat stroke (992.0, T67.0), heat exhaustion (992.3-5, T67.3 -5), heat syncope (992.1, T67.1), heat cramps (992.2, T67.2), heat fatigue, transient (992.6, T67.6), heat oedema (992.7, T67.7), other specified heat effects (992.8, T67.8) and unspecified effects of heat and light (992.9, T67.9) were reported. Heat stroke was identified and defined using the ICD diagnosis codes 992.0 (1CD 9) and T67.0 (ICD 10). While other heat illnesses were defined as heat exhaustion (992.3-5, T67 3-5) and unspecified effects of heat and light (992.9 and T67.9). Incidence rates and proportions were extracted from the data reported in each study and used for the analysis in this review. Studies reporting all heat illnesses and the risk factors associated with heat illnesses and heat tolerance were not pooled due to variation in the study designs, populations, and measures reported. 

A meta-analysis was conducted to provide an overview of the risk of heat stroke and other heat illnesses (heat exhaustion and unspecified effects of heat) in women compared to men in the armed forces. A pooled analysis of the risk of heat stroke was conducted separately from other heat illnesses. For other heat illnesses, a subgroup analysis was performed according to classifications used in the included studies (1 – heat exhaustion and unspecified effects of heat and light and 2 – heat exhaustion). The risk ratio for each study and the pooled risk ratios (RR) with 95% CI were calculated using Review Manager 5.3.[22] The risk ratios were presented as the ratio of the incident rates of heat illness in women to men. A random effects model was used taking into account the heterogeneity of the included studies.  $I^2$  was used to measure the heterogeneity (between study variations) of the included studies. Where the percentage of variation between the included studies was greater than 50%, a sensitivity analysis was performed. 

# **Results**226 Systematic review

An initial search identified 3801 papers. After removing duplicates, screening titles and abstracts, 47 papers remained for full text review with twenty-seven (27) included in the systematic review (Figure 1). Twenty-five (25) of the reviewed articles originated from the United States of America, while the other two studies were conducted in the United Kingdom and Israel respectively (Supplemental Table 2). All included studies were conducted among armed forces personnel, however, one study focused on armed force personnel with sickle cell trait (SCT),[23] while another study included university staff and armed forces personnel in the study.[24] Twenty- four (24) articles examined heat illnesses and injuries in women and men. Eight (8) of these studies described all heat related illnesses in men and women,[23, 25-31] while 16 studies included information on heat stroke and other heat injuries (including "heat exhaustion" and "unspecified effects of heat") in relation to both genders.[32-47] Six (6) studies identified risk factors associated with heat stroke,[23, 27, 30, 31, 48, 49] and two studies compared heat tolerance in men and women.[16, 49]

#### 240 Heat illnesses in women compared to men

Table 1 shows the proportions and incidences of all heat-related illness in men and women in the armed forces. Six (6) studies reported higher incidences and proportions of heat illness in men compared to women[23, 25, 27, 28, 30, 31] while two studies reported higher incidences of heat illness in women.[26, 29] Between 1995 and 1997, the mean proportion of all reported heat stroke events in women was approximately 12% compared to 88% of heat stroke events in men. Similarly, men reported a higher mean proportion of heat exhaustion (96%) compared to women (4%).[33-35] Between 2006 and 2018, the average incidence rate of heat stroke in women and men was 0.16/1000 person years and 0.29/ 1000 person years. The average incidence of other heat illnesses (including heat exhaustion and unspecified effects of heat and 250 light) was 1.84/1000 person years and 1.44/ 1000 person years for women and men251 respectively.

for beer teries only 

Page | 11

 BMJ Open

Reference, year	Country	Study design	Study duration	Population	ICD codes	All heat injuries	
						Women	Men
Dickson. 1994[25]	UK	Descriptive epidemiology	1981-1991 (10yrs)	Royal Air force, Royal Navy and Army (1448 cases)	ICD-9-CM: 992.0 – 992.9	11.43*	41.87*
Army Medical Surveillance Activity, 1998[26]	USA	Descriptive epidemiology	1997 – 1998 (1 year)	US Army (1433 cases) 1997	ICD-9-CM: 992.0 – 992.9	12.8ŧ	8.6ŧ
				1998		15.8ŧ	12.0ŧ
Army Medical Surveillance Activity, 2000[29]	USA	Descriptive epidemiology	1997 – 1999 (2 years)	US Army and Marine Corps (3386 cases)	ICD-9-CM: 992.0 – 992.9		
2000[23]				Army (1896 cases) Marine Corps (1104 cases)		2.0† 4.4†	1.5† 2.0†
Army Medical Surveillance Activity, 2002[27]	USA	Descriptive epidemiology	1990 – 1997 (7 years)	US Army (2290 cases)	ICD-9-CM: 992.0 – 992.9	14.0%§	86.0%§
2002[27]		Case control	1998 – 2001 (3 years)	US Army (5021 cases and 10,042 controls)		20.7%§	79.3%§
Army Medical Surveillance Activity, 2003[28]	USA	Descriptive epidemiology	2002 (1 year)	US Army (1816 cases)	ICD-9-CM: 992.0 – 992.9	3.5†	5.1†
Carter et al, 2005[30]	USA	Cross-sectional	1980 – 2002 (22 years)	US Army (5246 cases)	ICD-9-CM: 992.0 – 992.9	13.7%§	86.3% [§]
Bedno et al, 2014[31]	USA	Analytical cross- sectional	2005 - 2006	US Armed forces (80 exertional heat illness cases) 9455 men 1913 women	ICD-9-CM: 992.0 – 992.9	0.680%	0.71%
Singer et al, 2018[23]	USA	Retrospective cohort	1992 - 2012	SCT and non-SCT US Armed forces	ICD-9-CM: 992.0 – 992.9		
				SCT: 214 exertional heat illness cases Non-SCT: 577 exertional heat illness cases		13.89† 13.14†	14.79† 7.79†
<ul> <li>253 § <i>Proportio</i></li> <li>254 * Incidence</li> <li>255 UK = Unite</li> </ul>	ons and incider e rate reported ed Kingdom; U	nces reported are of t per 100,000 person- SA = United States of	<i>he total cases reported</i> years; ‡ Incidence rate p of America	<i>in the articles</i> ber 100,000 person- months; † Incidence rate re	ported per 1000 person-years		
							Page   12
			For peer review only	- http://bmjopen.bmj.com/site/about/guideli	nes.xhtml		

Page | 13

#### 256 Risk factors for heat illness and heat intolerance

As shown in Table 2, five (5) studies identified the risk factors associated with heat illness, [23, 27, 30, 31, 48] while one (1) study identified the predictors of heat intolerance. [49] Of the five (5) studies reporting the risk factors associated with heat illness, one study identified the risk for heat illness in association with SCT status.[23] The odds of females experiencing heat illness ranged from 1.04 to 1.5 compared to males. [23, 27, 30, 31] Other identified risk factors for heat illness (Table 2) included younger and older age, [23, 27] lower level of education, [27] ethnicity, [27, 30] higher body mass index (BMI), [48] being SCT positive, [23] being in service for less than 1 year, [27] and serving in combat units as an infantry or gun crew soldier. [27, 30] The factor that predicted heat intolerance was lower VO_{2max}.[49] 

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

278	Table 2: Risk factors associated with heat illness and tolerance
-----	------------------------------------------------------------------

Reference, year	Country	Study design and duration	Study population	Risk factors	OR or IDR (95% C
Army Medical Surveillance Activity, 2002[27]	USA	Case-control	US Army	Female	1.5 (1.4 - 1.7)
		1998 - 2001	5021 cases and 10,042 controls	Age < 20 years	2.1 (1.4 - 3.1)
		(5 years)		Other ethnicity*	1.2 (1.0 -1.4)
				Combat	1.5 (1.4 - 1.6)
				Lower level of education	2.0(1.2 - 3.1)
				Less than 1 year of service	2.3(2.0-2.6)
Carter et al. 2005[30]	USA	Cross-sectional	US Army	Female	1.21(1.09 - 1.40)
		1980 – 2002 (22 years)		Infantry soldiers and gun crew men	2.69 (1.71 – 2.89)
			5246 cases of heat illness; 4521 males and 725 females	African and Hispanic ethnicity	0.76 (0.71 – 0.82)
				Northern state of origin	1.69 (1.42 - 1.90)
Wallace et al. 2006[48]	USA	Case-control	US Marine Corps	$BMI > 26 \text{ kg/m}^2 \text{ (males)}$	2.10 (1.59 - 2.78
		1988 – 1996 (8 years)	Male (627 cases and 1679 controls)	Run time $\geq$ 12.9 minutes (males)	5.61 (3.73 - 8.45)
		(0) (0)	Female (49 cases and 123 controls)	Run time $\geq$ 6.9 minutes (females)	5.30 (1.59 - 17.64)
Bedno et al, 2014[31]	USA	Analytical cross-sectional 2005 - 2006	US Armed forces 9455 men (67 exertional heat illness cases) 1913 women (13 exertional heat illness cases	Female	1.04 (0.57 – 1.89)
Kazman et al, 2015[49]	USA	Analytical cross-sectional (Duration not stated)	Military and university community members 55 males and 20 females	VO _{2max}	0.9 (0.76 – 0.96)
Singer et al, 2018[23] ‡	USA	Retrospective cohort study	SCT and non-SCT US Armed forces	Female	1.36 (1.17 – 1.50)
		-	SCT: 214 exertional heat illness cases	SCT positive	1.24 (1.06 – 1.45)
			Non-SCT: 577 exertional heat illness cases	Age at enlistment: 30+ years	1.57 (1.07 – 2.33)
				Marines vs Army	1.51 (1.15 – 2.13)
				Occupation: Combat vs repair/engineer	1.57 (1.15 – 2.13)
<ul><li>279 *non- White, non-Blac</li><li>280 associated with EHI ar</li></ul>	ck, non-Hispar nd SCT status	nic; OR = Odds ratio; IDR = Incider	nce density ratio; BMI= Body Mass Index; CI=Con	fidence Interval; USA = United States of Amer	ica; ‡ The risk factors

#### 281 Heat tolerance in women and men

Two studies compared heat tolerance classification in males and females using the most common test, the HTT developed by the Israeli Defence Force. [13, 49] Druyan et al. investigated gender differences in Israeli Defence Force personnel who had sustained heat injury. The study reported that 67% of the women were found to be heat intolerant compared to 26% of their male counterparts.[13] In the study by Kazman et al. the study population comprised of participants from the university and military communities. The findings of the study reported that a greater proportion of women were classified as heat intolerant compared to men (45% vs 18% respectively). [49] Although the mean physiological parameters for women and men in both studies were below the test threshold (rectal temperature >38.5C and HR >150 bpm); women had higher mean baseline temperature and mean heart rate (Table 3) in both studies [13, 49]. In addition, the mean endpoint heart rates for women were higher compared to their male counterparts.[13, 49] However, the mean end point temperature varied between the two studies; one study reported a higher endpoint temperature for females compared to males [13] and the other study reported similar endpoint temperatures for males and females.[49] 

298	Table 3:	Heat to	lerance in	women	and men
-----	----------	---------	------------	-------	---------

_	Reference, year	Country	Study design and duration	Study population	Parameters	Women	Men
	Druyan et al, 2012[13]	Israel	Retrospective cross-sectional	170 males and 9 females			
			2008 - 2010	Ternules	Heat intolerance rate	66.67%	25.79%
			(2 years)				
					<b>Physiological</b>		
					measurements (mean		
					$\pm$ SD)		
					Baseline $T_{rec}$ (° C)	$37.18 \pm 0.09$	$37.07 \pm 0.02$
					Endpoint T _{rec} (° C)	$38.14 \pm 0.14$	$37.93 \pm 0.03$
					Baseline HR (bpm)	$82.11 \pm 4.88$	$73.94 \pm 1.17$
-	17 4 1			<b>N</b> ('1') 1 ' '	Endpoint HR (bpm)	$141.50 \pm 7.84$	$\frac{126.44 \pm 1.7}{1007}$
	Kazman et al,	USA	Analytical cross-sectional	Military and university	Heat intolerance rate	45%	18%
	2015[49]		(duration not stated)	55 malas and 20			
				females			
				iciliaics	Physiological		
					measurements (mean		
					$\pm$ SD)		
					Baseline T _{rec} (° C)	$37.1 \pm 0.4$	$36.9 \pm 0.4$
					Endpoint T _{rec} (° C)	$38.1\pm0.4$	$38.1\pm0.4$
					Baseline HR (bpm)	$76 \pm 15.0$	$68 \pm 12.1$
					Endpoint HR (bpm)	$137 \pm 20.1$	$122 \pm 20.2$
]	HR = Heart rate; Bpm = beats	per minute; T _{ree}	$_{c}$ = Rectal temperature; USA = United S	tates of America			

# 300 Meta-analysis findings

Of the 27 studies, 13 were included in the meta-analysis. The incidence rate data were extracted
from the included studies and pooled together to perform the meta-analysis (Supplemental
Table 3 and Supplemental Table 4).

#### 304 Risk of heat stroke in women and men in the armed forces

In the pooled analysis, the risk ratio of heat stroke in women compared to men in the armed forces was 0.56 (95% CI 0.47 to 0.66). There was no heterogeneity ( $I^2 = 0\%$ ) in the studies reporting heat stroke (Figure 2).

#### Risk of other heat illnesses in women and men in the armed forces

The overall pooled risk ratio of other heat illness was 1.26 (95% CI 1.15 to 1.38) in women compared to men in the armed forces (Figure 3). The women to men risk ratio of studies reporting heat exhaustion and unspecified effects of heat and light was 1.28 (95% CI 1.14, to 1.45). In studies reporting only heat exhaustion, the risk of heat exhaustion in women compared to men was 1.22 (95% CI 1.06 to 1.42). The percentage of variance between the included studies due to heterogeneity (I²) was 53%; a sensitivity analysis was conducted where three of the included studies with the largest rates: AMSA 2006, AMSA 2012, and AMSA 2013 [36, 42, 43] were excluded. The heterogeneity test was lower ( $I^2 = 7\%$ ) after excluding the studies from the pooled analysis (Supplemental Figure 1), however the effect did not change (pooled RR = 1.18, 95% CI 1.09 to 1.27). 

1 319 Assessment of methodological quality

The QATSDD scores ranged from 0 to 97.2% (Supplemental Table 5). Only six studies scored above 50% and included details about recruitment, data analysis, strengths and limitations of the research. The other studies had lower scores because they lacked detailed justification for

#### **BMJ** Open

the analytical methods, data collection, analysis, strengths and limitations. However, results of the methodological assessment should be interpreted with caution. Although the tool assesses methodological quality, it is more likely to be dependent on how the paper was written. In this review, 80% of the studies included were military reports on heat-related illnesses in the Armed forces. These reports were published in a peer-reviewed journal and were retrospective analyses of data collected by Defence Medical Surveillance Systems. These studies may not have reported details about data collection, strengths and limitations, but they presented valid information on heat- related illness. 

#### Discussion

This systematic review and meta-analysis provide an overview on the available evidence on epidemiology of heat illnesses and heat tolerance in women compared to men in the armed ie. forces. 

#### **Summary of findings**

The findings of this systematic review suggest a higher rate of all heat illnesses (defined as cases where a combined diagnosis of all heat illnesses was reported) in men compared to women as evidenced by the outcomes reported in six (6) of eight (8) studies. The meta-analysis of 13 studies demonstrated that women had 44% less risk of heat stroke compared men in the armed forces. On the other hand, the overall pooled analysis revealed that women had 26% increase in risk of other heat illnesses (heat exhaustion and unspecified heat illnesses) Risk factors found to be associated with exertional heat illness include age, lower level of education, ethnicity, higher BMI, positive SCT, shorter duration of service, and service unit. The reported predictor of heat intolerance was lower VO_{2max}. However, the association between these factors and exertional heat illness and heat intolerance is weak given the small number of articles that 

investigated the relationship. Furthermore, despite the higher proportion of heat intolerance
reported among women; this finding should be interpreted with caution given the small sample
size for females in both studies and the differences in occupations of the women in the two
studies. One study included women in the armed forces with a previous history of heat stroke,
[13] while the other study recruited women from the general population as well as military
members with no previous history of heat stroke. [49]

#### Heat illnesses in women compared to men

The lower risk of heat stroke in women compared to men could possibly indicate that men can tolerate working in the heat beyond the endurance limits than women.[15] Conversely, the women may not have ignored the early warning signs of heat illness and may have sought earlier treatment compared to men. This reinforces the presumption that women are more inclined to make use of health services and report ill health than men.[50] In addition, the consultation rates of men were 30% lower than women, confirming the assumption that men are less likely to consult and may present at a later stage with more severe forms of diseases.[50] Although, previously published literature have reported a higher rate of all types of heat illnesses in men in the general population (including some armed forces personnel) compared to women; heat stroke was not considered separately from other forms of heat illnesses.[16] 

However, despite the lower risk of heat stroke, women had a greater risk of other heat illnesses (heat exhaustion and unspecified effects of heat and light) than men.[32, 36 – 47] The higher risk of other heat illnesses in women may likely be due to differences in physiological and physical characteristics between men and women.[51] Physiological characteristics such as hormones, use of contraceptive pills and lower evaporative heat loss may make women more susceptible to heat illness. [12, 14] Physical characteristics such as lower aerobic fitness and Page 21 of 49

#### **BMJ** Open

greater body fat are predictors of exertional heat illness.[51] Generally, men have less body fat
and greater lean body mass compared to women. Furthermore, women have lower aerobic
fitness levels and lower overall work capacity which may contribute to the increased risk of
exertional heat illness.[51]

#### 375 Risk factors for heat illness and heat intolerance

The risk factors for heat illness identified in the studies include higher BMI, [48] lower age, [23, 27] lower level of education, [27] non-White, non-Black, non-Hispanic ethnic groups, [27] less than one year of service, [27] service unit. [27, 29] and positive SCT. [23] On the other hand, lower VO_{2max} was identified as a predictor of heat intolerance.[49] Evidence suggest that individuals with higher BMI (indicating higher body fat) have been reported to be at increased risk of exertional heat illness and are less heat tolerant.[52] However, individuals with a low BMI may or may not be fit. Individuals with low aerobic fitness levels are likely to exert themselves beyond their physical limit and are at increased risk of heat illness.[53] During exercise, relative physiological strain is increased, peripheral blood flow decreases which in turn hinders thermoregulation and increasing the risk of heat illness.[53] 

The association between age, duration of service, occupational roles, level of education and heat illness may be explained by the level of aerobic fitness. Age as a risk factor varied in this review, with younger age and older age (at enlistment) considered as factors that increase the risk of heat illness.[23, 27] Evidence suggests that aerobic fitness decreases with older age, especially if older adults are sedentary.[54] However, aerobic fitness improves with regular physical exercise and the age related differences between younger and older adults are reversed.[55] The association between shorter duration in service and the increased risk of heat illness was inconclusive given that only one study investigated and reported its findings. However, the findings are in contrast to a previous study that reported that individuals with 

more years of service in the army had poorer physiological characteristics (lower aerobic capacity, lower maximum heart rate and higher percentage body fat).[56] These poorer physiological characteristics may place armed forces personnel at risk of heat illness.[52, 53] Furthermore, occupational roles such as serving as in Marine Corps and physically demanding jobs such as infantry, combat and gun crew had an increased risk of heat illness compared to personnel in administrative or support jobs. This may be associated with the rigorous and strenuous training requirements for these jobs.[31]

Similarly, the association between lower level of education and heat illness may be due to aerobic fitness. Research has identified educational attainment as a major predictor of health outcomes.[57] Education provides the opportunity for individuals to learn more about their health and to make healthy lifestyle choices. Individuals with a higher level of education are more likely to engage in healthy behaviours such as healthy diet and regular exercise.[57] Regular exercise is necessary to maintain and improve aerobic fitness.[58] High aerobic fitness may reduce the risk of exertional heat illness; however, some fit individuals may be at increased risk of heat illness because of their ethnic status. The effect of ethnicity on heat illness varied in this review. One study reported that minor ethnic groups (non-White, non-Black, non-Hispanic) were more susceptible to heat illness[27], while another study reported that Caucasians had an increased risk of heat illness compared to other ethnic groups.[30] The association between ethnicity and heat illness is not fully understood and other factors like acclimatisation and genetic adaptation may play a role in the differences between ethnic groups.[59] 

In addition, the role of genetics in heat illness was evident in the review with SCT positive
armed force members at increased risk of exertional heat illness compared to SCT negative
members.[23] SCT is an inherited blood disorder where an individual has a wild type
haemoglobin A and haemoglobin S. Individuals with the SCT are considered heterozygous for

Page 23 of 49

#### **BMJ** Open

the sickle cell mutation in the subunit beta gene of the haemoglobin.[60] Evidence has linked
positive SCT with exercise related adverse health outcomes such as exertional heat illness
(including exertional rhabdomyolysis, heat stroke and hyperthermia) in military personnel.[60]
However, the biological pathway by which SCT is associated with heat illness is still
unknown.[23] More in depth research is needed to elucidate the role of genetics in exertional
heat illness.

426 Heat tolerance in women and men

The risk of heat illness is dependent on thermal tolerance.[2] The HTT is conducted for members of the armed forces after a heat stroke event as part of the return to duty process.[8] The test criteria defines heat intolerance as peak rectal temperature > 38.5°C, peak heart rate > 150 bpm, or the inability of these values to reach a plateau.[8, 9] Although in the two studies, a higher proportion of women were classified as heat intolerant; this evidence should be interpreted with caution given that the female populations included in each study varied with respect to heat illness and occupations.[13, 49] However, both studies acknowledge that gender differences in thermoregulation may account for the higher intolerance rates in women.[13, 49] Furthermore, both studies reported using the Israeli Defence Force heat tolerance test protocol and given that the test protocol was developed using male participants, there may be a need to re-evaluate the criteria for women to reduce false positive results.[13, 49] 

438 Strengths and limitations

439 To the authors' current knowledge, this is the first known systematic review and meta-analysis
440 investigating the impact of gender on exertional heat illness and heat tolerance in the armed
441 forces. In addition, we identified potential risk factors that are associated with exertional heat
442 illness. However, the heterogeneity in the study designs contributed to the variable
443 methodological quality of the included studies. Most of the articles in this review were military

reports and may not be considered of high methodological quality when assessed using a formal critical appraisal tool. In addition, most of the included studies utilized retrospective data as the data source with an increased likelihood of incompleteness and inaccuracy. Misclassification bias is likely to have been introduced into the studies. Three studies that explored the risk factors associated with heat-related illness used retrospective data. [27, 30, 48] These retrospective data may have been misclassified or incomplete at the time of entry and may have introduced misclassification bias into the studies. This type of bias may underestimate or overestimate the association between heat-related illness and risk factors. Although the risk factors associated with heat illness were discussed; the review provided limited evidence of these factors, given the few numbers of studies that investigated the association. Furthermore, we included only studies published in English language; studies published in other languages were excluded. 

#### 456 Implication for policy and future research

This systematic review and meta-analysis demonstrate that there is limited research on exertional heat illness in women in the armed forces. Although men had a higher risk of heat stroke; women had a higher risk of other heat illnesses. This may be a reflection that women are more likely to report poorer health earlier than men.[50] Further research is needed to establish if this reflects physiological or behavioural differences. In addition, more research is needed to understand the roles of underlying factors such as menstrual cycle phase, use of contraceptive pills and cardiovascular function in heat illness.[13, 49] Furthermore, the limited and inconclusive evidence suggests that more women were classified as heat intolerant compared to men using the Israeli Defence Force heat tolerance test protocol. The current criteria may be unfair to women given that it was developed using male participants. More research is needed to determine the gender differences in heat tolerance as well as to consider 

1 2						
2 3 4	468	re-evaluating the heat tolerance test protocol or the development of a new protocol that				
5 6 7	469	considers gender specific factors.[13]				
7 8 9 10	470	Conclusion				
11 12 13	471	In conclusion, this review shows that men had a higher risk of heat stroke but women in the				
14 15	472	armed forces had a greater risk of other heat illness. Despite the limited evidence, further				
16 17	473	research is required to investigate the influence of gender differences on heat tolerance and				
18 19	474	heat illness. Further research is needed to evaluate the heat tolerance test protocol for women.				
20 21 22 23	475					
24 25	476	Authors' contribution				
26 27 28	477 478	All authors contributed substantially to the study concept, design, data extraction, quality assessment and writing of the manuscript.				
29 30	479	Conceptualization and design: FOA, BSMA, AEMA and MC				
31 32	480	Methodology: FOA, BSMA, AEMA and MC				
33 34	481	Writing - Original draft: FOA				
35 36 37 38 39 40 41	482	Writing – critical review & editing: FOA, BSMA, AEMA and MC				
	483	All authors read and approved the manuscript for submission.				
	484 485	<b>Funding:</b> The first author (FA) is supported by the Australian Government International Research Training Program Scholarship				
42 43	486	Competing Interests: The authors declare that they have no competing interests.				
44 45	487	Patient consent for publication: Not required				
46 47	488	Data sharing statement: There are no additional or unpublished data available.				
48 49	489	References				
50	490	1. Becker JA, Stewart LK. Heat-related illness. Am Fam Phys 2011;83(11):1325-1330.				
51	491	2. Epstein Y. Heat intolerance: Predisposing factor or residual injury? Med Sci Sports				
52 53	492	Exerc 1990;22(1):29-35.				
54	493	3. Grubenhoff JA, du Ford K, Roosevelt GE. Heat-related illness. Clin Pediatr Emerg Med				
55	494	2007;8(1):59-64.				
56	495	4. Mehta SR, Jaswal DS. Heat Stroke. Medical journal, Armed forces India				
57 58	496	2003;59(2):140-3.				
59	497	5. Xiang J, Peng B, Pisaniello D, Hansen A. Health impacts of workplace heat exposure:				
60	498	an epidemiological review. Ind Health 2014;52(2):91-101.				

Xiang J, Hansen A, Pisaniello D, Bi P. Extreme heat and occupational heat illnesses in 6. South Australia, 2001–2010. Occup Environ Med 2015; 72:580-586 doi:10.1136/0emed-2014-102706 [published Online First 18 June 2015]. 7. Casa DJ, DeMartini JK, Bergeron MF, et al. National Athletic Trainers' Association Position Statement: Exertional Heat Illnesses [published correction appears in J Athl Train. 2017 Apr;52(4):401]. J Athl Train. 2015;50(9):986-1000. doi:10.4085/1062-6050-50.9.07 Moran DS, Heled Y, Still L, Laor A, Shapiro Y. Assessment of heat tolerance for post 8. exertional heat stroke individuals. Med Sci Monit 2004;10(6):Cr252-7. Shapiro Y, Magazanik A, Udassin R, Ben-Baruch G, Shvartz E, Shoenfeld Y. Heat 9. intolerance in former heatstroke patients. Ann Intern Med 1979;90(6):913-6. Kazman JB, Heled Y, Lisman PJ, Druyan A, Deuster PA, O'Connor FG. Exertional 10. Heat Illness: The Role of Heat Tolerance Testing. Curr Sports Med Rep 2013;12(2):101-5. Kenney WL. A review of comparative responses of men and women to heat stress. 11. Environ Res 1985;37(1):1-11. Shapiro Y, Pandolf KB, Avellini BA, Pimental NA, Goldman RF. Physiological 12. responses of men and women to humid and dry heat. J Appl Physiol 1980;49(1):1-8. Druyan A, Makranz C, Moran D, Yanovich R, Epstein Y, Heled Y. Heat tolerance in 13. women-Reconsidering the criteria. Aviat Space Environ Med 2012;83(1):58-60. Tenaglia SA, McLellan TM, Klentrou PP. Influence of menstrual cycle and oral 14. contraceptives on tolerance to uncompensable heat stress. Eur J Appl Physiol Occup Physiol 1999;80(2):76-83. Hunt AP, Billing DC, Patterson MJ, Caldwell JN. Heat strain during military training 15. activities: The dilemma of balancing force protection and operational capability. Temperature (Austin) 2016;3(2):307-17. Gifford RM, Todisco T, Stacey M, Fujisawa T, Allerhand M, Woods DR, et al. Risk of 16. heat illness in men and women: A systematic review and meta-analysis. Environ Res 2019;171:24-35. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic 17. reviews and meta-analyses: the PRISMA statement. Annals of internal medicine. 2009;151(4):264-9 Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, et al. 18. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 2000;283(15):2008-12. 19. Sirriveh R, Lawton R, Gardner P, Armitage G. Reviewing studies with diverse designs: the development and evaluation of a new tool. J Eval Clin Pract 2012;18(4):746-52. World Health Organization. International statistical classification of diseases and related health problems.10th revision version for 2016. 2016 (Accessed August 20, 2019). Available at https://apps.who.int/iris/handle/10665/39473 World Health Organization. International statistical classification of diseases and related health problems.10th revision version for 2016. 2016 (Accessed August 20, 2019). Available at https://icd.who.int/browse10/2016/en Cochrane Collaboration. Review manager (RevMan)[computer program]. Singer DE, Byrne C, Chen L, Shao S, Goldsmith J, Niebuhr DW. Risk of Exertional 23. Heat Illnesses Associated with Sickle Cell Trait in U.S. Military. Mil Med 2018;183(7-8):e310-e7 doi:10.1093/milmed/usx085 [published Online First: 8 February 2018]. 

1 2		
3	545	2 Kazman IB Purvis DL Heled Y Lisman P Atias D Van Arsdale S et al Women and
4	546	exertional heat illness: identification of gender specific risk factors US Army Med Den I
5	547	2015.58-66
0 7	548	25 Dickinson IG Heat illness in the services IR Army Med Corps 1994:140(1):7-12
8	540	25. Diekinson 56. Heat miless in the services, 5 K Anny Med Colps 1994, 140(1), 7 12.
9	549	$\Lambda$ rmy January 1007 December 1007 MSMR 1008: $A(1)$ :16
10	550	Army, January 1997 - December 1997, Wishik 1998,4(1):10.
11	221	MSMD 2002.9(4):2.7
12	552	MISININ 2002,0(4).2-7.
14	555	28. Anny Medical Survemance Activity. Heat-related injuries, US Anny, 2002. MSWR $2002.0(A)$ , $2.4$
15	554	2005,9(4).2-4.
16	555	29. Army Medical Surveillance Activity. Heat-related injuries among active duty soldiers
17	556	and Marines, $1997-1999$ . MSMR 2000;6(3):2-3.
19	557	30. Carter III R, Cheuvront SN, Williams JO, Kolka MA, Stephenson LA, Sawka MN, et
20	558	al. Epidemiology of hospitalizations and deaths from heat illness in soldiers. Med Sci Sports
21	559	Exerc 2005;37(8):1338-44.
22	560	31. Bedno SA, Urban N, Boivin MR, Cowan DN. Fitness, obesity and risk of heat illness
23 24	561	among army trainees. Occup Med (Lond) 2014;64(6):461-7.
25	562	32. Army Medical Surveillance Activity. Heat-related injuries, U.S. Army, 2005. MSMR
26	563	2006;12(5):2-4.
27	564	33. Army Medical Surveillance Activity. Cases of Heat and Cold Weather Injuries, United
28	565	States Army, 1994. MSMR 1995;1(1):18.
30	566	33. Army Medical Surveillance Activity. Reported heat and cold weather injuries, United
31	567	States Army, Jan-Dec 1995. MSMR 1996;2(1):16.
32	568	35. Army Medical Surveillance Activity. Reported heat and cold weather injuries, United
33	569	States Army, January, 1996 - December, 1996. MSMR 1997;3(1):14.
34 35	570	36. Armed forces Health Surveillance Branch. Heat-related Injuries, U.S. Armed forces,
36	571	2006 MSMR 2007;14(2):14-5.
37	572	37. Armed forces Health Surveillance Branch. Update: Heat injuries among U.S. military
38	573	members, 2007. MSMR 2008;15(2):2-3.
39 40	574	38. Armed forces Health Surveillance Branch. Update: Heat injuries among active
40	575	component members, U.S. Armed forces, 2008. MSMR 2009;16(3):8-9.
42	576	39. Armed forces Health Surveillance Branch. Update: Heat injuries, active component,
43	577	U.S. Armed forces, 2009. MSMR 2010;17(3):6-8.
44 45	578	40. Armed forces Health Surveillance Branch. Update: Heat injuries, active component,
45 46	579	U.S. Armed forces, 2010. MSMR 2011;18(3):6-8.
47	580	41. Armed forces Health Surveillance Branch. Update: Heat injuries, active component,
48	581	U.S. Armed forces, 2011. MSMR 2012;19(3):13-5.
49	582	42. Armed forces Health Surveillance Branch. Update: Heat injuries, active component,
50 51	583	U.S. Armed forces, 2012. MSMR 2013;20(3):17-20.
52	584	43. Armed forces Health Surveillance Branch. Update: Heat injuries, active component,
53	585	U.S. Armed forces, 2013. MSMR 2014;21(3):10-3.
54	586	44. Armed forces Health Surveillance Branch. Update: Heat injuries, active component,
55	587	U.S. Armed forces, 2014. MSMR 2015;22(3):17-20.
50 57	588	45. Armed forces Health Surveillance Branch. Update: Heat injuries, active component,
58	589	U.S. Army, Navy, Air Force, and Marine Corps, 2015. MSMR 2016;23(3):16-9.
59		
60		

1		
2		
4	590	46. Armed forces Health Surveillance Branch. Update: Heat Illness, Active Component,
5	591	U.S. Armed forces, 2016. MSMR 2017;24(3):9-13.
6	592	47. Armed forces Health Surveillance Branch. Update: Heat illness, active component,
7	593	U.S. Armed forces, 2017. MSMR 2018;25(4):6-12.
8 Q	594	48. Wallace RF, Kriebel D, Punnett L, Wegman DH, Wenger C, Gardner JW, et al. Risk
10	595	factors for recruit exertional heat illness by gender and training period. Aviat Space Environ
11	596	Med 2006;77(4):415-21.
12	597	49. Kazman JB, Purvis DL, Heled Y, Lisman P, Atias D, Van Arsdale S, et al. Women and
13	598	exertional heat illness: identification of gender specific risk factors. US Army Med Dep J
14 15	599	2015:58-66.
16	600	50. Wang Y, Hunt K, Nazareth I, Freemantle N, Petersen I. Do men consult less than
17	601	women? An analysis of routinely collected UK general practice data. BMJ open
18	602	2013;3(8):e003320 doi:10.1136/bmjopen-2013-003320 [published Online First: 21 August
19	603	2018]
20	604	51. Epstein Y, Yanovich R, Moran DS, Heled Y, Physiological employment standards IV:
21	605	integration of women in combat units physiological and medical considerations. Eur J Appl
23	606	Physiol 2013:113(11):2673-90
24	607	52 Selkirk GA McLellan TM Influence of aerobic fitness and body fatness on tolerance
25	608	to uncompensable heat stress. I Appl Physiol. 2001;91(5):2055-63
26 27	600	53 Cleary M. Predisposing risk factors on suscentibility to evertional heat illness: clinical
27 28	610	decision making considerations. I Sport Pababil 2007:16(2):204-14
29	610	54 Using C Ciban CA Trop 7V Ognage Will Controlled endurance evereige training
30	611	54. Huang G, Gibson CA, Han ZV, Osness WH. Controlled endurance exercise training
31	612	and VO2max changes in older adults: a meta-analysis. Prev Cardiol 2005;8(4):217-25.
32	613	55. Woo JS, Derletn C, Stratton JR, Levy WC. The Influence of Age, Gender, and Training
33 34	614	on Exercise Efficiency. J Am Coll Cardiol 2006;47(5):1049-57.
35	615	56. Abt JP, Perlsweig K, Nagai I, Sell IC, Wirt MD, Lephart SM. Effects of Age and
36	616	Military Service on Strength and Physiological Characteristics of US Army Soldiers. Military
37	617	medicine. 2016 Feb 1;181(2):173-9.
38	618	57. Zimmerman EB, Woolf SH, Haley A. Understanding the relationship between
39 40	619	education and health: a review of the evidence and an examination of community perspectives.
41	620	2015. [Accessed 5 April 2019]. Available from:
42	621	http://www.ahrq.gov/professionals/education/curriculum-tools/population-
43	622	health/zimmerman.html
44 45	623	58. Gormley SE, Swain DP, High R, Spina RJ, Dowling EA, Kotipalli US, et al. Effect of
45 46	624	intensity of aerobic training on VO2max. Med Sci Sports Exerc 2008;40(7):1336-43.
47	625	59. Hansen A, Bi L, Saniotis A, Nitschke M. Vulnerability to extreme heat and climate
48	626	change: is ethnicity a factor? Glob Health Action. 2013;6:21364. doi:10.3402/gha.v6i0.21364
49	627	[published Online First: 29 July 2013].
50	628	60. Nelson DA, Deuster PA, Carter R, Hill OT, Wolcott VL, Kurina LM. Sickle Cell Trait,
51 52	629	Rhabdomyolysis, and Mortality among U.S. Army Soldiers. N Engl J Med 2016;375(5):435-
53	630	42.
54	631	
55		
56 57	632	Figure legends
57 58 59 60	633	Figure 1: PRISMA flow chart of the study selection protocol

3 4 5 6	634 635 636	Figure 2: Forest plot of studies investigating the risk of heat stroke in women compared to men in the armed forces. Incidence data were extracted from tables provided in the original articles. M-H = Mantel-Haenszel; CI = confidence interval.
7 8 9 10 11 12	637 638 639 640	Figure 3: Forest plot of studies investigating the risk of heat exhaustion and unspecified effect of heat and light $(1.1.1)$ and heat exhaustion $(1.1.2)$ in women compared to men in the armed forces. Incidence data were extracted from tables provided in the original articles. M-H = Mantel-Haenszel; CI = confidence interval.
13 14	641	
15 16	642	
17	643	
$\begin{array}{c} 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 56\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\\ 59\\ 60\\ \end{array}$		



Figure 1: PRISMA flow chart of the study selection protocol
		(						
Céudu en Cubaneun	Women (rate	/100000) Totol	Men (rate/	100000) Totol	Mainht	Risk Ratio	Risk Ratio	
	Events	100000	Events	100000	10.5%	м-н, каноон, 95% СГ теаг	M-H, Random, 95% Cl	
AMSA 2000	20	100000	48	100000	6.2%	0.54 [0.34, 0.87] 2006		
AMSA 2007	14	100000	22	100000	0.3 % 6 7%	0.54 [0.33, 1.24] 2007	<b>←</b>	
7111077 2000	17	100000	20	100000	0.7 %	0.04 [0.20, 1.00] 2000		
AMSA 2009	16	100000	22	100000	6.9%	0.73 [0.38, 1.38] 2009		
AMSA 2009 AMSA 2010	16 15	100000 100000	22 24	100000 100000	6.9% 6.8%	0.73 [0.38, 1.38] 2009 0.63 [0.33, 1.19] 2010		
AMSA 2009 AMSA 2010 AMSA 2011	16 15 12	100000 100000 100000	22 24 23	100000 100000 100000	6.9% 6.8% 5.8%	0.73 [0.38, 1.38] 2009 0.63 [0.33, 1.19] 2010 0.52 [0.26, 1.05] 2011		
AMSA 2009 AMSA 2010 AMSA 2011 AMSA 2012	16 15 12 10	100000 100000 100000 100000	22 24 23 27	100000 100000 100000 100000	6.9% 6.8% 5.8% 5.4%	0.73 [0.38, 1.38] 2009 0.63 [0.33, 1.19] 2010 0.52 [0.26, 1.05] 2011 0.37 [0.18, 0.77] 2012		
AMSA 2009 AMSA 2010 AMSA 2011 AMSA 2012 AMSA 2013	16 15 12 10 15	100000 100000 100000 100000 100000	22 24 23 27 27	100000 100000 100000 100000 100000	6.9% 6.8% 5.8% 5.4% 7.2%	0.73 [0.38, 1.38] 2009 0.63 [0.33, 1.19] 2010 0.52 [0.26, 1.05] 2011 0.37 [0.18, 0.77] 2012 0.56 [0.30, 1.04] 2013		
AMSA 2009 AMSA 2010 AMSA 2011 AMSA 2012 AMSA 2013 AMSA 2014	16 15 12 10 15 15	100000 100000 100000 100000 100000 100000	22 24 23 27 27 24	100000 100000 100000 100000 100000 100000	6.9% 6.8% 5.8% 5.4% 7.2% 6.8%	0.73         [0.38, 1.38]         2009           0.63         [0.33, 1.19]         2010           0.52         [0.26, 1.05]         2011           0.37         [0.18, 0.77]         2012           0.56         [0.30, 1.04]         2013           0.63         [0.33, 1.19]         2014		
AMSA 2009 AMSA 2010 AMSA 2011 AMSA 2012 AMSA 2013 AMSA 2014 AMSA 2015	16 15 12 10 15 15 14	100000 100000 100000 100000 100000 100000 100000	22 24 23 27 27 24 27	100000 100000 100000 100000 100000 100000 100000	6.9% 6.8% 5.8% 5.4% 7.2% 6.8% 6.8%	0.73       [0.38, 1.38]       2009         0.63       [0.33, 1.19]       2010         0.52       [0.26, 1.05]       2011         0.37       [0.18, 0.77]       2012         0.56       [0.30, 1.04]       2013         0.63       [0.33, 1.19]       2014         0.52       [0.27, 0.99]       2015		
AMSA 2009 AMSA 2010 AMSA 2011 AMSA 2012 AMSA 2013 AMSA 2014 AMSA 2015 AMSA 2016	16 15 12 10 15 15 14 16	100000 100000 100000 100000 100000 100000 100000	22 24 23 27 27 24 27 35	100000 100000 100000 100000 100000 100000 100000	6.9% 6.8% 5.8% 5.4% 7.2% 6.8% 6.8% 8.1%	$\begin{array}{c} 0.73 \ [0.38, 1.38] \ 2009 \\ 0.63 \ [0.33, 1.19] \ 2010 \\ 0.52 \ [0.26, 1.05] \ 2011 \\ 0.37 \ [0.18, 0.77] \ 2012 \\ 0.56 \ [0.30, 1.04] \ 2013 \\ 0.63 \ [0.33, 1.19] \ 2014 \\ 0.52 \ [0.27, 0.99] \ 2015 \\ 0.46 \ [0.25, 0.83] \ 2016 \end{array}$		
AMSA 2009 AMSA 2010 AMSA 2011 AMSA 2012 AMSA 2013 AMSA 2014 AMSA 2015 AMSA 2016 AMSA 2017	16 15 12 10 15 15 14 16 19	100000 100000 100000 100000 100000 100000 100000 100000	22 24 23 27 27 24 27 35 33	100000 100000 100000 100000 100000 100000 100000 100000	6.9% 6.8% 5.8% 5.4% 7.2% 6.8% 6.8% 8.1% 8.9%	0.73 [0.38, 1.38] 2009 0.63 [0.33, 1.19] 2010 0.52 [0.26, 1.05] 2011 0.37 [0.18, 0.77] 2012 0.56 [0.30, 1.04] 2013 0.63 [0.33, 1.19] 2014 0.52 [0.27, 0.99] 2015 0.46 [0.25, 0.83] 2016 0.58 [0.33, 1.01] 2017		
AMSA 2009 AMSA 2010 AMSA 2011 AMSA 2012 AMSA 2013 AMSA 2014 AMSA 2015 AMSA 2016 AMSA 2017 AMSA 2018	16 15 12 10 15 15 14 16 19 25	100000 100000 100000 100000 100000 100000 100000 100000 100000	22 24 23 27 27 24 27 35 33 41	100000 100000 100000 100000 100000 100000 100000 100000 100000	6.9% 6.8% 5.8% 5.4% 7.2% 6.8% 6.8% 8.1% 8.9% 11.5%	0.73       [0.38, 1.38]       2009         0.63       [0.33, 1.19]       2010         0.52       [0.26, 1.05]       2011         0.37       [0.18, 0.77]       2012         0.56       [0.30, 1.04]       2013         0.63       [0.33, 1.19]       2014         0.52       [0.27, 0.99]       2015         0.46       [0.25, 0.83]       2016         0.58       [0.33, 1.01]       2017         0.61       [0.37, 1.00]       2018		
AMSA 2009 AMSA 2010 AMSA 2011 AMSA 2012 AMSA 2013 AMSA 2014 AMSA 2015 AMSA 2016 AMSA 2017 AMSA 2018 Total (95% CI)	16 15 12 10 15 15 14 16 19 25	100000 100000 100000 100000 100000 100000 100000 100000 100000 <b>1300000</b>	22 24 23 27 27 24 27 35 33 41	100000 100000 100000 100000 100000 100000 100000 100000 100000 <b>1300000</b>	6.9% 6.8% 5.8% 5.4% 7.2% 6.8% 6.8% 8.1% 8.9% 11.5% <b>100.0%</b>	0.73 [0.38, 1.38] 2009 0.63 [0.33, 1.19] 2010 0.52 [0.26, 1.05] 2011 0.37 [0.18, 0.77] 2012 0.56 [0.30, 1.04] 2013 0.63 [0.33, 1.19] 2014 0.52 [0.27, 0.99] 2015 0.46 [0.25, 0.83] 2016 0.58 [0.33, 1.01] 2017 0.61 [0.37, 1.00] 2018 0.56 [0.47, 0.66]		
AMSA 2009 AMSA 2010 AMSA 2011 AMSA 2012 AMSA 2013 AMSA 2014 AMSA 2015 AMSA 2016 AMSA 2016 AMSA 2017 AMSA 2018 Total (95% CI) Total events	16 15 12 10 15 15 14 16 19 25 211	100000 100000 100000 100000 100000 100000 100000 100000 100000 <b>1300000</b>	22 24 23 27 27 24 27 35 33 41 379	100000 100000 100000 100000 100000 100000 100000 100000 <b>1300000</b>	6.9% 6.8% 5.8% 5.4% 7.2% 6.8% 6.8% 8.1% 8.9% 11.5% <b>100.0%</b>	0.73       [0.38, 1.38]       2009         0.63       [0.33, 1.19]       2010         0.52       [0.26, 1.05]       2011         0.37       [0.18, 0.77]       2012         0.56       [0.30, 1.04]       2013         0.63       [0.33, 1.19]       2014         0.52       [0.27, 0.99]       2015         0.46       [0.25, 0.83]       2016         0.58       [0.33, 1.01]       2017         0.61       [0.37, 1.00]       2018		
AMSA 2009 AMSA 2010 AMSA 2011 AMSA 2012 AMSA 2013 AMSA 2013 AMSA 2014 AMSA 2015 AMSA 2016 AMSA 2017 AMSA 2017 AMSA 2018 <b>Total (95% CI)</b> Total events Heterogeneity: Tau ² =	16 15 12 10 15 15 14 16 19 25 211 0.00; Chi ² = 2.5	100000 100000 100000 100000 100000 100000 100000 100000 <b>1300000</b>	22 24 23 27 27 24 27 35 33 41 379 P = 1.00);   ²	100000 100000 100000 100000 100000 100000 100000 100000 <b>1300000</b>	6.9% 6.8% 5.8% 5.4% 7.2% 6.8% 6.8% 8.9% 11.5% <b>100.0%</b>	0.73 [0.38, 1.38] 2009 0.63 [0.33, 1.19] 2010 0.52 [0.26, 1.05] 2011 0.37 [0.18, 0.77] 2012 0.56 [0.30, 1.04] 2013 0.63 [0.33, 1.19] 2014 0.52 [0.27, 0.99] 2015 0.46 [0.25, 0.83] 2016 0.58 [0.33, 1.01] 2017 0.61 [0.37, 1.00] 2018 <b>0.56 [0.47, 0.66]</b>		
AMSA 2009 AMSA 2010 AMSA 2011 AMSA 2012 AMSA 2012 AMSA 2013 AMSA 2014 AMSA 2015 AMSA 2016 AMSA 2016 AMSA 2017 AMSA 2018 <b>Total (95% CI)</b> Total events Heterogeneity: Tau ² = Test for overall effect:	16 15 12 10 15 15 14 16 19 25 211 0.00; Chi ² = 2.5 Z = 6.76 (P < 0	100000 100000 100000 100000 100000 100000 100000 100000 <b>1300000</b> <b>3300000</b> <b>1300000</b>	22 24 23 27 27 24 27 35 33 41 379 P = 1.00);   ²	100000 100000 100000 100000 100000 100000 100000 100000 1300000 = 0%	6.9% 6.8% 5.8% 5.4% 7.2% 6.8% 6.8% 8.1% 8.9% 11.5%	0.73 [0.38, 1.38] 2009 0.63 [0.33, 1.19] 2010 0.52 [0.26, 1.05] 2011 0.37 [0.18, 0.77] 2012 0.56 [0.30, 1.04] 2013 0.63 [0.33, 1.19] 2014 0.52 [0.27, 0.99] 2015 0.46 [0.25, 0.83] 2016 0.58 [0.33, 1.01] 2017 0.61 [0.37, 1.00] 2018 0.56 [0.47, 0.66]	0.5 0.7 1 1.5 2 Favors women Favors men	
AMSA 2009 AMSA 2010 AMSA 2011 AMSA 2012 AMSA 2013 AMSA 2013 AMSA 2014 AMSA 2015 AMSA 2016 AMSA 2016 AMSA 2017 AMSA 2018 <b>Total (95% CI)</b> Total events Heterogeneity: Tau ² = Test for overall effect:	16 15 12 10 15 15 14 16 19 25 211 0.00; Chi ² = 2.5 Z = 6.76 (P < 0	100000 100000 100000 100000 100000 100000 100000 100000 <b>1300000</b> <b>1300000</b> <b>05</b> , df = 12 (f	22 24 23 27 27 24 27 35 33 41 379 P = 1.00); l ²	100000 100000 100000 100000 100000 100000 100000 100000 1300000 = 0%	6.9% 6.8% 5.8% 5.4% 7.2% 6.8% 6.8% 8.1% 8.9% 11.5%	0.73 [0.38, 1.38] 2009 0.63 [0.33, 1.19] 2010 0.52 [0.26, 1.05] 2011 0.37 [0.18, 0.77] 2012 0.56 [0.30, 1.04] 2013 0.63 [0.33, 1.19] 2014 0.52 [0.27, 0.99] 2015 0.46 [0.25, 0.83] 2016 0.58 [0.33, 1.01] 2017 0.61 [0.37, 1.00] 2018 0.56 [0.47, 0.66]	0.5 0.7 1 1.5 2 Favors women Favors men	
AMSA 2009 AMSA 2010 AMSA 2011 AMSA 2012 AMSA 2013 AMSA 2014 AMSA 2015 AMSA 2016 AMSA 2016 AMSA 2017 AMSA 2018 <b>Total (95% CI)</b> Total events Heterogeneity: Tau ² = Test for overall effect:	16 15 12 10 15 15 14 16 19 25 211 0.00; Chi ² = 2.5 Z = 6.76 (P < 0	100000 100000 100000 100000 100000 100000 100000 100000 100000 <b>1300000</b> <b>3300000</b>	22 24 23 27 27 24 27 35 33 41 379 2 = 1.00); 1 ²	100000 100000 100000 100000 100000 100000 100000 100000 <b>1300000</b>	6.9% 6.8% 5.8% 5.4% 7.2% 6.8% 6.8% 8.1% 8.9% 11.5%	0.73 [0.38, 1.38] 2009 0.63 [0.33, 1.19] 2010 0.52 [0.26, 1.05] 2011 0.37 [0.18, 0.77] 2012 0.56 [0.30, 1.04] 2013 0.63 [0.33, 1.19] 2014 0.52 [0.27, 0.99] 2015 0.46 [0.25, 0.83] 2016 0.58 [0.33, 1.01] 2017 0.61 [0.37, 1.00] 2018 0.56 [0.47, 0.66]	0.5 0.7 1 1.5 2 Favors women Favors men	
AMSA 2009 AMSA 2010 AMSA 2011 AMSA 2012 AMSA 2013 AMSA 2014 AMSA 2015 AMSA 2016 AMSA 2016 AMSA 2017 AMSA 2018 <b>Total (95% CI)</b> Total events Heterogeneity: Tau ² = Test for overall effect:	16 15 12 10 15 15 14 16 19 25 211 0.00; Chi ² = 2.5 Z = 6.76 (P < 0	100000 100000 100000 100000 100000 100000 100000 100000 100000 <b>1300000</b> <b>3300000</b>	22 24 23 27 24 27 35 33 41 379 P = 1.00); I ²	100000 100000 100000 100000 100000 100000 100000 100000 100000 <b>1300000</b>	6.9% 6.8% 5.8% 5.4% 7.2% 6.8% 6.8% 8.1% 8.9% 11.5%	0.73 [0.38, 1.38] 2009 0.63 [0.33, 1.19] 2010 0.52 [0.26, 1.05] 2011 0.37 [0.18, 0.77] 2012 0.56 [0.30, 1.04] 2013 0.63 [0.33, 1.19] 2014 0.52 [0.27, 0.99] 2015 0.46 [0.25, 0.83] 2016 0.58 [0.33, 1.01] 2017 0.61 [0.37, 1.00] 2018 0.56 [0.47, 0.66]	0.5 0.7 1 1.5 2 Favors women Favors men	
AMSA 2009 AMSA 2010 AMSA 2011 AMSA 2012 AMSA 2013 AMSA 2014 AMSA 2015 AMSA 2016 AMSA 2016 AMSA 2017 AMSA 2018 <b>Total (95% CI)</b> Total events Heterogeneity: Tau ² = Test for overall effect:	16 15 12 10 15 15 14 16 19 25 211 0.00; Chi ² = 2.9 Z = 6.76 (P < 0	100000 100000 100000 100000 100000 100000 100000 100000 <b>1300000</b> <b>1300000</b> <b>0</b> 5, df = 12 (f	22 24 23 27 24 27 35 33 41 379 P = 1.00); 1 ²	100000 100000 100000 100000 100000 100000 100000 100000 1300000	6.9% 6.8% 5.8% 5.4% 7.2% 6.8% 6.8% 8.1% 8.9% 11.5% <b>100.0%</b>	0.73 [0.38, 1.38] 2009 0.63 [0.33, 1.19] 2010 0.52 [0.26, 1.05] 2011 0.37 [0.18, 0.77] 2012 0.56 [0.30, 1.04] 2013 0.63 [0.33, 1.19] 2014 0.52 [0.27, 0.99] 2015 0.46 [0.25, 0.83] 2016 0.58 [0.33, 1.01] 2017 0.61 [0.37, 1.00] 2018 0.56 [0.47, 0.66]	0.5 0.7 1 1.5 2 Favors women Favors men	

1								
2								
3								
4								
5								
6								
0								
/								
8								
9								
10								
11								
12								
13								
14								
15								
16								
10		Women (rate	/100000)	Men (rate/	100000)		Risk Ratio	Risk Ratio
1/	Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
18	1.1.1 Heat exhaustion	and unspecif	fied effects o	of heat and	llight			
19	AMSA 2010	178	100000	135	100000	7.6%	1.32 [1.05, 1.65]	
20	AMSA 2011	232	100000	167	100000	8.5%	1.39 [1.14, 1.69]	
21	AMSA 2012	263	100000	168	100000	8.6%	1.57 [1.29, 1.90]	
22	AMSA 2013	235	100000	144	100000	8.2%	1.63 [1.33, 2.01]	
23	AMSA 2014	130	100000	119	100000	6.9%	1.09 [0.85, 1.40]	
24	AMSA 2015	131	100000	1/0	100000	0.9%	1.08 [0.85, 1.39]	
25	AMSA 2010	104	100000	140	100000	7.070 9.1%	1.04 [0.85, 1.30]	
25	Subtotal (95% CI)	190	800000	101	800000	62.3%	1.28 [1.14, 1.45]	•
20	Total events	1513		1163				-
27	Heterogeneity: Tau ² =	0.02: Chi ² = 17	.17. df = 7 (P	= 0.02);   ²	= 59%			
28	Test for overall effect: 2	Z = 4.04 (P < 0	.0001)	,,				
29								
30	1.1.2 Heat exhaustion	1						
31	AMSA 2006	289	100000	198	100000	9.1%	1.46 [1.22, 1.75]	
32	AMSA 2007	149	100000	134	100000	7.3%	1.11 [0.88, 1.40]	
33	AMSA 2008	162	100000	134	100000	7.5%	1.21 [0.96, 1.52]	
34	AMSA 2009	135	100000	98	100000	6.5%	1.38 [1.06, 1.79]	
35	AMSA 2018	138	100000	141	100000	7.3%	0.98 [0.77, 1.24]	
36		070	500000	705	500000	31.1%	1.22 [1.06, 1.42]	
37	Leteregeneity Teu? -	8/3 0.01: Chi2 - 0.6		- 20 / U5 - 21 - (70 0 -	- F20/			
38	Telerogeneily: Tau ² =	0.01; Chi- = 6.5 7 = 2.67 (P = 0	008)	- 0.07); 1	- 53%			
30		2 – 2.07 (F – 0	.000)					
40	Total (95% CI)		1300000		1300000	100.0%	1.26 [1.15, 1.38]	•
40	Total events	2386		1868			• / •	
41	Heterogeneity: Tau ² =	0.01; Chi ² = 26	.30, df = 12 (I	P = 0.010)	l² = 54%			
42	Test for overall effect:	Z = 5.01 (P < 0	.00001)					U.5 U.7 I I.5 Z Eavours women Eavours men
43	Test for subgroup diffe	rences: Chi² =	0.24, df = 1 (I	⊃ = 0.62), I	² = 0%			
44								
45								
46								
47								
48								
49								
50								
51								
52								
52								
22								
54								
55								
56								

		Medline search strategy
	1.	Women (MeSH)
	2.	Gender expression
	3.	Gender identity (MeSH)
	4.	Gender
	5.	Wom\$
	6	Sex
	7.	Heat strok*
	8.	Heatstrok*
	9	Heat collapse
	10	Heat exhaustion
	11	Heat prostration
	11.	Heat cramp
	12.	Heat cramps
	13.	Heat strong disorder
	14.	Hoat stress disorders (MoSH)
	15.	Theat stress disorders (NESTI)
	10.	
	1/.	Heat illness
	18.	Heat linesses
·	<u> </u>	Heat injury
·	20.	Heat injuries
	21.	Heat related diseases
	22.	Heat disorder
	23.	Heat disorders
	24.	Heat related disorder
	25.	Heat related disorders
	26.	Heat related illness
	27.	Heat related illnesses
	28.	Heat related injuries
	29.	Heat related injury
	30.	Environmental heat illness
	31.	Heat stress
	32.	Heat adaptation
	33.	Heat tolerance
	34.	Heat tolerances
	35.	Heat resistance
	36.	Thermal resistance
	37.	Thermoresistance
	38.	Thermotolerance (MeSH)
	39.	Heat endurance
	40.	1 OR 2 OR 3 OR 4 OR 5 OR 6
	41.	7 OR 8 OR 9 OR 10 OR 11 OR 12 OR 13 OR 14 OR 15 OR 16 OF
		17 OR 18 OR 19 OR 20 OR 21 OR 22 OR 23 OR 24 OR 25 OR 26
		OR 27 OR 28 OR 29 OR 30 OR 31 OR 32 OR 33 OR 34 OR 35 O
		36 OR 37 OR 38 OR 39
	42.	40 AND 41

## Supplemental Table 2 Summary of all included studies

Reference, year	Country	Study design and duration	Population	Study findings [§]
Dickson. G, 1994	UK	Descriptive epidemiology	Royal Airforce, Royal Navy and Army;	Women
		1981-1991	1448 all heat injuries cases ^r	All heat injuries: 11.43 [#]
				Men
				All heat injuries: 41.87 [#]
Army Medical	USA	Descriptive epidemiology;	US Army;	Women
Surveillance Activity,		1994	23 heat stroke cases	Heat stroke: 13%
1995			12 heat exhaustion cases	Heat exhaustion: 0%
				Men
				Heat stroke: 8/%
				Heat exhaustion: 100%
Army Medical	USA	Descriptive epidemiology;	US Army;	Women
Surveillance Activity,		1995	81 heat stroke cases	Heat stroke: 17.3%
1996			39 heat exhaustion cases	Heat exhaustion: 7.7%
				Men
				Heat stroke: 82.7%
				Heat exhaustion: 92.3%
Army Medical	USA	Descriptive epidemiology;	US Army;	Women
Surveillance Activity,		1996	45 heat stroke cases	Heat stroke: 4.4%
1997			24 heat exhaustion cases	Heat exhaustion: 4.2%
				Men
				Heat stroke: 95.6%
				Heat exhaustion: 95.8%
Army Medical	USA	Descriptive epidemiology;	US Army;	Women
Surveillance Activity,		1997 - 1998	1433 all heat injuries cases (1997-1998) [₽]	All heat injuries: 12.8 [‡]
1998			1997	
				Men
				All heat injuries: 8.6 [‡]
				•
			1998	Women
				All heat injuries: 15.8 [‡]
				Men
				All heat injuries: 12.0 [‡]
				× *
		For peer review of	only - http://bmjopen.bmj.com/site/about/	guidelines.xhtml

Page 35 of 49

1

BMJ Open

Army Medical Surveillance Activity, 2000	USA	Descriptive epidemiology; 1997 - 1999	US Army and Marine Corps; 3386 all heat injuries cases [₽]	
			Army (1896 cases)	<u>Women</u> All heat injuries: 2.0† <b>Men</b>
			Marine Corps (1104 cases)	All heat injuries: 1.5† <u>Women</u> All heat injuries: 4.4† <b>Men</b>
				All heat injuries: 2.0†
Army Medical Surveillance Activity,	USA	Descriptive epidemiology 1990 - 1997	US Army; 2290 all heat injuries cases	<u>Women</u> All heat injuries: 14.0%
2002				<u>Men</u> All heat injuries: 86.0%
		Casa control	US Army	Womon
		1998 - 2001	5021 cases and 10,042 controls (all heat injuries)	All heat injuries: 20.7%
				Men
				All heat injuries: 79.3% <u><b>Risk factors</b></u> Female: OR: 1.5 (1.4 - 1.7)
				Age $< 20$ years: OR; 2.1 (1.4 - 3.1)
				Other ethnicity*: OR; $1.2 (1.0 - 1.4)$
				Lower level of education: $OR: 2.0 (1.2 - 3.1)$
				Less than 1 year of service: OR; $2.3 (2.0 - 2.6)$
Army Medical Surveillance Activity, 2003	USA	Descriptive epidemiology; 2002	US Army; 1816 all heat injuries cases	Women All heat injuries: 3.5†
2005				Men
				All heat injuries: 5.1 ⁺
Carter et al, 2005	USA	Cross-sectional	US Army;	Women
		1980 - 2002	5246 all neat injuries cases [®] 4521 males and 725 females	All heat injuries: 13.7% Men
			4521 mates and 725 females	All heat injuries: 86.3%
				Risk factors
		<b>F</b>		
		For peer review	only - http://bmjopen.bmj.com/site/about/g	ulaelines.xntml

				Female: IDR: $1.21 (1.09 - 1.40)$ Infantry soldiers and gun crew men: IDR; $2.69 (1.71 - 2.89)$ African and Hispanic ethnicity: IDR; $0.76 (0.71 - 0.82)$ Northern state of origin: IDR; $1.69 (1.42 - 1.90)$
Army Medical Surveillance Activity, 2006	USA	Descriptive epidemiology; 2005	US Armed Forces; 204 heat stroke cases 958 heat exhaustion cases	Women Heat stroke: 0.26† Heat exhaustion: 2.89† <u>Men</u>
				Heat stroke: 0.48† Heat exhaustion: 1.98†
Wallace et al, 2005	USA	Case-control 1988 - 1996	US Army; 5246 cases of heat illness;	<u>Risk factors</u> Females
			4521 males and 725 females	Run time $\ge 6.9$ minutes: OR; 5.30 (1.59 – 17.64)
				Run time $\ge 12.9$ minutes: OR; 5.61 (3.73 – 8.45)
				BMI $\ge 26 \text{ kg/m}^2$ : OR; 2.10 (1.59 – 2.78)
Army Medical Surveillance Activity, 2007	USA	Descriptive epidemiology; 2006	US Armed Forces; 259 heat stroke cases 1854 heat exhaustion cases	Women Heat stroke: 0.14† Heat exhaustion: 1.49† Men
				Heat stroke: 0.22† Heat exhaustion: 1.34†
Army Medical Surveillance Activity,	USA	Descriptive epidemiology; 2007	US Armed Forces; 329 heat stroke cases	Women Heat stroke: 0.14†
2008			1853 heat exhaustion cases	Heat exhaustion: 1.62† <u>Men</u> Heat stroke: 0.26‡
				Heat exhaustion: 1.34†
Army Medical Surveillance Activity,	USA	Descriptive epidemiology; 2008	US Armed Forces; 299 heat stroke cases 1467 heat exhaustion cases	<u>Women</u> Heat stroke: 0.16† Heat exhaustion: 1.35†
2009				Men

Page 37 of 49

BMJ Open

Army Medical Surveillance Activity, 2010	USA	Descriptive epidemiology; 2009	US Armed Forces; 323 heat stroke cases 2038 other heat injuries cases*	<u>Women</u> Heat stroke: 0.15† Other heat injuries: 1.78† <b>Men</b>
Army Medical Surveillance Activity,	USA	Descriptive epidemiology; 2010	US Armed Forces; 311 heat stroke cases	Heat stroke: 0.22† Other heat injuries: 1.35† <u>Women</u> Heat stroke: 0.12†
2011		- Cor	2576 other heat injuries cases*	Other heat injuries: 2.32† <u>Men</u> Heat stroke: 0.23† Other heat injuries: 1.67†
Army Medical Surveillance Activity, 2012	USA	Descriptive epidemiology; 2011	US Armed Forces; 362 heat stroke cases 2652 other heat injuries cases*	Women Heat stroke: 0.10† Other heat injuries: 2.63† <u>Men</u> Heat stroke: 0.27† Other heat injuries: 1.68†
Druyan et al, 2012	Israeal	Retrospective cross- sectional 2008 – 2010	Israeli Defence Forces; 170 males and 9 females	Heat tolerance parametersWomenHeat intolerance rate: $66.6\%$ Baseline Trec (° C): $37.18 \pm 0.09$ Endpoint Trec (° C): $38.14 \pm 0.14$ Baseline HR (bpm): $82.11 \pm 4.88$ Endpoint HR (bpm): $141.50 \pm 7.84$ MenHeat intolerance rate: $25.79\%$ Baseline Trec (° C): $37.07 \pm 0.02$ Endpoint Trec (° C): $37.93 \pm 0.03$ Baseline HR (bpm): $73.94 \pm 1.17$ Endpoint HR (bpm): $126.50 \pm 1.79$
Army Medical Surveillance Activity, 2013	USA	Descriptive epidemiology; 2012	US Armed Forces; 365 heat stroke cases 2257 other heat injuries cases*	Women Heat stroke: 0.15† Other heat injuries: 2.35† <u>Men</u> Heat stroke: 0.27† Other heat injuries: 1.44†
		For peer review	only - http://bmjopen.bmj.com/site/about/	guidelines.xhtml

Army Medical Surveillance Activity, 2014	USA	Descriptive epidemiology; 2013	US Armed Forces; 324 heat stroke cases 1701 other heat injuries cases*	Women Heat stroke: 0.15† Other heat injuries: 1.30† <u>Men</u> Heat stroke: 0.24† Other heat injuries: 1.10‡
Bedno et al, 2014	USA	Analytical cross-sectional	US Armed Forces; 80 exertional heat illness cases	Women         Heat illness: 0.680%         Men         Heat illness: 0.71%
Army Medical Surveillance Activity, 2015	USA	Descriptive epidemiology; 2014	US Armed Forces; 314 heat stroke cases 1410 other heat injuries cases*	Women         Heat stroke: 0.14†         Other heat injuries: 1.31†         Men         Heat stroke: 0.27†         Other heat injuries: 1.21†
Kazman et al, 2015	USA	Analytical cross-sectional	Military and university community members; 55 males and 20 females	Heat tolerance parametersWomenHeat intolerance rate: 45%Baseline Trec (° C): $37.1 \pm 0.4$ Endpoint Trec (° C): $38.1 \pm 0.4$ Baseline HR (bpm): $76 \pm 15.0$ Endpoint HR (bpm): $137 \pm 20.1$ MenHeat intolerance rate: $18\%$ Baseline Trec (° C): $36.9 \pm 0.4$ Endpoint Trec (° C): $38.1 \pm 0.4$ Baseline Trec (° C): $38.1 \pm 0.4$ Baseline HR (bpm): $68 \pm 12.1$ Endpoint HR (bpm): $122 \pm 20.2$ Risk factorsFemale: OR; $3.68 (1.21 - 11.24)$ VO _{2max} : OR; $0.9 (0.76 - 0.96)$
Army Medical Surveillance Activity, 2016	USA	Descriptive epidemiology; 2015	US Armed Forces; 417 heat stroke cases 1625 other heat injuries cases*	Women Heat stroke: 0.16† Other heat injuries: 1.54† <u>Men</u> Heat stroke: 0.35†

BMJ Open

Surveillance Activity	USA	Descriptive epidemiology;	US Armed Forces;	Women Hast stroke: 0,19;
2017		2010	2135 other heat injuries cases*	Other heat injuries: 1 90*
2017			2155 other heat injuries cases	Men
				Heat stroke: 0.33†
				Other heat injuries: 1.61 ⁺
Army Medical	USA	Descriptive epidemiology:	US Armed Forces:	Women
Surveillance Activity,		2017	464 heat stroke cases	Heat stroke: 0.25 [†]
2018			1699 heat exhaustion cases	Other heat injuries: 1.38 ⁺
				Men
				Heat stroke: 0.41 [†]
				Other heat injuries: 1.41 [†]
Singer et al, 2018	USA	Retrospective cohort	SCT and non-SCT US Armed Forces	Women
		1992 - 2012	SCT: 214 exertional heat illness cases	Exertional heat illness: 13.89 ⁺
				Men
			N	Exertional heat illness: 14.79 ⁺
			Non-SCT: 577 exertional heat illness cases	<u>Women</u>
				Exertional heat illness: 13.14 ⁺
				Men
				Exertional neat liness: 7.79
0 D 1	,	. 1		
§ Proportions and	incidences	reported are of the total case.	s reported in the articles	·
<pre>§ Proportions and # Incidence rate rep</pre>	<i>incidences</i> ported per 1	reported are of the total case. 00,000 person-years.	s reported in the articles	
§ Proportions and # Incidence rate rep ‡ Incidence rate per	<i>incidences</i> ported per 1 100,000 pe	reported are of the total case. 00,000 person-years. erson- months.	s reported in the articles	
<ul> <li>§ Proportions and #</li> <li># Incidence rate rep</li> <li>+ Incidence rate per</li> <li>† Incidence rate rep</li> </ul>	<i>incidences</i> oorted per 1 100,000 po oorted per 1	reported are of the total case. 00,000 person-years. erson- months. 000 person-years.	s reported in the articles	
<ul> <li>\$ Proportions and #</li> <li># Incidence rate rep</li> <li>‡ Incidence rate per</li> <li>† Incidence rate rep</li> <li>* Other heat injurie</li> </ul>	incidences ported per 1 100,000 per ported per 1 es include "	reported are of the total cases 00,000 person-years. erson- months. 000 person-years. heat exhaustion" and "unspec	s reported in the articles	0.
<ul> <li>§ Proportions and a</li> <li># Incidence rate rep</li> <li>‡ Incidence rate per</li> <li>† Incidence rate rep</li> <li>* Other heat injuries</li> <li>P heat injuries inclu</li> </ul>	incidences ported per 1 100,000 pe ported per 1 es include " ude heat str	reported are of the total cases .00,000 person-years. erson- months. .000 person-years. heat exhaustion" and "unspector oke and other heat injuries.	s reported in the articles	0,
<ul> <li>§ Proportions and #</li> <li># Incidence rate rep</li> <li>‡ Incidence rate per</li> <li>† Incidence rate rep</li> <li>* Other heat injuries</li> <li>P heat injuries inclu</li> <li>SCT = Sickle cell t</li> </ul>	incidences ported per 1 100,000 pe ported per 1 es include " ide heat str rait	reported are of the total cases .00,000 person-years. erson- months. .000 person-years. heat exhaustion" and "unspector oke and other heat injuries.	s reported in the articles	0/1/
§ Proportions and # # Incidence rate rep + Incidence rate per + Incidence rate rep * Other heat injuries P heat injuries inclu SCT = Sickle cell t US = United States	incidences ported per 1 100,000 po ported per 1 es include " ide heat str rait of Americ	reported are of the total cases .00,000 person-years. erson- months. .000 person-years. heat exhaustion" and "unspector oke and other heat injuries. a; 2006 to date, heat injuries	s reported in the articles cified effects of heat". was reported in the US Armed Forces (Ar	my, Navy, Air Force and Marine Corps).
<ul> <li>\$ Proportions and #</li> <li># Incidence rate rep</li> <li>+ Incidence rate per</li> <li>+ Incidence rate rep</li> <li>* Other heat injuries</li> <li>* Other heat injuries inclusion</li> <li>\$ Notest and the second se</li></ul>	incidences ported per 1 100,000 po ported per 1 es include " ide heat stru- rait of Americ dom; USA =	reported are of the total case. 00,000 person-years. erson- months. 000 person-years. heat exhaustion" and "unspector oke and other heat injuries. a; 2006 to date, heat injuries <i>united States of America</i>	s reported in the articles cified effects of heat". was reported in the US Armed Forces (Ar	my, Navy, Air Force and Marine Corps).
<ul> <li>§ Proportions and a</li> <li># Incidence rate rep</li> <li>‡ Incidence rate per</li> <li>† Incidence rate rep</li> <li>* Other heat injuries</li> <li>* Other heat injuries inclu</li> <li>SCT = Sickle cell t</li> <li>US = United States</li> <li>UK = United Kinge</li> </ul>	incidences ported per 1 100,000 po ported per 1 es include " ide heat str rait of Americ dom; USA =	reported are of the total case. 00,000 person-years. erson- months. 000 person-years. heat exhaustion" and "unspector oke and other heat injuries. a; 2006 to date, heat injuries <i>united States of America</i>	s reported in the articles cified effects of heat". was reported in the US Armed Forces (Ar	my, Navy, Air Force and Marine Corps).
<ul> <li>§ Proportions and a</li> <li># Incidence rate rep</li> <li>‡ Incidence rate per</li> <li>† Incidence rate rep</li> <li>* Other heat injuries</li> <li>* Other heat injuries inclu</li> <li>SCT = Sickle cell t</li> <li>US = United States</li> <li>UK = United Kinge</li> </ul>	incidences ported per 1 100,000 po ported per 1 es include " ide heat stru- rait of Americ dom; USA =	reported are of the total case. 00,000 person-years. erson- months. 000 person-years. heat exhaustion" and "unspector oke and other heat injuries. a; 2006 to date, heat injuries <i>United States of America</i>	s reported in the articles cified effects of heat". was reported in the US Armed Forces (Ar	my, Navy, Air Force and Marine Corps).
<ul> <li>§ Proportions and a</li> <li># Incidence rate rep</li> <li>‡ Incidence rate per</li> <li>† Incidence rate rep</li> <li>* Other heat injuries</li> <li>P heat injuries inclu</li> <li>SCT = Sickle cell t</li> <li>US = United States</li> <li>UK = United Kinge</li> </ul>	incidences ported per 1 100,000 per ported per 1 es include " ide heat stri- rait of Americ dom; USA =	reported are of the total cases .00,000 person-years. erson- months. .000 person-years. heat exhaustion" and "unspec- oke and other heat injuries. a; 2006 to date, heat injuries of <i>United States of America</i>	s reported in the articles cified effects of heat". was reported in the US Armed Forces (Ar	my, Navy, Air Force and Marine Corps).
§ Proportions and # # Incidence rate rep ‡ Incidence rate per † Incidence rate rep * Other heat injuries P heat injuries inclu SCT = Sickle cell t US = United States UK = United Kinge	incidences ported per 1 100,000 per ported per 1 es include " ide heat stru- rait of Americ dom; USA =	reported are of the total cases 00,000 person-years. erson- months. 000 person-years. heat exhaustion" and "unspector oke and other heat injuries. a; 2006 to date, heat injuries <i>United States of America</i>	s reported in the articles cified effects of heat". was reported in the US Armed Forces (Ar	my, Navy, Air Force and Marine Corps).
§ Proportions and # # Incidence rate rep + Incidence rate per + Incidence rate rep * Other heat injuries P heat injuries inclu SCT = Sickle cell t US = United States UK = United Kinge	incidences ported per 1 100,000 po ported per 1 es include " ide heat stru- rait of Americ dom; USA =	reported are of the total case. 00,000 person-years. erson- months. 000 person-years. heat exhaustion" and "unspector oke and other heat injuries. a; 2006 to date, heat injuries <i>united States of America</i>	s reported in the articles cified effects of heat". was reported in the US Armed Forces (Ar	my, Navy, Air Force and Marine Corps).
§ Proportions and # # Incidence rate rep + Incidence rate per + Incidence rate rep * Other heat injuries P heat injuries inclu SCT = Sickle cell t US = United States UK = United Kinge	incidences ported per 1 100,000 po ported per 1 es include " ide heat stru- rait of Americ dom; USA =	reported are of the total case. 00,000 person-years. erson- months. 000 person-years. heat exhaustion" and "unspector oke and other heat injuries. a; 2006 to date, heat injuries <i>united States of America</i>	s reported in the articles cified effects of heat". was reported in the US Armed Forces (Ar	my, Navy, Air Force and Marine Corps).
§ Proportions and # # Incidence rate rep + Incidence rate per + Incidence rate rep * Other heat injuries P heat injuries inclu SCT = Sickle cell t US = United States UK = United Kinge	incidences ported per 1 100,000 po ported per 1 es include " ade heat str rait of Americ dom; USA =	reported are of the total case. 00,000 person-years. erson- months. 000 person-years. heat exhaustion" and "unspector oke and other heat injuries. a; 2006 to date, heat injuries <i>united States of America</i>	s reported in the articles cified effects of heat". was reported in the US Armed Forces (Ar	my, Navy, Air Force and Marine Corps).
§ Proportions and a # Incidence rate rep ‡ Incidence rate per † Incidence rate rep * Other heat injuries P heat injuries inclu SCT = Sickle cell t US = United States UK = United Kinge	incidences ported per 1 100,000 po ported per 1 es include " ide heat stru- rait of Americ dom; USA =	reported are of the total case. 00,000 person-years. erson- months. 000 person-years. heat exhaustion" and "unspector oke and other heat injuries. a; 2006 to date, heat injuries <i>united States of America</i>	s reported in the articles cified effects of heat". was reported in the US Armed Forces (Ar	my, Navy, Air Force and Marine Corps).
§ Proportions and a # Incidence rate rep ‡ Incidence rate per † Incidence rate rep * Other heat injuries P heat injuries inclu SCT = Sickle cell t US = United States UK = United Kinge	incidences ported per 1 100,000 per ported per 1 es include " ide heat stri- rait of Americ dom; USA =	reported are of the total case. 00,000 person-years. erson- months. 000 person-years. heat exhaustion" and "unspector oke and other heat injuries. a; 2006 to date, heat injuries <i>United States of America</i>	s reported in the articles cified effects of heat". was reported in the US Armed Forces (Ar	my, Navy, Air Force and Marine Corps).
§ Proportions and a # Incidence rate rep ↓ Incidence rate per ↑ Incidence rate rep * Other heat injuries P heat injuries inclu SCT = Sickle cell t US = United States UK = United Kinge	incidences ported per 1 100,000 po ported per 1 es include " ide heat stru- rait of Americ dom; USA =	reported are of the total cases 00,000 person-years. erson- months. 000 person-years. heat exhaustion" and "unspec- oke and other heat injuries. a; 2006 to date, heat injuries of <i>United States of America</i>	s reported in the articles cified effects of heat". was reported in the US Armed Forces (Ar	my, Navy, Air Force and Marine Corps).
§ Proportions and a # Incidence rate rep ↓ Incidence rate per ↑ Incidence rate rep * Other heat injuries P heat injuries inclu SCT = Sickle cell t US = United States UK = United Kinge	incidences ported per 1 100,000 po ported per 1 es include " ide heat stru- rait of Americ dom; USA =	reported are of the total case. 00,000 person-years. erson- months. 000 person-years. heat exhaustion" and "unspector oke and other heat injuries. a; 2006 to date, heat injuries <i>united States of America</i>	s reported in the articles cified effects of heat". was reported in the US Armed Forces (Ar	my, Navy, Air Force and Marine Corps).
§ Proportions and a # Incidence rate rep ↓ Incidence rate per ↑ Incidence rate rep * Other heat injuries P heat injuries inclu SCT = Sickle cell t US = United States UK = United Kinge	incidences ported per 1 100,000 po ported per 1 es include " ide heat stru- rait of Americ dom; USA =	For poor rouious	s reported in the articles cified effects of heat". was reported in the US Armed Forces (Ar	my, Navy, Air Force and Marine Corps).

	Country	Study design	Study duration	Population	ICD codes	Heat stroke	
						Women	Men
Army Medical Surveillance Activity, 2006	USA	Descriptive epidemiology;	2005 (1 year)	US Armed Forces; 204 heat stroke cases	ICD-9-CM: 992.0	0.26	0.48
Army Medical Surveillance Activity, 2007	USA	Descriptive epidemiology;	2006 (I year)	US Armed Forces; 259 heat stroke cases	ICD-9-CM: 992.0	0.14	0.22
Army Medical Surveillance Activity, 2008	USA	Descriptive epidemiology;	2007 (1 year)	US Armed Forces; 329 heat stroke cases	ICD-9-CM: 992.0	0.14	0.26
Army Medical Surveillance Activity, 2009	USA	Descriptive epidemiology;	2008 (1 year)	US Armed Forces; 299 heat stroke cases	ICD-9-CM: 992.0	0.16	0.22
Army Medical Surveillance Activity, 2010	USA	Descriptive epidemiology;	2009 (1 year)	US Armed Forces; 323 heat stroke cases	ICD-9-CM: 992.0	0.15	0.24
Army Medical Surveillance Activity, 2011	USA	Descriptive epidemiology;	2010 (1 year)	US Armed Forces; 311 heat stroke cases	ICD-9-CM: 992.0	0.12	0.23
Army Medical Surveillance Activity, 2012	USA	Descriptive epidemiology;	2011 (1 year)	US Armed Forces; 362 heat stroke cases	ICD-9-CM: 992.0	0.10	0.27
Army Medical Surveillance Activity, 2013	USA	Descriptive epidemiology;	2012 (1 year)	US Armed Forces; 365 heat stroke cases	ICD-9-CM: 992.0	0.15	0.27
Army Medical Surveillance Activity, 2014	USA	Descriptive epidemiology; 2013	2013 (1 year)	US Armed Forces; 324 heat stroke cases	ICD-9-CM: 992.0	0.15	0.24
Army Medical Surveillance Activity, 2015	USA	Descriptive epidemiology;	2014 (1 year)	US Armed Forces; 314 heat stroke cases	ICD-9-CM: 992.0	0.14	0.27
Army Medical Surveillance	USA	Descriptive epidemiology;	2015 (1 year)	US Armed Forces; 417 heat stroke cases	ICD-9-CM: 992.0 ICD 10: T67.0	0.16	0.35

Army Medical Surveillance Activity, 2017	USA	Descriptive epidemiology;	2016 (1 year)	US Armed Forces; 401 heat stroke cases	ICD-9-CM: 992.0 ICD 10: T67.0	0.19	0.33
Army Medical Surveillance Activity, 2018	USA	Descriptive epidemiology;	2017 (1 year)	US Armed Forces; 464 heat stroke cases 1699 heat exhaustion cases	ICD-9-CM: 992.0 ICD 10: T67.0	0.25	0.41
		For peer review only	v - http://hmionen/	omi.com/cita/about/quidelines	vhtml		
		for peer review only	y map.//binjopen.c	sing.com/sic/about/guidelilles.	AUXUII		

# Supplemental Table 4: Incidence rates of other heat injuries (heat exhaustion and unspecified effects of heat and light) in women compared to men in the Armed Forces

6	Reference, year	Country	Study design	Study duration	Population	ICD codes	Other heat in	juries
7							Women	Men
o 9 10 11	Army Medical Surveillance Activity, 2006	USA	Descriptive epidemiology;	2005 (1 year)	US Armed Forces; 958 heat exhaustion cases	ICD-9-CM: 992.3 – 992.5	2.89	1.98
11 12 13 14	Army Medical Surveillance Activity, 2007	USA	Descriptive epidemiology;	2006 (I year)	US Armed Forces; 1854 heat exhaustion cases	ICD-9-CM: 992.3 – 992.5	1.49	1.34
15 16 17	Army Medical Surveillance Activity, 2008	USA	Descriptive epidemiology;	2007 (1 year)	US Armed Forces; 1853 heat exhaustion cases	ICD-9-CM: 992.3 – 992.5	1.62	1.34
18 19 20	Army Medical Surveillance Activity, 2009	USA	Descriptive epidemiology;	2008 (1 year)	US Armed Forces; 1467 heat exhaustion cases	ICD-9-CM: 992.3 – 992.5	1.35	0.98
21 22 23	Army Medical Surveillance Activity, 2010	USA	Descriptive epidemiology;	2009 (1 year)	US Armed Forces; 2038 other heat injuries cases*	ICD-9-CM: 992.3 – 992.5; 992.9	1.78	1.35
24 25 26	Army Medical Surveillance Activity, 2011	USA	Descriptive epidemiology;	2010 (1 year)	US Armed Forces; 2576 other heat injuries cases*	ICD-9-CM: 992.3 – 992.5; 992.9	2.32	1.67
27 28 29	Army Medical Surveillance Activity, 2012	USA	Descriptive epidemiology;	2011 (1 year)	US Armed Forces; 2652 other heat injuries cases*	ICD-9-CM: 992.3 – 5; 992.9	2.63	1.68
30 31 32	Army Medical Surveillance Activity, 2013	USA	Descriptive epidemiology;	2012 (1 year)	US Armed Forces; 2257 other heat injuries cases*	ICD-9-CM: 992.3 – 992.5; 992.9	2.35	1.44
33 34 35	Army Medical Surveillance Activity, 2014	USA	Descriptive epidemiology; 2013	2013 (1 year)	US Armed Forces; 1701 other heat injuries cases*	ICD-9-CM: 992.3 – 992.5; 992.9	1.30	1.19
36 37 38	Army Medical Surveillance Activity, 2015	USA	Descriptive epidemiology;	2014 (1 year)	US Armed Forces; 1410 other heat injuries cases*	ICD-9-CM: 992.3 – 992.5; 992.9	1.31	1.21
<ul> <li>39</li> <li>40</li> <li>41</li> <li>42</li> <li>43</li> <li>44</li> <li>45</li> </ul>			For pee	r review only - http://b	mjopen.bmj.com/site/about/guid	elines.xhtml		

1								
2 3 4 5	Army Medical Surveillance Activity, 2016	USA	Descriptive epidemiology;	2015 (1year)	US Armed Forces; 1625 other heat injuries cases*	ICD-9-CM: 992.3 – 992.5; 992.9 ICD 10: T67.3 – T67.5; T67.9	1.54	1.48
6 7 8	Army Medical Surveillance Activity, 2017	USA	Descriptive epidemiology;	2016 (1 year)	US Armed Forces; 2135 other heat injuries cases*	ICD-9-CM: 992.3 – 992.5; 992.9 ICD 10: T67.3 – T67.5; T67.9	1.90	1.61
9 10 11	Army Medical Surveillance Activity, 2018	USA	Descriptive epidemiology;	2017 (1 year)	US Armed Forces; 1699 heat exhaustion cases	ICD-9-CM: 992.3 – 992.5 ICD 10: T67.3 – T67.5	1.38	1.41
<ol> <li>13</li> <li>14</li> <li>15</li> <li>16</li> <li>17</li> <li>18</li> <li>19</li> <li>20</li> <li>21</li> <li>22</li> <li>23</li> <li>24</li> <li>25</li> <li>26</li> <li>27</li> <li>28</li> </ol>								
29 30 31 32 33								
34 35 36 37 38								
39 40 41 42								
43 44 45			For pee	r review only - http://	/bmjopen.bmj.com/site/about/guid	lelines.xhtml		

Page 43 of 49

1

QATSDD Criteria	1	2	3	4	5	6	7	8	9	10	11	12	Total score	% of total scor		
Dickinson' 94[23]	0	1	2	0	1	3	0	0	3	2	0	2	14/36	38.9		
AMSA'95[31]	0	0	0	0	0	0	0	0	0	0	0	0	0/36	0		
AMSA' 96[32]	0	0	0	0	0	0	0	0	0	0	0	0	0/36	0		
AMSA'97[33]	0	0	0	0	0	0	0	0	0	0	0	0	0/36	0		
AMSA'98[24]	2	1	1	0	0	0	0	0	2	2	0	0	8/36	22.2		
AMSA'00[27]	2	1	2	0	0	1	0	0	2	3	0	0	11/36	30.6		
AMSA'02[25]	3	0	2	0	1	1	0	0	2	0	2	0	11/36	30.6		
AMSA'03[26]	2	1	1	0	1	1	0	0	2	2	0	0	10/36	27.8		
Carter et al' 05[28]	3	3	3	2	2	3	1	2	3	3	2	0	27/36	75		
AMSA'06[30]	2	1	1	0	1	1	0	0	2	2	0	0	10/36	27.8		
Wallace et al' 06[46]	3	3	3	2	2	3	1	2	3	3	2	2	29/36	80.6		
AMSA'07[34]	1	1	1	0	0	1	0	0	2	2	0	0	8/36	22.2		
AMSA' 08[35]	1	1	1	0	0	1	0	0	2	2	0	0	8/36	22.2		
AMSA' 09[36]	1	1	1	0	0	1	0	0	2	2	0	0	8/36	22.2		
AMSA' 10[37]	1	1	2	0	0	1	0	0	2	2	0	2	11/36	30.6		
AMSA' 11[38]	2	1	2	0	0	1	0	0	2	2	0	2	12/36	33.3		
Druyan et al'12[15]	3	3	3	1	0	2	0	3	3	2	2	1	23/36	63.9		
AMSA' 12[39]	2	1	2	0	0	1	0	0	2	2	0	2	12/36	33.3		
AMSA' 13[40]	2	2	2	0	0	2	0	0	2	2	0	2	14/36	38.9		
AMSA' 14[41]	2	2	2	0	0	2	0	0	2	3	0	2	15/36	41.7		
AMSA' 15[42]	3	2	2	0	0	2	0	0	2	3	0	2	16/36	44.4		
Bedno et al, 2015[29]	3	3	3	2	2	3	3	3	3	3	3	3	34/36	94.4		
Kazman et al' 15[47]	3	3	3	2	2	3	2	3	3	3	3	3	33/36	91.7		
AMSA' 16[43]	3	2	2	0	0	2	0	0	2	3	0	2	16/36	44.4		
AMSA' 17[44]	3	2	2	0	0	2	0	0	2	3	0	2	16/36	44.4		
AMSA' 18[45]	3	2	2	0	0	2	0	0	2	3	0	2	16/36	44.4		
Singer et al.18[21]	3	3	3	3	3	3	2	3	3	3	3	3	35/36	97.2		
<ol> <li>(1) Theoretical framework;</li> <li>(2) Aims/objectives;</li> <li>(3) Description of research setting</li> <li>(4) Sample size;</li> <li>(5) Representative sample of target group <i>QATSDD rating scale: 0=not at all; 1=very slightly; .</i></li> </ol>				QATSDD Criteria (6) Procedure for data collection (7) Rationale for choice of data collection tool(s) (8) Detailed recruitment data (9) Fit between research question and method of data collection (Quantitative only) (10) Fit between research question and method of analysis (Quantitative only) (10) Fit between research question and method of analysis (Quantitative only) (10) Fit between research question and method of analysis (Quantitative only) (10) Fit between research question and method of analysis (Quantitative only) (10) Fit between research question and method of analysis (Quantitative only) (10) Fit between research question and method of analysis (Quantitative only)										(11) Good justification for analytical met (12) Strengths and limitations.		
<ul><li>(4) Sample size;</li><li>(5) Representative sample QATSDD rating scale: 0=</li></ul>	of target g not at all;	group 1=very sl	ightly; 2=	(9) Fit betv (10) Fit bet moderately	veen rese tween res ; 3=com	earch qu search q <i>plete; A</i>	Substitution and substitution $MSA = Arr$	method of 1 method o ny Medica	f data colle of analysis <i>al Surveille</i>	ection (Qu (Quantita ance Activ	antitative ative only) <i>ity</i>	only)				

Page 45 of 49

1 ว								
2								
כ ⊿								
4								
2								
6 7								
/								
8								
9								
10								
11								
12								
13								
14								
15								
16		Women (rate/	100000)	Men (rate/	100000)		Risk Ratio	Risk Ratio
1/	Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
18	1.1.1 Heat exhaustion	and unspecifi	ed effects	of heat and	light			
19	AMSA 2010	178	100000	135	100000	10.5%	1.32 [1.05, 1.65]	
20	AMSA 2011	232	100000	167	100000	13.0%	1.39 [1.14, 1.69]	
21	AMSA 2012 AMSA 2013	203 235	100000	100	100000	0.0%	1.57 [1.29, 1.90]	
22	AMSA 2013 AMSA 2014	130	100000	119	100000	8.6%	1.09 [0.85, 1.40]	
23	AMSA 2015	131	100000	121	100000	8.7%	1.08 [0.85, 1.39]	
24	AMSA 2016	154	100000	148	100000	10.3%	1.04 [0.83, 1.30]	
25 26	AMSA 2017 Subtotal (95% CI)	190	100000 <b>600000</b>	161	100000 <b>600000</b>	11.8% <b>62.8%</b>	1.18 [0.96, 1.46] <b>1.19 [1.08, 1.31]</b>	•
27	Total events	1015		851				
28	Heterogeneity: Tau ² = 0	0.00; Chi ² = 5.5	2, df = 5 (P	= 0.36); l ² =	9%			
29	Test for overall effect: 2	Z = 3.56 (P = 0.	0004)					
30	1.1.2 Heat exhaustion							
31	AMSA 2006	289	100000	198	100000	0.0%	1.46 [1.22, 1.75]	
32	AMSA 2007	149	100000	134	100000	9.7%	1.11 [0.88, 1.40]	
33	AMSA 2008	162	100000	134	100000	10.0%	1.21 [0.96, 1.52]	
34	AMSA 2009 AMSA 2018	135	100000	98 141	100000	7.9%	1.38 [1.06, 1.79]	
35	Subtotal (95% CI)	150	400000	141	400000	37.2%	1.15 [1.01, 1.32]	•
36	Total events	584		507			• • •	
37	Heterogeneity: Tau ² = 0	0.00; Chi² = 3.9	3, df = 3 (P	= 0.27); l ² =	24%			
38	Test for overall effect: 2	Z = 2.05 (P = 0.	04)					
39	T-1-1 (05% OI)		4000000		4000000	400.00/	4 40 14 00 4 071	
40	Total (95% CI)	4500	1000000	4050	1000000	100.0%	1.18 [1.09, 1.27]	
41	I otal events Hotorogonoity: $Tau^2 = 0$	1599 2 00: Chi2 - 0 6	6 df - 0 (P	1358	70/		_	
42	Test for overall effect: 2	7 = 4 24 (P < 0	0, ui – 9 (F 0001)	- 0.30), 1 -	• 1 /0			0.5 0.7 1 1.5 2
43	Test for subgroup differ	rences: $Chi^2 = 0$	).14, df = 1	(P = 0.71), I	² = 0%			Favours women Favours men
44								
45								
46								
47								
48								
49								
50								
51								
52								
53								

Page 46 of 49



## PRISMA 2009 Checklist

4 5 6	Section/topic	#	Checklist item	Reported on page #		
7	TITLE					
8 9	Title	1	Identify the report as a systematic review, meta-analysis, or both.	1		
10	ABSTRACT					
11 12 13 14	Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.			
15	INTRODUCTION					
10	Rationale	3	Describe the rationale for the review in the context of what is already known.	5		
18	Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	6		
20	METHODS					
22	Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	6		
24 25 26	Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	6		
27 28	Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	6		
29 30 31 32	Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	6, supplementary file 1		
33	Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	Figure 1		
36 37	Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	7		
38	Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	7		
40 41 42	Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	7		
43	Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	8		
44 45			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml			

Page 47 of 49

RIS MAL 1

2

# PRISMA 2009 Checklist

Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I ² ) for each meta-analysis.	8
		Page 1 of 2	
Section/topic	#	Checklist item	Reported on page #
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	7
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	N/A
RESULTS			
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	Figure 1
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	8, Supplementary file 2
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	15, 16
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	10,12, 14, Supplementary file 2
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	9,10,11,12, 13, 14
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	16
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	N/A
DISCUSSION			
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	17, 18, 19
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	20, 21
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	21, 22
FUNDING		For near review, only, http://hmignen.hmi.com/site/shevet/swidelines.yhtml	

BMJ Open

46



# PRISMA 2009 Checklist

4 F 5	Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	22
6 <u> </u>				
8 c	<i>From:</i> Moher D, Liberati A, Tetzlaff loi:10.1371/journal.pmed1000097	J, Altn	nan DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PL	.oS Med 6(6): e1000097.
9			For more information, visit: www.prisma-statement.org.	
10			Page 2 of 2	
17				
13				
14				
15				
16				
17 18				
19				
20				
21				
22				
23 24				
25				
26				
27				
28				
29 30				
31				
32				
33				
34 25				
35 36				
37				
38				
39				
40 41				
41 42				
43				
44				
45			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	
46 47				

Item No	Recommendation
Reporting of	of background should include
1	Problem definition
2	Hypothesis statement
3	Description of study outcome(s)
4	Type of exposure or intervention used
5	Type of study designs used
6	Study population
Reporting of	of search strategy should include
7	Qualifications of searchers (eg, librarians and investigators)
8	Search strategy, including time period included in the synthesis and key words
9	Effort to include all available studies, including contact with authors
10	Databases and registries searched
11	Search software used, name and version, including special features used (eg, explosion)
12	Use of hand searching (eg, reference lists of obtained articles)
13	List of citations located and those excluded, including justification
14	Method of addressing articles published in languages other than English
15	Method of handling abstracts and unpublished studies
16	Description of any contact with authors
Reporting of	of methods should include
17	Description of relevance or appropriateness of studies assembled for assessing the hypothesis to be tested
18	Rationale for the selection and coding of data (eg, sound clinical principles or convenience)
19	Documentation of how data were classified and coded (eg, multiple raters, blinding and interrater reliability)
20	Assessment of confounding (eg, comparability of cases and controls in studies where appropriate)
21	Assessment of study quality, including blinding of quality assessors, stratification or regression on possible predictors of study results
22	Assessment of heterogeneity
23	Description of statistical methods (eg, complete description of fixed or random effects models, justification of whether the chosen models account for predictors of study results, dose-response models, or cumulative meta-analysis) in sufficient detail to be replicated
24	Provision of appropriate tables and graphics
Reporting of	of results should include
25	Graphic summarizing individual study estimates and overall estimate
26	Table giving descriptive information for each study included
27	Results of sensitivity testing (eg, subgroup analysis)

## of Observational Studies

**Reported on** Page No

Title page

6, supplemental

Table 1 7, Figure 1

> 6 6,

supplemental Table 1 7

8, Table 2,

Figure 1

6-7

Figure 1

7-8

7-9

8-9

7-8

7-8

9

9

Tables 1-3, Figs 2-3

Figs 2-3

Supplemental

Table 2 Supplemental

Figure 1

Indication of statistical uncertainty of findings

15-17

Item No	Recommendation	Reported on Page No
Reporting o	f discussion should include	
29	Quantitative assessment of bias (eg, publication bias)	23
30	Justification for exclusion (eg, exclusion of non-English language citations)	6
31	Assessment of quality of included studies	7-8; 17-18
Reporting o	f conclusions should include	
32	Consideration of alternative explanations for observed results	19-24
33	Generalization of the conclusions (ie, appropriate for the data presented and within the domain of the literature review)	24
34	Guidelines for future research	24
35	Disclosure of funding source	25

*From*: Stroup DF, Berlin JA, Morton SC, et al, for the Meta-analysis Of Observational Studies in Epidemiology (MOOSE) Group. Meta-analysis of Observational Studies in Epidemiology. A Proposal for Reporting. *JAMA*. 2000;283(15):2008-2012. doi: 10.1001/jama.283.15.2008.

# **BMJ Open**

## A Systematic Review of the Gender Differences in the Epidemiology and Risk Factors of Exertional Heat Illness and Heat tolerance in the Armed Forces

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-031825.R2
Article Type:	Original research
Date Submitted by the Author:	11-Dec-2019
Complete List of Authors:	Alele, Faith; James Cook University, College of Healthcare Sciences Malau-Aduli, Bunmi; James Cook University, College of Medicine and Dentistry Malau-Aduli, Aduli; James Cook University, College of Public Health, Medical and Veterinary Sciences Crowe, Melissa; James Cook University, Division of Tropical Health and Medicine
<b>Primary Subject Heading</b> :	Occupational and environmental medicine
Secondary Subject Heading:	Sports and exercise medicine
Keywords:	OCCUPATIONAL & INDUSTRIAL MEDICINE, ACCIDENT & EMERGENCY MEDICINE, Heat Stroke, Armed Forces, Women





I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2		
3	1	A Systematic Review of the Gender Differences in the Epidemiology and Risk Factors of
4	_	
5	2	Exertional Heat Illness and Heat tolerance in the Armed Forces
0 7		
8	-	
9	3	Type of article: Review
10		
11	4	Authors
12	_	
14	5	Faith O. Aleler
15	6	MPHTM, MBBS
16	7	Faith.alele@my.jcu.edu.au
17	8	+617 47815082
18	9	
19 20	10	A/Prof Bunmi S. Malau-Aduli ²
20	11	PhD, MSc, BSc (Hons)
22	12	Bunmi.malauaduli@jcu.edu.au
23	13	
24	14	A/Prof Aduli EO. Malau-Aduli ³
25	15	PhD MSc BSc (Hons)
20 27	16	Aduli malauaduli@icu edu au
28	17	<u>I I I I I I I I I I I I I I I I I I I </u>
29	10	Dr Melissa Crowe ⁴
30	10	PhD BSc (Hons)
31	19	Maliana aroung (internet)
32 33	20	<u>Menssa.crowe(@jcu.edu.au</u>
34	21	
35	22	¹ College of Healthcare Sciences, James Cook University, Townsville QLD 4811, Australia
36 37	23	² College of Medicine and Dentistry, James Cook University, Townsville OLD 4814, Australia
38		
39	24	³ College of Public Health, Medical and Veterinary Sciences, James Cook University,
40	25	Townsville QLD 4811, Australia
41 42	26	⁴ Division of Tropical Health and Medicine, James Cook University, Townsville OI D 4811
43	20	Australia
44	27	Australia
45	28	
46 47	29	*Corresponding author [.]
48	23	
49	30	Faith O. Alele, College of Healthcare Sciences, James Cook University, Townsville QLD 4811,
50 51	31	Australia, Townsville QLD 4811, Australia
52	32	Tel: +617 47815082
55 54	33	Email: <u>faith.alele@my.jcu.edu.au</u>
55 56	34	Word count: 3993
57		
58 59	35	
60		

## Abstract Objectives: The aim of this review was to describe the epidemiology of all heat related illnesses in women compared to men in the armed forces and to identify gender specific risk factors and differences in heat tolerance. Design: A systematic review of multiple databases (MEDLINE, Emcare, CINAHL, PsycINFO, Informit, and Scopus) was conducted from inception of the databases to 1 April 2019 using the preferred reporting items for systematic review and meta-analysis (PRISMA) guidelines. Eligibility criteria: All relevant studies investigating and comparing heat illness and heat tolerance in women and men in the armed forces were included in the review. **Results:**

Twenty-four (24) studies were included in the systematic review. The incidence of heat stroke in women ranged from 0.10 to 0.26 per 1000 person years, while the incidence of heat stroke ranged from 0.22 to 0.48 per 1000 person years in males. The incidence of other heat illnesses in women compared to men ranged from 1.30 to 2.89 per 1000 person years vs 0.98 to 1.98 per 1000 person years. The limited evidence suggests that women had a greater risk of exertional heat illness compared to men. Other gender specific risk factors were slower run times and body mass index. Although there was a higher proportion of women who were heat intolerant compared to men; this finding needs to be interpreted with caution due to the limited evidence. 

55 Conclusion: In relation to armed forces personnel, the findings of this review suggest that men 56 experienced a higher incidence of heat stroke than women. Although the evidence is limited, a 57 higher proportion of women were heat intolerant and had a greater risk of exertional heat

3 4	58	illnesses. Despite the limited evidence, further research is required to investigate the influence
5 6 7	59	of gender differences on heat intolerance and heat illness.
8 9 10	60	Article summary
11 12 13	61	Strengths and limitations of this study
14 15 16	62	• This is the first known systematic review investigating the impact of gender on
17 18	63	exertional heat illness and heat tolerance in the armed forces.
19 20	64	• We conducted a comprehensive search and identified potential risk factors that are
21 22 23	65	associated with exertional heat illness.
24 25	66	• Most of the included studies utilized retrospective data with an increased likelihood of
26 27 28	67	misclassification bias which may have underestimated or overestimated the association
29 30	68	between heat-related illness and risk factors.
31 32 33	69	Trial registration None
34 35 36	70	Key words
37 38 39	71	Heat stress; Heat stroke; Heat exhaustion; Heat tolerance; Women; Armed Forces
40 41 42	72	
43 44 45	73	
46 47 48	74	
49 50 51	75	
52 53 54	76	
55 56 57	77	
58 59 60	78	

## 79 Introduction

Heat illnesses are disorders that arise after prolonged exposure to heat/humidity and/or increased physical activity.[1] When body temperature rises, conduction, convection, radiation and evaporation mechanisms help to cool the body and maintain normothermia.[1] However, heat loss is susceptible to prevailing environmental conditions and type of clothing worn. Without adequate cooling heat illnesses may occur including exercise-associated muscle cramps (EAMC), heat syncope, heat exhaustion and heat stroke, a potentially life-threatening disorder.[1]

Heat stroke is a medical emergency.[2] It is characterized by elevated core temperature of 40°C and above, central nervous system disturbances and multi-organ damage that may result in death.[2] Heat stroke has been classified as either classic or exertional.[3] Classic heat stroke is insidious in onset and occurs in vulnerable populations such as young children, the elderly and patients with chronic diseases.[4] On the other hand, exertional heat stroke occurs more rapidly and affects apparently healthy, active people such as athletes, factory workers, construction workers, agricultural workers, firefighters and armed forces personnel.[5] The workers in these industries often require high levels of physical exertion to perform jobs and tasks. A combination of rigorous activities and extreme exposure to heat places the workers at increased risk of heat stroke.[6] 

97 Among armed forces personnel, exertional heat illness continues to pose as a significant cause 98 of morbidity and mortality [7]. Operations and training may involve exposure to high ambient 99 temperature and high workload which may result in heat illness.[7] Historically, men have 100 occupied military roles and responsibilities with fewer proportion of women in the armed 101 forces.[8] However, more women are joining the armed forces globally following the inclusive 102 approach to recruiting and creation of more roles for women.[9] Women are required to operate

in austere environments with heat illnesses becoming more frequent.[9] This has raised the question about gender differences in thermoregulation during heat stress.[9] Evidence suggests that women differ from men in thermal responses to heat.[10] This difference may be because women have a lower rate of whole body evaporative heat loss, higher body fat mass, body mass ratio,[11] number of sweat glands and lower aerobic fitness.[12] In addition, hormonal variations due to menstrual cyclic patterns and the use of contraceptive pills may be associated with the differences in response to heat stress.[13]

When exertional heat illness occurs, it may be challenging to determine if an individual may return to duty. An inaccurate determination of complete recovery among armed forces personnel may negatively impact military readiness.[14] While, there are no evidence-based recommendations for return to duty, the American College of Sports Medicine (ACSM) guidelines states that exertional heat stroke patients may return to duty after re-establishing heat tolerance.[15] Individuals vary in their ability to cope with heat stress and the inability to withstand heat stress during exertion in hot environments is defined as heat intolerance.[2] Evidence suggests that heat intolerance may be as a direct result of heat stroke or due to predisposing inherent factors (genetics).[2] However, the objective criteria or measure for defining heat tolerance or intolerance remains a subject of controversy.[14] The current return to duty guidelines for military personnel varies across countries.[16] For example, in the United States, military return to duty process is based on clinical assessments with gradual acclimatization and re-introduction of duties.[17] By contrast, return to duty in the Israeli Defence Force requires a heat tolerance test to determine if an individual is heat tolerant.[18] Therefore, it is important to develop evidence based return to duty protocols across the globe. 

The Israeli Defence Force originally developed the heat tolerance test in 1979 as an index of the ability of soldiers to cope with exertional heat.[18] Individuals who have suffered heat stroke are sent for a heat tolerance test after a minimum recovery period of 6 to 8 weeks as part Page 7 of 37

## **BMJ** Open

of the return to duty process.[18] Criteria used to define heat intolerance include an elevation in rectal temperature above 38.5°C and heart rate above 150 bpm or when rectal temperature or heart rate fail to stabilize during the test. The heat tolerance test criteria are based on previous studies by Shapiro et al.[19] which utilised only male military participants.[18, 19] While the test may be considered as a useful tool to determine return to duty and to prevent subsequent exertional heat stroke, [18,19] there is no consensus on the validity of the tool as a diagnostic test for heat tolerance.[14] Furthermore, the heat tolerance test does not account for predicting factors such as gender.[14] Given the limitation, questions have been raised about the validity of the protocol in determining return to duty for females in the armed forces. It has been suggested that more research is required to determine whether or not a new protocol should be developed for women.[12] 

As restrictions on gender based-exclusions from military specializations are lifted, [20] it is imperative to understand and evaluate exertional heat illness in women compared to men and identify the gender specific risk factors. Furthermore, it is important to understand how women respond to the heat tolerance test compared to men. According to a recent review on the risk of heat illness in women compared with men in the general population, men are at increased risk of heat illness compared to women.[21] However, no previous review has investigated the epidemiology and risk factors of heat illness as well as gender responses to the heat tolerance test in men and women in the armed forces. Given that, heat illness can impact defence operational effectiveness and may result in acute loss of manpower and possible medical discharge from service, [22] it is essential that the review should be conducted to inform policies. 

150 Therefore, the objective of this systematic review was to provide a comprehensive summary of151 the epidemiology of heat illness and heat intolerance in women and men in the armed forces.

Specific aims were 

To determine the incidence and prevalence of heat illness in women compared to men in the armed forces: 

To identify gender differences in heat tolerance in the armed forces and

To identify gender specific predisposing risk factors associated with heat illness in the armed forces

#### **Methods**

#### Search Strategy

This review utilised the Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA) guidelines [23] to explore all literature published in English from inception of the different databases to 1 April 2019. Databases searched were MEDLINE, CINAHL, PsycINFO, Emcare, Informit and Scopus. A preliminary search was conducted in Medline, Emcare and CINAHL to identify relevant key words contained in the titles, abstracts and subject descriptors. These search terms were used to conduct the search in other databases without subject headings. The search strategy used in Medline is presented in supplemental Table 1. No review protocol exists. 

#### **Eligibility criteria**

Studies included in the review were assessed according to the following inclusion criteria: Peer-reviewed literature comparing heat illness in women to men in the armed forces or reporting heat tolerance in women and men of the armed forces. Exclusions included literature discussing heat illness in other occupations, or studies where data on heat illness in women could not be 

**BMJ** Open

separated from men or studies reporting heat illness in men or literature reviews, conference
abstracts and grey literature. In addition, additional primary data sources were identified from
the reference lists of the included studies using a hand-search technique (Figure 1).

## 177 Selection of studies and data extraction

FA and BMA identified all included studies and data extraction was performed using a standard abstraction form. Data extracted from the studies included: study location and design, population, proportion and incidence of heat illnesses, factors associated with heat illness and heat tolerance, and heat tolerance in men and women. All authors cross-checked the extracted data for consistency.

183 Quality assessment

The methodological quality assessment was assessed by FA in consultation with MC using the modified quality assessment tool for studies with diverse designs (QATSDD) critical appraisal tool.[24] Any disagreement about any article was reviewed by BMA and AMA and discussed until consensus was reached. The QATSDD tool is a 16-item tool which assesses the quality of diverse studies (both quantitative and qualitative).[24] The tool was modified to exclude two items relating to qualitative studies as well as two items relating to quantitative studies that were not applicable to the studies included in the review. The items excluded comprised statistical assessment of reliability and validity of measurement tool(s) (Quantitative only), fit between stated research question and format and content of data collection tool e.g. interview schedule (Qualitative), assessment of reliability of analytical process (Qualitative only) and evidence of user involvement in design. Each criterion in the modified QATSDD tool was awarded a score of 0 to 3 with 0 =not at all, 1 =very slightly, 2 =moderately and 3 =complete. The scores of each criterion were summed to assess the methodological quality of included studies with a maximum score of 36. The criteria included were (1) theoretical framework; (2) 

statement of aims/objectives; (3) description of research setting; (4) evidence of sample size; (5) representative sample of target group of a reasonable size, (6) description of procedure for data collection; (7) rationale for choice of data collection tool(s); (8) detailed recruitment data; (9) fit between research question and method of data collection (Quantitative only); (10) fit between research question and method of analysis (Quantitative only); (11) good justification for analytical method selected; and (12) strengths and limitations. For ease of interpretation, the scores were converted to percentages and classified as low (<50%), medium (50-80%) or high (>80%) quality of evidence. 

- 206 Patient and public involvement
- 207 There was no public or patient involvement in this study.

## 208 Data analysis and synthesis

In this review, the International Classification of Diseases ICD 9 or ICD 10 diagnosis codes [25, 26] for the effects of heat and light were used to classify heat illnesses. All included studies utilized either the ICD 9 or ICD 10 codes to classify heat illnesses depending on the year of publication. Heat illnesses were categorised as heat stroke and other heat illnesses. Heat stroke was defined using the ICD diagnosis codes 992.0 (1CD 9) and T67.0 (ICD 10). While other heat illnesses were defined as heat exhaustion (992.3-5, T67 3-5) and unspecified effects of heat and light (992.9 and T67.9). In addition, some studies presented findings for all heat illness without categorizing them into heat stroke and other heat illnesses. These findings were presented separately. Incidence rates and proportions were extracted from the data reported in each study and used for the analysis in this review. 

, 3 220

## **Results** An initial search identified 3816 papers. After removing duplicates, screening titles and abstracts, 47 papers remained for full text review with twenty-four (24) included in the systematic review (Figure 1). Twenty-two (22) of the reviewed articles originated from the United States of America (USA), while the other two studies were conducted in the United Kingdom (UK) and Israel respectively (Supplemental Table 2). All included studies were conducted among armed forces personnel, however, two studies included university staff and armed forces personnel in the studies. [27, 28] Twenty- one (21) articles examined heat illnesses and injuries in women and men. Seven (7) of these studies described all heat related illnesses in men and women, [29-35] while 13 studies included information on heat stroke and other heat injuries in relation to both genders.[36-48] Four (4) studies identified gender specific risk factors associated with heat stroke, [31, 34, 35, 49] and three (3) studies compared heat tolerance in men and women.[12, 27, 28]

## 235 Incidence of heat stroke in women compared to men in the armed forces

Thirteen studies conducted among US army personnel compared the incidence of heat stroke
between men and women.[36 – 48] The incidence of heat stroke among females ranged from
0.10 to 0.26 per 1000 person years. Among males, the incidence of heat stroke ranged from
0.22 to 0.48 per 1000 person years (Figure 2). Between 2015 and 2018, the incidence of heat
stroke increased steadily for both men and women.

## 241 Incidence of other heat illnesses in women compared to men in the armed forces

The incidence of other heat illnesses was reported by 13 studies conducted by the US Army.
The incidence of other heat illnesses in women ranged from 1.30 to 2.89 per 1000 person years.
In men, the incidence rate of other heat illness ranged from 0.98 to 1.98 per 1000 person years
(Figure 3).

## 246 Incidence and prevalence of all heat illnesses in women compared to men

Table 1 shows the proportions and incidences of all heat-related illness in men and women in the armed forces. Five (5) studies reported higher incidences and proportions of all heat illness in men compared to women[29, 31, 32, 34, 35] while two studies reported higher incidences of all heat illness in women.[30, 33]

to or or the town on the

 BMJ Open

WomenWomenWomenWomenWomenDickson. 1994[29]UKDescriptive epidemiology1981-1991 (10yrs)Royal Air force, Royal Navy and Army (1448 cases)ICD-9-CM: 992.0 – 992.911.43*4Army Medical Surveillance Activity, 2000[33]USADescriptive epidemiology1997 – 1998 (1 year)US Army (1433 cases)ICD-9-CM: 992.0 – 992.912.8‡8.Army Medical Surveillance Activity, 2000[33]USADescriptive epidemiology1997 – 1999 (2 years)US Army and Marine Corps (3386 cases)ICD-9-CM: 992.0 – 992.912.8‡8.Army Medical Surveillance Activity, 2000[33]USADescriptive epidemiology1997 – 1999 (2 years)US Army and Marine Corps (3386 cases)ICD-9-CM: 992.0 – 992.914.0%§86Army Medical Surveillance Activity, 2002[31]USADescriptive epidemiology1990 – 1997 (7 years)US Army (2290 cases)ICD-9-CM: 992.0 – 992.914.0%§86
Dickson. 1994[29]UKDescriptive epidemiology1981-1991 (10yrs)Royal Air force, Royal Navy and Army (1448 cases)ICD-9-CM: $992.0 - 992.9$ $11.43^*$ 4Army Medical Surveillance Activity, 1998[30]USADescriptive epidemiology1997 - 1998US Army (1433 cases)ICD-9-CM: $992.0 - 992.9$ $12.8^{\ddagger}$ 8.Army Medical Surveillance Activity, 2000[33]USADescriptive epidemiology1997 - 1999 (2 years)US Army and Marine Corps (3386 cases)ICD-9-CM: $992.0 - 992.9$ $12.8^{\ddagger}$ 8.Army Medical Surveillance Activity, 2002[31]USADescriptive epidemiology1997 - 1999 (2 years)US Army and Marine Corps (3386 cases)ICD-9-CM: $992.0 - 992.9$ $2.0^{\ddagger}$ 1.Army Medical Surveillance Activity, 2002[31]USADescriptive epidemiology1990 - 1997 (7 years)US Army (1896 cases) US Army (2290 cases)ICD-9-CM: $992.0 - 992.9$ $4.4^{\ddagger}$ $2.0^{\ddagger}$
Army Medical Surveillance Activity, 1998[30]       USA       Descriptive epidemiology       1997 – 1998       US Army (1433 cases)       ICD-9-CM: 992.0 – 992.9       12.8‡       8.         Army Medical Surveillance Activity, 1998[30]       USA       Descriptive       1997 – 1999       1997       1997       15.8‡       12.8‡       8.         Army Medical Surveillance Activity, 2000[33]       USA       Descriptive       1997 – 1999       US Army and Marine Corps (3386 cases)       ICD-9-CM: 992.0 – 992.9       15.8‡       12.8‡       8.         Army Medical Surveillance Activity, 2000[33]       USA       Descriptive       1997 – 1999       US Army and Marine Corps (104 cases)       ICD-9-CM: 992.0 – 992.9       14.0%§       86         Army Medical Surveillance Activity, 2002[31]       USA       Descriptive       1990 – 1997       US Army (2290 cases)       ICD-9-CM: 992.0 – 992.9       14.0%§       86
Army Medical       USA       Descriptive epidemiology       1997 – 1999 (2 years)       US Army and Marine Corps (3386 cases)       ICD-9-CM: 992.0 – 992.9       ICD-9-CM: 992.0 – 992.9         Surveillance Activity, 2000[33]       Army (1896 cases)       2.0†       1.         Army Medical       USA       Descriptive epidemiology       1990 – 1997       US Army (2290 cases)       ICD-9-CM: 992.0 – 992.9       14.0%§         Surveillance Activity, 2002[31]       epidemiology       1790 – 1997       US Army (2290 cases)       ICD-9-CM: 992.0 – 992.9       14.0%§       86
Army Medical Surveillance Activity, 2000[33]USA epidemiologyDescriptive (2 years)1997 – 1999 (2 years)US Army and Marine Corps (3386 cases)ICD-9-CM: 992.0 – 992.9Army (1896 cases) Marine Corps (1104 cases)2.0†1.Army Medical Surveillance Activity, 2002[31]USADescriptive epidemiology1990 – 1997 (7 years)US Army (2290 cases)ICD-9-CM: 992.0 – 992.9
Army (1896 cases)       2.0†       1.         Marine Corps (1104 cases)       4.4†       2.         Army Medical       USA       Descriptive       1990 – 1997       US Army (2290 cases)       ICD-9-CM: 992.0 – 992.9       14.0% [§] 86         2002[31]       2002[31]       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1
Army MedicalUSADescriptive1990 – 1997US Army (2290 cases)ICD-9-CM: 992.0 – 992.914.0%§ 80Surveillance Activity,epidemiology(7 years)(7 years)(7 years)(7 years)
Case control 1998 – 2001 US Army (5021 cases and 10,042 controls) 20.7%§ 75 (3 years) 20.7%§
Army Medical Surveillance Activity,USADescriptive epidemiology2002 (1 year)US Army (1816 cases)ICD-9-CM: 992.0 - 992.93.5†5.2003[32]
Carter et al, 2005[34] USA Cross-sectional 1980 – 2002 US Army (5246 cases) ICD-9-CM: 992.0 – 992.9 13.7% [§] 86
Bedno et al, 2014[35]USAAnalytical cross- sectional2005 - 2006US Armed Forces (80 exertional heat illness cases) 9455 men 1913 womenICD-9-CM: 992.0 - 992.90.680%0.

## Gender specific risk factors for heat illness

256	Three (3) studies identified the gender specific risk factors that were associated with heat illness
257	(Table 2). [31, 34, 49] Two of the studies compared the risk of heat illness between males and
258	females while one study identified risk factors within each gender. In the two studies that
259	compared the risk of heat illness by gender, females had a greater risk of experiencing heat
260	illness (OR 1.5, 95% CI 1.4 to 1.7 and IDR 1.21, 95% CI 1.09 to 1.40) compared to males.[31,
261	34] Within gender, males with body mass index (BMI) of $\geq 26 \text{ kgm}^{-2}$ had a greater risk of
262	experiencing heat illness compared to males with BMI < 22 kgm ⁻² (OR 2.10, 95% CI 1.59 to
263	2.78).[49] In addition, males with run times of $\geq$ 12.9 minutes had almost six times the risk of
264	exertional heat illness compared to males with run times of < 10.3 minutes (OR 5.61, 95% CI
265	1.92 to 6.85). While females with run times of $\geq$ 6.9 minutes had five times the risk of
266	exertional heat illness compared to females with run times of $< 5.8$ minutes (OR 5.30, 95% CI
267	1.59 to 17.64).[49]

## 268 Table 2: Gender specific risk factors associated with heat illness

Reference, year	Country	Study design and duration	Study population	Risk factors	OR or IDR (95% CI)
Army Medical Surveillance Activity, 2002[31]	USA	Case-control 1998 – 2001 (3 years)	US Army 5021 cases and 10,042 controls	Female	1.5 (1.4 - 1.7)
Carter et al, 2005[34]	USA	Cross-sectional 1980 – 2002 (22 years)	US Army 5246 cases of heat illness; 4521 males and 725 females	Female	1.21 (1.09 – 1.40)
Wallace et al, 2006[49]	USA	Case-control	US Marine Corps	BMI $\ge$ 26 kg/m ² (males)	2.10 (1.59 – 2.78
		1988 – 1996 (8 years)	Male (627 cases and 1679 controls)	Run time $\geq 12.9$ minutes (males)	5.61 (3.73 - 8.45)
			Female (49 cases and 123 controls)	Run time $\geq 6.9$ minutes (females)	5.30 (1.59 – 17.64

## 270 Heat tolerance in women and men

Three studies compared heat tolerance classification in males and females using the HTT developed by the Israeli Defence Force (Table 3). [12, 27, 28] Druyan et al. investigated gender differences in Israeli Defence Force personnel who had sustained heat injury. The study reported that 67% of the women were found to be heat intolerant compared to 26% of their male counterparts.[12] In the studies conducted by Lisman et al. and Kazman et al. the study population comprised of participants from the university and military communities who had either no heat illness or a previous history of heat illness. Both studies reported that a greater proportion of women were classified as heat intolerant compared to men (42% vs 27% and 45% vs 18% respectively). [27, 28] 

## 281 Table 3: Heat tolerance in women and men

keterence, year	Country	Study design and duration	Study population	Heat in tolerance rate Women	Heat in tolerance rate Men
Druyan et al, 2012[12]	Israel	Retrospective cross-sectional 2008 – 2010 (2 years)	170 males and 9 females	66.67%	25.79%
Lisman et al, 2014 [27]	USA	Analytical cross- sectional	Military and university community members; 34 males and 12 females	42%	27%
Kazman et al, 2015[28]	USA	Analytical cross- sectional (duration not stated)	Military and university community members; 55 males and 20 females	45%	18%
USA = Unite	ed States of Am	ierica			
282 USA = Unite 283	ed States of Am	lerica			
282 USA = Unito 283 284	ed States of Am	lerica			
282 USA = Unito 283 284 285	ed States of Am	lerica			
2 3 4	287				
----------------------	-----				
5 6 7	288				
8 9	289				
10 11 12	290				
12 13 14	291				
15 16	292				
17 18 19	293				
20 21	294				
22 23	295				
24 25 26	296				
20 27 28	297				
29 30	298				
31 32 33 34	299				
35 36 37	300				
38 39 40	301				
41 42 43	302				
45 46 47	303				
48 49 50	304				
51 52 53	305				
54 55 56 57	306				
58 59 60	307				

#### 87 Assessment of methodological quality

The QATSDD scores ranged from 22.2% to 94.4% (Supplemental Table 3). Only six studies 88 scored above 50% and included details about recruitment, data analysis, strengths and 89 limitations of the research. The other studies had lower scores because they lacked detailed 90 justification for the analytical methods, data collection, analysis, strengths and limitations. 91 92 However, results of the methodological assessment should be interpreted with caution. Although the tool assesses methodological quality, it is more likely to be dependent on how 93 the paper was written. In this review, 70% of the studies included were military reports on heat-94 related illnesses in the Armed Forces. These reports were published in a peer-reviewed journal 95 and were retrospective analyses of data collected by Defence Medical Surveillance Systems. 96 These studies may not have reported details about data collection, strengths and limitations, 97 but they presented valid information on heat-related illness. 98

99	
00	
01	
02	
03	
04	
05	
06	
07	

#### 308 Discussion

The findings of this systematic review suggest that men have a slightly higher incidence of heat stroke compared to women. By contrast women report a slightly higher incidence of other heat illness compared to men. In addition, among studies that reported all heat illnesses (where heat stroke and other heat illnesses have been combined) there was a higher rate of all heat illnesses in men compared to women as evidenced by the outcomes reported in five (5) of seven (7) studies. However, women had a greater risk of experiencing exertional heat illness and were more likely to be heat intolerant compared to men. Other gender specific risk factors were longer run times for both men and women while higher BMI was associated with exertional heat illness for men only. However, the association between these factors and exertional heat illness is weak given the small number of articles that investigated the relationship. Furthermore, despite the higher proportion of heat intolerance reported among women; this finding should be interpreted with caution given the small sample size for females in the included studies and the differences in occupations of the women in the three studies. One study included women in the armed forces with a previous history of heat stroke, [12] while the other two studies recruited women from the general population as well as military members with either no history or a previous history of heat stroke. [27, 28] 

325 Incidence and prevalence of exertional heat illnesses in women compared to men

In this review, women had a lower incidence of heat stroke, but a slightly higher incidence of other heat illness compared to men. The reported lower incidence of heat stroke/higher incidence of other heat illness in women compared to men could possibly be due to the fact that women in the military in the United States were excluded from combat positions until 2013 when the ban was lifted.[20] Evidence in the literature suggests that service members who were engaged in roles such as infantry or gun crew had an increased risk of heat illness, possibly

reflecting a greater risk of heat illness for those in combat roles.[34] Furthermore, during military training exercises men may have comparatively tolerated working in the heat beyond the endurance limits.[22] This finding was re-echoed in a previous systematic review that men in the general population had a higher rate of all types of heat illnesses compared to women.[21] Although, the incidence of heat stroke was lower in women compared to men in this review, the incidence of heat stroke among women has increased over the past four years. This implies that as more women engage in specialised military roles their risk of exertional heat illness increases.

Gender specific risk factors for heat illness 

Despite the lower incidence of heat stroke, women had a greater risk of exertional heat illnesses compared to men.[30, 33] In addition one study attempted to investigate intra gender risk factors for exertional heat illness.[49] Slower run time duration was associated with exertional heat illness among males and females respectively, while higher BMI was identified as a risk factor among males only.[49] The higher risk of exertional heat illnesses in women may likely be due to differences in physiological and physical characteristics between men and women.[50] Physiological characteristics such as hormones, use of contraceptive pills and lower evaporative heat loss may make women more susceptible to heat illness. [11, 13] However, conflicting evidence suggests that in highly trained women, exercise performance and heat loss is not affected by the menstrual cycle phase but is impaired in humid conditions.[51] In addition, physical characteristics such as lower aerobic fitness is a predictor of exertional heat illness.[50] Generally, women have lower aerobic fitness levels and lower overall work capacity which may contribute to the increased risk of exertional heat illness.[50] Individuals with low aerobic fitness levels are likely to exert themselves beyond their physical limit and are at increased risk of heat illness.[52] Other intra gender risk factors that were identified were longer run time duration and higher BMI.[49] Evidence suggests that slower 

#### **BMJ** Open

run time duration which may be a reflection of lower aerobic fitness and higher BMI increases
the risk of heat illness.[49, 53] However, the evidence is limited given that this was reported
by only one study.[49]

#### 360 Heat tolerance in women and men

The risk of heat illness is dependent on thermal tolerance.[2] In order to determine the recovery and return to duty for HTT is conducted for members of the armed forces after a heat stroke event.[18] The test criteria defines heat intolerance as peak rectal temperature  $> 38.5^{\circ}$ C, peak heart rate > 150 bpm, or the inability of these values to reach a plateau.[18, 19] Although in the three studies, a higher proportion of women were classified as heat intolerant; this evidence should be interpreted with caution given that the female populations included in each study varied with respect to heat illness and occupations.[12, 27, 28] However, the studies acknowledged that gender differences in cardiorespiratory fitness, body fat percentage and surface area to mas ratio may account for the higher intolerance rates in women. [12, 27, 28] In addition, the three studies reported using the Israeli Defence Force heat tolerance test protocol and given that the test protocol was developed using male participants, there may be a need to re-evaluate the criteria for women to reduce false positive results.[12, 27, 28] Furthermore, incomplete recovery and inaccurate determination of return to duty may negatively affect military operations and may end the careers of armed forces personnel.[14] Therefore, it is important to ensure that the heat tolerance test is valid and fair for females, if it is to be used to determine return to duty for females in the armed forces.

377 Strengths and limitations

To the authors' current knowledge, this is the first known systematic review investigating
gender differences in exertional heat illness and heat tolerance in the armed forces. In addition,
we identified potential gender specific risk factors that are associated with exertional heat

illness. However, the heterogeneity in the study designs contributed to the variable methodological quality of the included studies. Most of the articles in this review were military reports and may not be considered of high methodological quality when assessed using a formal critical appraisal tool. In addition, most of the included studies utilized retrospective data as the data source with an increased likelihood of incompleteness and inaccuracy. There is a likelihood that misclassification bias could have been introduced into the studies. Three studies that explored the risk factors associated with heat-related illness used retrospective data. [31, 34, 49] The retrospective data may have been misclassified or incomplete at the time of entry and may have introduced misclassification bias into the studies. This type of bias may underestimate or overestimate the association between heat-related illness and risk factors. Although the gender specific risk factors associated with heat illness were discussed; the review provided limited evidence of these factors, given the few numbers of studies that investigated the association. Furthermore, we included only studies published in English language; studies published in other languages were excluded. 

#### 395 I

#### Implication for policy and future research

This systematic review demonstrates that there is limited research on exertional heat illness in women in the armed forces. Although men had a higher incidence of heat stroke; women had a higher incidence of other heat illnesses. Further research is needed to establish if this reflects physiological or behavioural differences. In addition, the limited and inconclusive evidence suggests that more women were classified as heat intolerant compared to men using the Israeli Defence Force heat tolerance test protocol. The current criteria may be unfair to women given that it was developed using male participants. More research is needed to determine the gender differences in heat tolerance as well as to consider re-evaluating the heat tolerance test protocol or the development of a new protocol that considers gender specific factors.[12] Given that the

BMJ Open

2		
3 4	405	heat tolerance test was conducted in a laboratory setting, more research is needed to replicate
5 6 7	406	the findings in field based setting.
8 9 10	407	Conclusion
11 12 13	408	In conclusion, this review shows that men had a higher incidence of heat stroke but women in
14 15	409	the armed forces had a greater risk of exertional heat illness. Despite the limited evidence,
16 17	410	further research is required to investigate the influence of gender differences on heat tolerance
18 19 20	411	and heat illness. Further research is needed to evaluate the heat tolerance test protocol for
20 21 22	412	women.
23 24 25	413	
20 27 28	414	Authors' contribution
20 29 30 31	415 416	All authors contributed substantially to the study concept, design, data extraction, quality assessment and writing of the manuscript.
32 33 34	417 418	Conceptualization: Faith O. Alele, Bunmi S. Malau-Aduli, Aduli E. Malau-Aduli, Melissa Crowe
35 36	419	Methodology: Faith O. Alele, Bunmi S. Malau-Aduli, Aduli E. Malau-Aduli, Melissa Crowe
37 38	420	Writing - Original draft: Faith O. Alele
39 40 41	421 422	Writing – review & editing: Faith O. Alele, Bunmi S. Malau-Aduli, Aduli E. Malau-Aduli, Melissa Crowe
42 43	423	All authors read and approved the manuscript for submission.
44 45 46	424 425	<b>Funding:</b> The first author (FA) is supported by the Australian Government International Research Training Program Scholarship
47 48	426	Competing Interests: The authors declare that they have no competing interests.
49 50	427	Patient consent for publication: Not required
51 52	428	Data sharing statement: There are no additional or unpublished data available.
53 54	429	
55 56	430	
57 58	431	
59 60	432	

3 4	433	Referen	ices
5 6	434 435	1.	Becker JA, Stewart LK. Heat-related illness. Am Fam Phys 2011;83(11):1325- 1330
7	435	2	Enstein V. Heat intolerance: Predisnosing factor or residual injury? Med Sci Sports
o 9	430	۷.	Exerce 1000.22(1):20-35
10	437	2	Crubanbaff IA du Ford K. Poosavalt GE. Haat related illness. Clin Padiatr Emarg
11 12	438 439	5.	Med 2007;8(1):59-64.
13	440	4.	Mehta SR, Jaswal DS. Heat Stroke. Med J Armed Forces India 2003;59(2):140-3.
14 15	441 442	5.	Xiang J, Peng B, Pisaniello D, Hansen A. Health impacts of workplace heat
16	442	6	Viang L Hanson A. Disonialla D. Di D. Extreme host and accurational host illnesses
17	443	0.	A rang J, Hansen A, Pisameno D, Bi P. Extreme neat and occupational neat ninesses
18	444		in South Australia, $2001-2010$ . Occup Environ Med 2015; $72:580-586$
19 20	445	_	doi:10.1136/0emed-2014-102/06 [published Online First 18 June 2015].
20	446	7.	Epstein Y, Druyan A, Heled Y. Heat injury prevention—a military perspective. The
22	447		J Strength Cond Res 2012; 26:82-6.
23	448	8.	McCristall P, Baggaley K. The progressions of a gendered military: A theoretical
24	449		examination of gender inequality in the Canadian military. J Mil Veteran Fam
25	450		Health. 2019;5(1):119-26.
20 27	451	9.	Kazman JB, Heled Y, Lisman PJ, Druyan A, Deuster PA, O'Connor FG. Exertional
28	452		Heat Illness: The Role of Heat Tolerance Testing. Curr Sports Med Rep
29	453		2013;12(2):101-5.
30	454	10.	Kenney WL. A review of comparative responses of men and women to heat stress.
31	455		Environ Res 1985;37(1):1-11.
32 33	456	11.	Shapiro Y. Pandolf KB. Avellini BA. Pimental NA. Goldman RF. Physiological
34	457		responses of men and women to humid and dry heat. J Appl Physiol 1980:49(1):1-
35	458		8
36	459	12	Druvan A Makranz C Moran D Yanovich R Enstein Y Heled Y Heat tolerance
37	460	12.	in women-Reconsidering the criteria Aviat Space Environ Med 2012:83(1):58-60
38 30	460	13	Tenaglia SA McLellan TM Klentrou PP Influence of menstrual cycle and oral
40	462	15.	contracentives on tolerance to uncompensable heat stress. Fur I Appl Physiol Occup
41	402		Physical 1000.90(2):76-82
42	405	1.4	O'Conner EC, Heled V, Deuster DA, Exertional heat strake, the return to play
43	404	14.	decision and the role of heat telerance testing: a clinician's dilemma Curr Sport
44 45	405		Med Dem 2018:17(7):244.8
46	400	15	Weu Kep. 2010,17(7).244-0.
47	467	15.	Lean L. MCDermett D. O'Drien K. Deherte WO. American Callege of Sports
48	468		Leon L, MCDermott B, O'Brien K, Roberts WO. American College of Sports
49 50	469		Medicine Roundtable on exertional heat stroke-return to duty/return to play:
50 51	470		conference proceedings. Curr Sport Med Rep. 2010;9(5):314-21.
52	471	16.	McDermott BP, Casa DJ, Yeargin SW, Ganio MS, Armstrong LE, Maresh CM.
53	472		Recovery and return to activity following exertional heat stroke: considerations for
54	473		the sports medicine staff. J Sport Rehabil. 2007;16(3):163-81.
55 52	474	17.	Department of the Army. Standards of Medical Fitness. Army Regulation 40-
56 57	475		501.2019: 30 - 32
58	476	18.	Moran DS, Heled Y, Still L, Laor A, Shapiro Y. Assessment of heat tolerance for
59	477		post exertional heat stroke individuals. Med Sci Monit 2004;10(6):Cr252-7.
60			

1			
2 3	470	10	
4	478	19.	Snapiro Y, Magazanik A, Udassin K, Ben-Baruch G, Shvartz E, Shoenfeld Y. Heat
5	479	20	Nindl DC Janes DL Van Andels SL Kelly K Knowner WL Operational abusia
6	480	20.	Nindi BC, Jones BH, Van Arsdale SJ, Kelly K, Kraemer WJ. Operational physical
/ 8	481		performance and fitness in military women: physiological, musculoskeletal injury,
9	482		and optimized physical training considerations for successfully integrating women
10	483		into combat-centric military occupations. Mil Med 2016;181(suppl_1):50-62.
11	484	21.	Gifford RM, Todisco T, Stacey M, Fujisawa T, Allerhand M, Woods DR, et al. Risk
12	485		of heat illness in men and women: A systematic review and meta-analysis. Environ
13 14	486		Res 2019;171:24-35.
15	487	22.	Hunt AP, Billing DC, Patterson MJ, Caldwell JN. Heat strain during military
16	488		training activities: The dilemma of balancing force protection and operational
17	489		capability. Temp 2016;3(2):307-17.
18	490	23.	Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for
20	491		systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med.
21	492		2009;151 (4):264-9
22	493	24.	Sirriyeh R, Lawton R, Gardner P, Armitage G. Reviewing studies with diverse
23	494		designs: the development and evaluation of a new tool. J Eval Clin Pract
24	495		2012;18(4):746-52.
26	496	25.	World Health Organization. International statistical classification of diseases and
27	497		related health problems.10th revision version for 2016. 2016 (Accessed August 20,
28	498		2019). Available at https://apps.who.int/iris/handle/10665/39473
29	499	26.	World Health Organization. International statistical classification of diseases and
30 31	500		related health problems.10th revision version for 2016. 2016 (Accessed August 20,
32	501		2019). Available at https://icd.who.int/browse10/2016/en
33	502	27.	Lisman P, Kazman JB, O'Connor FG, Heled Y, Deuster PA. Heat tolerance testing:
34	503		association between heat intolerance and anthropometric and fitness measurements.
35	504		Mil Med. 2014 Nov 1;179(11):1339-46.
30 37	505	28.	Kazman JB. Purvis DL. Heled Y. Lisman P. Atias D. Van Arsdale S. et al. Women
38	506		and exertional heat illness: identification of gender specific risk factors. US Army
39	507		Med Dep J 2015:58-66.
40	508	29.	Dickinson JG. Heat illness in the services. J R Army Med Corps 1994:140(1):7-12.
41 42	509	30.	Army Medical Surveillance Activity, Reported heat and cold injuries. United States
43	510		Army January 1997 - December 1997 MSMR 1998.4(1).16
44	511	31	Army Medical Surveillance Activity Heat-associated injuries US Army 1991-
45	512	51.	2002 MSMR 2002-8(4):2-7
46	513	32	Army Medical Surveillance Activity Heat-related injuries US Army 2002
47 48	514	52.	MSMR 2003.9(4).2-4
49	515	33	Army Medical Surveillance Activity Heat-related injuries among active duty
50	516	55.	soldiers and Marines 1997-1999 MSMR 2000:6(3):2-3
51	517	3/1	Carter Jij R Cheuvront SN Williams IO Kolka MA Stephenson I A Sawka MN
52 53	510	54.	et al. Enidemiology of hospitalizations and deaths from heat illness in soldiers. Med
54	510		Sci Sports Everc 2005:37(8):1338-44
55	520	35	Bedno SA Urban N Boivin MR Cowan DN Fitness obesity and risk of heat
56	520	55.	illness among army trainees Occun Med (I ond) 2014.64(6).461_7
57 59	521	26	Army Medical Surveillance Activity Heat related injurios U.S. Army 2005
58 59	522	30.	MSMP 2006-12(5)-2 A
60	525		14101411X 2000,12(3).2 ⁻⁷ .

3	524	37.	Armed Forces Health Surveillance Branch. Heat-related Injuries, U.S. Armed
4 5	525		Forces, 2006MSMR 2007;14(2):14-5.
6	526	38.	Armed Forces Health Surveillance Branch. Update: Heat injuries among U.S.
7	527		military members. 2007. MSMR 2008:15(2):2-3.
8	528	39.	Armed Forces Health Surveillance Branch. Update: Heat injuries among active
9	529		component members U.S. Armed Forces 2008 MSMR 2009:16(3):8-9
10	520	40	Armed Forces Health Surveillance Branch Undate: Heat injuries active
11 12	521	40.	component U.S. Armed Forces 2009 MSMR 2010:17(3):6-8
13	227	41	Armad Forces Health Surveillance Branch Undate: Heat injuries estive
14	552	41.	annea Forces ficatin Survemance Drahen. Optate. ficat injuries, active
15	555	42	Armad Foreas Health Surveillance Drench Undete: Heat injuries estive
16	534	42.	Armed Forces Health Surveillance Branch. Update: Heal injuries, active
1/ 10	535	10	component, U.S. Armed Forces, 2011. MSMR 2012;19(3):13-5.
19	536	43.	Armed Forces Health Surveillance Branch. Update: Heat injuries, active
20	537		component, U.S. Armed Forces, 2012. MSMR 2013;20(3):17-20.
21	538	44.	Armed Forces Health Surveillance Branch. Update: Heat injuries, active
22	539		component, U.S. Armed Forces, 2013. MSMR 2014;21(3):10-3.
23	540	45.	Armed Forces Health Surveillance Branch. Update: Heat injuries, active
24 25	541		component, U.S. Armed Forces, 2014. MSMR 2015;22(3):17-20.
25	542	46.	Armed Forces Health Surveillance Branch. Update: Heat injuries, active
27	543		component, U.S. Army, Navy, Air Force, and Marine Corps, 2015. MSMR
28	544		2016;23(3):16-9.
29	545	47.	Armed Forces Health Surveillance Branch. Update: Heat Illness, Active
30	546		Component, U.S. Armed Forces, 2016, MSMR 2017;24(3):9-13.
32	547	48.	Armed Forces Health Surveillance Branch. Update: Heat illness, active component.
33	548		U.S. Armed Forces. 2017. MSMR 2018:25(4):6-12.
34	549	49	Wallace RF Kriebel D Punnett L Wegman DH Wenger C Gardner IW et al
35	550		Risk factors for recruit exertional heat illness by gender and training period. Aviat
36 27	550		Space Environ Med 2006:77(4):415-21
38	552	50	Enstein V Vanovich R Moran DS Heled V Physiological employment standards
39	552	50.	IV: integration of women in combat units physiological and medical considerations
40	555		Fur L Appl Physiol 2013:113(11):2673-00
41	554	51	Lei Tze Huan et al. "Influence of monstruel phase and arid vs. humid heat stress.
42	555	31.	Lei, 12e-Huan et al. Innuence of mensular phase and and vs. humid heat suess
43 44	550		on autonomic and benavioural thermoregulation during exercise in trained but $1^{\circ}$ to
45	557		unacclimated women. J Physiol 2017; 595(9):2823-2837.
46	558	52.	Cleary M. Predisposing risk factors on susceptibility to exertional heat illness:
47	559		clinical decision-making considerations. J Sport Rehabil 2007;16(3):204-14.
48	560	53.	Selkirk GA, McLellan TM. Influence of aerobic fitness and body fatness on
49 50	561		tolerance to uncompensable heat stress. J Appl Physiol 2001;91(5):2055-63.
51	562		
52	562	Figure L	aganda
53	563	rigure i	egenus
54	564	Figure 1: I	PRISMA flow chart of the study selection protocol
22 56			
57	565	Figure 2: 7	The incidence rate of exertional heat stroke between men and women in the armed
58	566	forces from	n 2006 to 2018
59			
60			

1 2		
2 3	567	Figure 3: Incidence rate of other heat illnesses (including heat exhaustion and unspecified
4 5	568	effects of heat and light) between men and women in the armed forces from 2006 to 2018
6	569	
7 8	570	
9 10	571	
11 12	571	
13		
14 15		
16 17		
18		
19 20		
21 22		
23		
24 25		
26 27		
28 29		
30		
31 32		
33 34		
35		
30 37		
38 39		
40 41		
42		
43 44		
45 46		
47		
48 49		
50 51		
52 53		
54		
55 56		
57 58		
59		
60		



Figure 1: PRISMA flow chart of the study selection protocol







	Medline search strategy
1.	Women (MeSH)
2.	Gender expression
3	Gender identity (MeSH)
4	Gender
5	Wom\$
<u> </u>	Sex
	Heat strok*
	Heatstrok*
<u> </u>	Heat collarse
<u> </u>	Heat exhaustion
10.	Heat prostration
11.	Heat prostration
12.	Last growing
15.	Heat cramps
14.	Heat stress disorder
15.	Heat stress disorders (MeSH)
16.	Thermal stress
17.	Heat illness
18.	Heat illnesses
19.	Heat injury
20.	Heat injuries
21.	Heat related diseases
22.	Heat disorder
23.	Heat disorders
24.	Heat related disorder
25.	Heat related disorders
26.	Heat related illness
27.	Heat related illnesses
28.	Heat related injuries
29.	Heat related injury
30.	Environmental heat illness
31	Heat stress
32	Heat adaptation
33	Heat tolerance
34	Heat tolerances
35	Heat resistance
36	Thermal resistance
30.	Thermoresistance
37.	Thermotolerance (MeSH)
30.	Heat andurance
	1 OP 2 OP 2 OP 4 OP 5 OP 6
40.	7 OD 2 OD 10 OD 11 OD 12 OD 12 OD 14 OD 15 OD 16 OD
41.	/ UK 8 UK 9 UK 10 UK 11 UK 12 UK 13 UK 14 UK 15 UK 16 UK
	1/ UK 18 UK 19 UK 20 UK 21 UK 22 UK 23 UK 24 UK 25 UK 26 OB 27 OB 28 OB 20 OB 20 OB 21 OB 22 OB 22 OB 24 OB 25 OB
	OK 27 OK 28 OK 29 OK 30 OK 31 OK 32 OK 33 OK 34 OK 35 O. 26 OB 27 OB 28 OB 20
	30 UK 37 UK 38 UK 39

#### Supplemental Table 2 Summary of all included studies

	Country	Study design and duration	Population	Study findings [§]
Dickson. G, 1994[29]	UK	Descriptive epidemiology 1981-1991	Royal Airforce, Royal Navy and Army; 1448 all heat injuries cases [®]	Women         All heat injuries: 11.43#         Men         All heat injuries: 41.87#
Army Medical Surveillance Activity, 1998[30]	USA	Descriptive epidemiology; 1997 - 1998	US Army; 1433 all heat injuries cases (1997-1998) [®] 1997	Women All heat injuries: 12.8 [‡]
				All heat injuries: 8.6 [‡]
			1998	Women All heat injuries: 15.8 [‡]
			to the	<u>Men</u> All heat injuries: 12.0 <del>1</del>
Army Medical Surveillance Activity, 2000[33]	USA	Descriptive epidemiology; 1997 - 1999	US Army and Marine Corps; 3386 all heat injuries cases [®]	Women All heat injuries: 2.0†
			Army (1896 cases)	Men All heat injuries: 1.5†
				All heat injuries: 4.4†
			Marine Corps (1104 cases)	Men All heat injuries: 2.0†
Army Medical Surveillance Activity, 2002[31]	USA	Descriptive epidemiology 1990 - 1997	US Army; 2290 all heat injuries cases ^P	Women All heat injuries: 14.0%
[]				<u>Men</u> All heat injuries: 86.0%
		Case – control 1998 - 2001	US Army; 5021 cases and 10,042 controls (all heat injurice)	Women All heat injuries: 20.7%
			injuites) •	Men

BMJ Open

USA	Descriptive epidemiology; 2002	US Army; 1816 all heat injuries cases	<u>Women</u>
		·	All heat injuries: 3.57
			Men All heat injuries: 5.1†
USA	Cross-sectional	US Army; 5246 all heat injuries cases	Women
	1900 - 2002	4521 males and 725 females	Men
			All heat injuries: 86.3%
			<u>Risk factors</u> Female: IDR: 1.21 (1.09 – 1.40)
USA	Descriptive epidemiology;	US Armed Forces;	Women
	2005	204 heat stroke cases	Heat stroke: 0.26†
		958 heat exhaustion cases	Heat exhaustion: 2.89 [†]
			Men Heat stroke: 0.48;
			Heat exhaustion: 1.98 [†]
USA	Case-control	US Army:	Risk factors
	1988 - 1996	5246 cases of heat illness;	Females
		4521 males and 725 females	Run time $\geq 6.9$ minutes:
			OR; 5.30 (1.59 – 17.64)
			Males
			Run time $\geq$ 12.9 minutes:
			OR; 5.61 (3.73 – 8.45)
			BMI $\ge 26 \text{ kg/m}^2$ :
TICA	Description anidemials and	US Armod Foreser	OR; 2.10 (1.59 – 2.78)
USA	2006	US Armed Forces;	Women Heat stroke: 0.14‡
	2000	1854 heat exhaustion cases	Heat subscience: 1.49*
		1854 heat exhaustion cases	Men
			Heat stroke: 0.22 ⁺
			Heat exhaustion: 1.34 [†]
USA	Descriptive epidemiology;	US Armed Forces;	Women
	2007	329 heat stroke cases	Heat stroke: 0.14†
		1853 heat exhaustion cases	Heat exhaustion: 1.62 [†]
			Men
	For peer review of	only - http://bmjopen.bmj.com/site/about/g	uidelines.xhtml
	USA USA USA	USA Descriptive epidemiology; 2005 USA Case-control 1988 - 1996 USA Descriptive epidemiology; 2006 USA Descriptive epidemiology; 2007	USA       Descriptive epidemiology; 2005       US Armed Forces; 204 heat stroke cases 958 heat exhaustion cases         USA       Case-control 1988 - 1996       US Army; 5246 cases of heat illness; 4521 males and 725 females         USA       Descriptive epidemiology; 2006       US Armed Forces; 259 heat stroke cases 1854 heat exhaustion cases         USA       Descriptive epidemiology; 2007       US Armed Forces; 329 heat stroke cases 1853 heat exhaustion cases         USA       Descriptive epidemiology; 2007       US Armed Forces; 329 heat stroke cases 1853 heat exhaustion cases         For peer review only - http://bmjopen.bmj.com/site/about/gr

				Heat exhaustion: 1.34 [†]
Army Medical	USA	Descriptive epidemiology;	US Armed Forces;	Women
Surveillance Activity,		2008	299 heat stroke cases	Heat stroke: 0.16†
2009[39]			1467 heat exhaustion cases	Heat exhaustion: 1.35 [†]
				<u>Men</u>
				Heat stroke: 0.22†
				Heat exhaustion: 1.78†
Army Medical	USA	Descriptive epidemiology;	US Armed Forces;	Women
Surveillance Activity,		2009	323 heat stroke cases	Heat stroke: 0.15†
2010[40]			2038 other heat injuries cases*	Other heat injuries: 1.78 [†]
				Men
				Heat stroke: 0.24†
				Other heat injuries: 1.35 [†]
Army Medical	USA	Descriptive epidemiology;	US Armed Forces;	Women
Surveillance Activity,		2010	311 heat stroke cases	Heat stroke: 0.12†
2011[41]			2576 other heat injuries cases*	Other heat injuries: 2.32†
				<u>Men</u>
				Heat stroke: 0.23†
				Other heat injuries: 1.67†
Army Medical	USA	Descriptive epidemiology;	US Armed Forces;	Women
Surveillance Activity,		2011	362 heat stroke cases	Heat stroke: 0.10†
2012[42]			2652 other heat injuries cases*	Other heat injuries: 2.63 ⁺
				Men
				Heat stroke: 0.27 ⁺
				Other heat injuries: 1.68 ⁺
Druyan et al, 2012[12]	Israel	Retrospective cross-	Israeli Defence Forces;	Heat tolerance parameters
•		sectional	170 males and 9 females	Women
		2008 - 2010		Heat intolerance rate: 66.6%
				Men
				Heat intolerance rate: 25.79%
Army Medical	USA	Descriptive epidemiology;	US Armed Forces;	Women
Surveillance Activity,		2012	365 heat stroke cases	Heat stroke: 0.15†
2013[43]			2257 other heat injuries cases*	Other heat injuries: 2.35 [†]
			5	Men
				Heat stroke: 0.27†
				Other heat injuries: 1.44†
		<b>F</b>		
		For peer review of	oniy - nttp://bmjopen.bmj.com/site/about/g	uldelines.xhtml

Page 33 of 37

BMJ Open

Army Medical Surveillance Activity	USA	Descriptive epidemiology; 2013	US Armed Forces; 324 heat stroke cases	<u>Women</u> Heat stroke: 0.15†
2014[44]		2013	1701 other heat injuries cases*	Other heat injuries: 1.30†
[]				Men
				Heat stroke: 0.24 ⁺
				Other heat injuries: 1.19†
Bedno et al, 2014[35]	USA	Analytical cross-sectional	US Armed Forces;	<u>Women</u>
			80 exertional heat illness cases	Heat illness: 0.680%
				Men
				Heat illness: 0.71%
Lisman et al, 2014[27]	USA	Analytical cross-sectional	Military and university community	<u>Heat tolerance parameters</u>
			members;	Women
				Heat intolerance rate: 42%
			34 males and 12 females	Men
	TICA			Heat intolerance rate: 27%
Army Medical	USA	Descriptive epidemiology;	US Armed Forces;	Women Hustate 1 - 0 14th
Surveillance Activity,		2014	314 heat stroke cases	Heat stroke: 0.14 [†]
2015[45]			1410 other heat injuries cases*	Mon
				<u>Men</u> Heat stroke: 0.27*
				Other heat injuries: $1.21$
Kazman et al. 2015[28]	USA	Analytical cross sectional	Military and university community	Heat talerance parameters
Kazinan et al, 2015[20]	USA	Analytical closs-sectional	members:	Women
			55 males and 20 females	Heat intolerance rate: 45%
			20 maios and 20 remaios	
				Men
				Heat intolerance rate: 18%
Army Madical	LICA	Descriptive enidemiclogy	US Armed Foreas:	Women
Surveillence Activity	USA	2015	417 hast stroke cases	Women Heat strake: 0.16*
2016[46]		2015	1625 other heat injuries cases*	Other heat injuries: 1.54 ⁺
2010[40]			1025 other heat injuries cases	Men
				Heat stroke: 0 35;
				Other heat injuries: 1.48 ⁺
Army Medical	USA	Descriptive epidemiology:	US Armed Forces;	Women
Surveillance Activity,		2016	401 heat stroke cases	Heat stroke: 0.19†
2017[47]			2135 other heat injuries cases*	Other heat injuries: 1.90 ⁺
				Men
				Heat stroke: 0.33†
		_		
		For peer review of	only - http://bmjopen.bmj.com/site/about/g	Juidelines.xhtml

				Other heat injuries: 1.61 [†]
Army Medical	USA	Descriptive epidemiology;	US Armed Forces;	Women
Surveillance Activity,		2017	464 heat stroke cases	Heat stroke: 0.25†
2018[48]			1699 heat exhaustion cases	Other heat injuries: 1.38 [†]
				$\frac{\text{Men}}{\text{He}}$
				Heat stroke: $0.41^{\circ}$
8 Duon outions and in	aidanaaa	non-outed and of the total eage	a non-out od in the anticles	Other near injuries. 1.41
§ Proportions and in	ciaences	reported are of the total case.	s reported in the dritcles	
# Incluence rate repo	orted per	100,000 person-years.		
[‡] Incluence rate per 1	00,000 p	erson- months.		
[†] Incidence rate repo	orted per	1000 person-years.	· σ 1 00 01 01 01	
* Other heat injuries	include "	heat exhaustion" and "unspec	cified effects of heat".	
heat injuries includ	le heat str	oke and other heat injuries.		
US = United States c	of Americ	a; 2006 to date, heat injuries	was reported in the US Armed Fore	ces (Army, Navy, Air Force and Marine Corps).
UK = United Kingde	<i>om</i> ; USA =	= United States of America		

BMJ Open

QATSDD Criteria	1	2	3	4	5	6	7	8	9	10	11	12	Total score	% of total score
Dickinson' 94[29]	0	1	2	0	1	3	0	0	3	2	0	2	14/36	38.9
AMSA'98[30]	2	1	1	0	0	0	0	0	2	2	0	0	8/36	22.2
AMSA'00[33]	2	1	2	0	0	1	0	0	2	3	0	0	11/36	30.6
AMSA'02[31]	3	0	2	0	1	1	0	0	2	0	2	0	11/36	30.6
AMSA'03[32]	2	1	1	0	1	1	0	0	2	2	0	0	10/36	27.8
Carter et al' 05[34]	3	3	3	2	2	3	1	2	3	3	2	0	27/36	75
AMSA'06[36]	2	1	1	0	1	1	0	0	2	2	0	0	10/36	27.8
Wallace et al' 06[49]	3	3	3	2	2	3	1	2	3	3	2	2	29/36	80.6
AMSA'07[37]	1	1	1	0	0	1	0	0	2	2	0	0	8/36	22.2
AMSA' 08[38]	1	1	1	0	0	1	0	0	2	2	0	0	8/36	22.2
AMSA' 09[39]	1	1	1	0	0	1	0	0	2	2	0	0	8/36	22.2
AMSA' 10[40]	1	1	2	0	0	1	0	0	2	2	0	2	11/36	30.6
AMSA' 11[41]	2	1	2	0	0	1	0	0	2	2	0	2	12/36	33.3
Druyan et al'12[12]	3	3	3	1	0	2	0	3	3	2	2	1	23/36	63.9
AMSA' 12[42]	2	1	2	0	0	1	0	0	2	2	0	2	12/36	33.3
AMSA' 13[43]	2	2	2	0	0	2	0	0	2	2	0	2	14/36	38.9
AMSA' 14[44]	2	2	2	0	0	2	0	0	2	3	0	2	15/36	41.7
Lisman et al,'14 [27]	3	3	3	2	2	3	2	3	3	3	3	3	33/36	91.7
AMSA' 15[45]	3	2	2	0	0	2	0	0	2	3	0	2	16/36	44.4
Bedno et al, 2015[35]	3	3	3	2	2	3	3	3	3	3	3	3	34/36	94.4
Kazman et al' 15[28]	3	3	3	2	2	3	2	3	3	3	3	3	33/36	91.7
AMSA' 16[46]	3	2	2	0	0	2	0	0	2	3	0	2	16/36	44.4
AMSA' 17[47]	3	2	2	0	0	2	0	0	2	3	0	2	16/36	44.4
AMSA' 18[48]	3	2	2	0	0	2	0	0	2	3	0	2	16/36	44.4

(1) Theoretical framework;

(2) Aims/objectives;

(3) Description of research setting

(4) Sample size;

32

33

34

35

44 45 46 (5) Representative sample of target group

(9) Fit between research question and method of data collection (Quantitative only)(10) Fit between research question and method of analysis (Quantitative only) QATSDD rating scale: 0=not at all; 1=very slightly; 2=moderately; 3=complete; AMSA = Army Medical Surveillance Activity

(7) Rationale for choice of data collection tool(s)

(8) Detailed recruitment data

(11) Good justification for analytical method selected (12) Strengths and limitations.



## PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported on page #
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1
ABSTRACT			
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	2
, Rationale	3	Describe the rationale for the review in the context of what is already known.	4,5
) Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	7
METHODS	<u> </u>		
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	7
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	7, 8
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	8
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	7, supplementary file 1
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	Figure 1
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	8
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	8
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	8, 9
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	9
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistencyF(@.ged?) foreeachImetaeanalysispen.bmj.com/site/about/guidelines.xhtml	9

Page 37 of 37



## **PRISMA 2009 Checklist**

16]).

3 4			Page 1 of 2	
5 6 7	Section/topic	#	Checklist item	Reported on page #
8 9	Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	8
1 1 12	Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	N/A
13	RESULTS			
14 15 16	Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	Figure 1
17 18 19 20	Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	10, Supplementary file 2
2	Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	15
22 23 24 25	Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	10,11, 12, 13, 14, Figure 1 and Figure 2
26	Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	NA
28	Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	15
29	Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item	N/A

**BMJ** Open

D 1				1					
32									
33 34	Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	16					
36 37	Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	18, 19					
38	Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	16, 17, 18					
40 41	FUNDING								
42 43	Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	22					

*From:* Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(6): e1000097. 45 doi:10.1371/journal.pmed1000097

Page 38 of 37



### **PRISMA 2009 Checklist**

tion, visit www.t

# **BMJ Open**

#### A Systematic Review of the Gender Differences in the Epidemiology and Risk Factors of Exertional Heat Illness and Heat tolerance in the Armed Forces

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-031825.R3
Article Type:	Original research
Date Submitted by the Author:	06-Feb-2020
Complete List of Authors:	Alele, Faith; James Cook University, College of Healthcare Sciences Malau-Aduli, Bunmi; James Cook University, College of Medicine and Dentistry Malau-Aduli, Aduli; James Cook University, College of Public Health, Medical and Veterinary Sciences Crowe, Melissa; James Cook University, Division of Tropical Health and Medicine
<b>Primary Subject Heading</b> :	Occupational and environmental medicine
Secondary Subject Heading:	Sports and exercise medicine
Keywords:	OCCUPATIONAL & INDUSTRIAL MEDICINE, ACCIDENT & EMERGENCY MEDICINE, Heat Stroke, Armed Forces, Women





I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2		
3	1	A Systematic Review of the Gender Differences in the Epidemiology and Risk Factors of
4	_	
5	2	Exertional Heat Illness and Heat tolerance in the Armed Forces
0 7		
8	-	
9	3	Type of article: Review
10		
11	4	Authors
12	_	
14	5	Faith U. Alele
15	6	MPH1M, MBBS
16	7	<u>Faith.alele@my.jcu.edu.au</u>
17	8	+617 47815082
18	9	
20	10	A/Prof Bunmi S. Malau-Aduli ²
21	11	PhD, MSc, BSc (Hons)
22	12	Bunmi.malauaduli@jcu.edu.au
23	13	
24 25	14	A/Prof Aduli EO. Malau-Aduli ³
25 26	15	PhD, MSc, BSc (Hons)
27	16	Aduli.malauaduli@jcu.edu.au
28	17	
29	18	Dr Melissa Crowe ⁴
30	19	PhD BSc (Hons)
31	20	Melissa crowe@icu.edu.au
33	20	<u>Menssa.erowe(a)eu.eu.au</u>
34	21	
35	22	¹ College of Healthcare Sciences, James Cook University, Townsville QLD 4811, Australia
36	22	² Calless of Madiaina and Dantistra Jamas Cash University Terroraville OLD 4914 Assetsation
37 38	23	² Conege of Medicine and Dentistry, James Cook University, Townsville QLD 4814, Australia
39	24	³ College of Public Health, Medical and Veterinary Sciences, James Cook University,
40	25	Townsville OLD 4811, Australia
41		
42	26	⁴ Division of Tropical Health and Medicine, James Cook University, Townsville QLD 4811,
43 44	27	Australia
45	28	
46	20	
47	29	*Corresponding author:
48	20	
49 50	30	Faith O. Alele, College of Healthcare Sciences, James Cook University, Townsville QLD 4811,
50	31	Australia, Townsville QLD 4811, Australia
52	32	Tel: +617 47815082
53	01	
54	33	Email: <u>faith.alele@my.jcu.edu.au</u>
55 56	21	Word count: 3003
57	54	
58	35	
59		
60		

# 36 Abstract

Objectives: This review aimed to describe the epidemiology of all heat related illnesses in
women compared to men in the armed forces and to identify gender-specific risk factors and
differences in heat tolerance.

40 Design: A systematic review of multiple databases (MEDLINE, Emcare, CINAHL,
41 PsycINFO, Informit, and Scopus) was conducted from the inception of the databases to 1 April
42 2019 using the preferred reporting items for systematic review and meta-analysis (PRISMA)
43 guidelines.

Eligibility criteria: All relevant studies investigating and comparing heat illness and heat
tolerance in women and men in the armed forces were included in the review.

#### **Results:**

Twenty-four (24) studies were included in the systematic review. The incidence of heat stroke in women ranged from 0.10 to 0.26 per 1000 person-years, while the incidence of heat stroke ranged from 0.22 to 0.48 per 1000 person-years in men. The incidence of other heat illnesses in women compared to men ranged from 1.30 to 2.89 per 1000 person-years vs 0.98 to 1.98 per 1000 person-years. The limited evidence suggests that women had a greater risk of exertional heat illness compared to men. Other gender-specific risk factors were slower run times and body mass index. Although there was a higher proportion of women who were heat intolerant compared to men; this finding needs to be interpreted with caution due to the limited evidence.

56 Conclusion: The findings of this review suggest that men experienced a slightly higher 57 incidence of heat stroke than women in the armed forces. In addition, the limited available 58 evidence suggests that a higher proportion of women were heat intolerant and being a female

3 4	59
5 6	60
7 8 0	61
9 10 11 12	62
13 14 15	63
16 17 18	64
19 20	65
21 22 23	66
24 25	67
26 27	68
28 29 30	69
31 32	70
33 34 35	71
36 37 38	72
39 40 41	73
42 43 44	74
45 46 47	75
48 49 50	76
51 52 53	77
54 55 56	78
57 58 59 60	79

59 was associated with a greater risk of exertional heat illnesses. Given the limited evidence

available, further research is required to investigate the influence of gender differences on heat

61 intolerance and heat illness.

#### 62 Article summary

- 63 Strengths and limitations of this study
  - This is the first known systematic review investigating the impact of gender on exertional heat illness and heat tolerance in the armed forces.
  - We conducted a comprehensive search and identified potential risk factors that are associated with exertional heat illness.
- Most of the included studies utilized retrospective data with an increased likelihood of
   misclassification bias which may have underestimated or overestimated the association
   between heat-related illness and risk factors.

ijen

- 71 **Trial registration:** None
- 72 Key words
  - 73 Heat stress; Heat stroke; Heat exhaustion; Heat tolerance; Women; Armed Forces

#### 80 Introduction

Heat illnesses are disorders that arise after prolonged exposure to heat/humidity and/or increased physical activity.[1] When body temperature rises, conduction, convection, radiation and evaporation mechanisms help to cool the body and maintain normothermia.[1] However, heat loss is susceptible to prevailing environmental conditions and type of clothing worn. Without adequate cooling heat illnesses may occur including exercise-associated muscle cramps (EAMC), heat syncope, heat exhaustion and heat stroke, a potentially life-threatening disorder.[1]

Heat stroke is a medical emergency.[2] It is characterized by elevated core temperature of 40°C and above, central nervous system disturbances and multi-organ damage that may result in death.[2] Heat stroke has been classified as either classic or exertional.[3] Classic heat stroke is insidious in onset and occurs in vulnerable populations such as young children, the elderly and patients with chronic diseases.[4] On the other hand, exertional heat stroke occurs more rapidly and affects healthy, active people such as athletes, factory workers, construction workers, agricultural workers, firefighters and armed forces personnel.[5] The workers in these industries often require high levels of physical exertion to perform jobs and tasks. A combination of rigorous activities and extreme exposure to heat place the workers at increased risk of heat stroke.[6] 

Among armed forces personnel, exertional heat illness continues to pose as a significant cause of morbidity and mortality. [7] Operations and training may involve exposure to high ambient temperature and heavy workload which may result in heat illness.[7] Historically, men have occupied military roles and responsibilities with fewer proportion of women in the armed forces.[8] However, more women are joining the armed forces globally following the inclusive approach to recruiting and creation of more roles for women.[9] Women are required to operate

in austere environments with heat illnesses becoming more frequent.[9] This has raised the question about gender differences in thermoregulation during heat stress.[9] Evidence suggests that women differ from men in thermal responses to heat.[10] This difference may be because women have a lower rate of whole-body evaporative heat loss, higher body fat mass, body mass ratio,[11] number of sweat glands and lower aerobic fitness.[12] Also, hormonal variations due to menstrual cyclic patterns and the use of contraceptive pills may be associated with the differences in response to heat stress.[13]

When exertional heat illness occurs, it may be challenging to determine if an individual may return to duty. An inaccurate determination of complete recovery among armed forces personnel may negatively impact military readiness.[14] While, there are no evidence-based recommendations for return to duty, the American College of Sports Medicine (ACSM) guidelines states that exertional heat stroke patients may return to duty after re-establishing heat tolerance.[15] Individuals vary in their ability to cope with heat stress and the inability to withstand heat stress during exertion in hot environments is defined as heat intolerance.[2] Evidence suggests that heat intolerance may be as a direct result of heat stroke or due to predisposing inherent factors (genetics).[2] However, the objective criteria or measure for defining heat tolerance or intolerance remains a subject of controversy.[14] The current return to duty guidelines for military personnel varies across countries.[16] For example, in the United States, the military return to duty process is based on clinical assessments with gradual acclimatization and re-introduction of duties.[17] By contrast, return to duty in the Israeli Defence Force requires a heat tolerance test to determine if an individual is heat tolerant.[18] Therefore, it is important to develop evidence-based return to duty protocols across the globe. 

126 The Israeli Defence Force originally developed the heat tolerance test in 1979 as an index of 127 the ability of soldiers to cope with exertional heat.[18] Individuals who have suffered heat 128 stroke are sent for a heat tolerance test after a minimum recovery period of 6 to 8 weeks as part Page 7 of 35

#### **BMJ** Open

of the return to duty process.[18] Criteria used to define heat intolerance include an elevation in rectal temperature above 38.5°C and heart rate above 150 bpm or when rectal temperature or heart rate fails to stabilize during the test. The heat tolerance test criteria are based on previous studies by Shapiro et al.[19] which utilised only male military participants.[18, 19] While the test may be considered as a useful tool to determine return to duty and to prevent subsequent exertional heat stroke, [18,19] there is no consensus on the validity of the tool as a diagnostic test for heat tolerance.[14] Furthermore, the heat tolerance test does not account for predicting factors such as gender.[14] Given the limitation, questions have been raised about the validity of the protocol in determining return to duty for females in the armed forces. It has been suggested that more research is required to determine whether or not a new protocol should be developed for women.[12] 

As restrictions on gender based-exclusions from military specializations are lifted, [20] it is imperative to understand and evaluate exertional heat illness in women compared to men and identify the gender-specific risk factors. Furthermore, it is important to understand how women respond to the heat tolerance test compared to men. According to a recent review on the risk of heat illness in women compared with men in the general population, men are at increased risk of heat illness compared to women.[21] However, no previous review has investigated the epidemiology and risk factors of heat illness as well as gender responses to the heat tolerance test in men and women in the armed forces. Given that, heat illness can impact defence operational effectiveness and may result in acute loss of manpower and possible medical discharge from service, [22] the review should be conducted to inform policies. 

Therefore, the objective of this systematic review was to provide a comprehensive summary of
the epidemiology of heat illness and heat intolerance in women and men in the armed forces.

³ 152 Specific aims were

To determine the incidence and prevalence of heat illness in women compared to men in the armed forces: To identify gender differences in heat tolerance in the armed forces and To identify gender-specific predisposing risk factors associated with heat illness in the armed forces **Methods Search Strategy** This review utilised the Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA) guidelines [23] to explore all literature published in English from the inception of the different databases to 1 April 2019. Databases searched were MEDLINE, CINAHL, PsycINFO, Emcare, Informit and Scopus. A preliminary search was conducted in Medline, Emcare and CINAHL to identify relevant keywords contained in the titles, abstracts and subject descriptors. These search terms were used to conduct the search in other databases without subject headings. The search strategy used in Medline is presented in supplemental Table 1. No review protocol exists.

169 Eligibility criteria

Studies included in the review were assessed according to the following inclusion criteria: Peerreviewed literature comparing heat illness in women to men in the armed forces or reporting heat tolerance in women and men of the armed forces. Exclusions included literature discussing heat illness in other occupations, or studies where data on heat illness in women could not be separated from men or studies reporting heat illness in men or literature reviews, conference

abstracts and grey literature. In addition, additional primary data sources were identified fromthe reference lists of the included studies using a hand-search technique (Figure 1).

#### 177 Selection of studies and data extraction

FA and BMA identified all included studies and data extraction was performed using a standard abstraction form. Data extracted from the studies included: study location and design, population, proportion and incidence of heat illnesses, factors associated with heat illness and heat tolerance, and heat tolerance in men and women. All authors cross-checked the extracted data for consistency.

#### **Quality assessment**

The methodological quality assessment was assessed by FA in consultation with MC using the modified quality assessment tool for studies with diverse designs (QATSDD) critical appraisal tool.[24] Any disagreement about any article was reviewed by BMA and AMA and discussed until consensus was reached. The QATSDD tool is a 16-item tool which assesses the quality of diverse studies (both quantitative and qualitative).[24] The tool was modified to exclude two items relating to qualitative studies as well as two items relating to quantitative studies that did not to the studies included in the review. The items excluded comprised statistical assessment of the reliability and validity of measurement tool(s) (Quantitative only), fit between stated research question and format and content of data collection tool e.g. interview schedule (Oualitative), assessment of reliability of analytical process (Oualitative only) and evidence of user involvement in design. Each criterion in the modified QATSDD tool was awarded a score of 0 to 3 with 0 = not at all, 1 = very slightly, 2 = moderately and <math>3 = complete. The scores of each criterion were summed to assess the methodological quality of included studies with a maximum score of 36. The criteria included were (1) theoretical framework; (2) statement of aims/objectives; (3) description of research setting; (4) evidence of sample size; (5) 

representative sample of target group of a reasonable size, (6) description of procedure for data collection; (7) rationale for choice of data collection tool(s); (8) detailed recruitment data; (9) fit between research question and method of data collection (Quantitative only); (10) fit between research question and method of analysis (Quantitative only); (11) good justification for analytical method selected; and (12) strengths and limitations. For ease of interpretation, the scores were converted to percentages and classified as low (<50%), medium (50-80%) or high (>80%) quality of evidence.

206 Patient and public involvement

207 Patients and the public were not involved in the design or planning of the study.

#### 208 Data analysis and synthesis

In this review, the International Classification of Diseases ICD 9 or ICD 10 diagnosis codes [25, 26] for the effects of heat and light were used to classify heat illnesses. All included studies utilized either the ICD 9 or ICD 10 codes to classify heat illnesses depending on the year of publication. Heat illnesses were categorised as heat stroke and other heat illnesses. Heat stroke was defined using the ICD diagnosis codes 992.0 (1CD 9) and T67.0 (ICD 10). While other heat illnesses were defined as heat exhaustion (992.3-5, T67 3-5) and unspecified effects of heat and light (992.9 and T67.9). In addition, some studies presented findings for all heat illness without categorizing them into heat stroke and other heat illnesses. These findings were presented separately. Incidence rates and proportions were extracted from the data reported in each study and used for the analysis in this review. Due to the heterogeneity of the included studies, a meta-analysis was not conducted. 

# Results An initial search identified 3816 papers. After removing duplicates, screening titles and

abstracts, 47 papers remained for full-text review with twenty-four (24) included in the systematic review (Figure 1). Twenty-two (22) of the reviewed articles originated from the United States of America (USA), while the other two studies were conducted in the United Kingdom (UK) and Israel respectively (Supplemental Table 2). All included studies were conducted among armed forces personnel, however, two studies included university staff and armed forces personnel in the studies. [27, 28] Twenty- one (21) articles examined heat illnesses and injuries in women and men. Seven (7) of these studies described all heat -related illnesses in men and women, [29-35] while 13 studies included information on heat stroke and other heat injuries in relation to both genders.[36-48] Four (4) studies identified gender-specific risk factors associated with heat stroke, [31, 34, 35, 49] and three (3) studies compared heat tolerance in men and women.[12, 27, 28] 

#### 236 Incidence of heat stroke in women compared to men in the armed forces

Thirteen studies conducted among US army personnel compared the incidence of heat stroke
between men and women.[36 – 48] The incidence of heat stroke among females ranged from
0.10 to 0.26 per 1000 person-years. Among males, the incidence of heat stroke ranged from
0.22 to 0.48 per 1000 person years (Figure 2). Between 2015 and 2018, the incidence of heat
stroke increased steadily for both men and women.

#### 242 Incidence of other heat illnesses in women compared to men in the armed forces

The incidence of other heat illnesses was reported by 13 studies conducted by the US Army.
[36 - 48] The incidence of other heat illnesses in women ranged from 1.30 to 2.89 per 1000
person-years. In men, the incidence rate of other heat illness ranged from 0.98 to 1.98 per 1000
person years (Figure 3).

#### 247 Incidence and prevalence of all heat illnesses in women compared to men

Table 1 shows the proportions and incidences of all heat-related illness in men and women in the armed forces. Five (5) studies reported higher incidences and proportions of all heat illness in men compared to women[29, 31, 32, 34, 35] while two studies reported higher incidences of all heat illness in women.[30, 33]

to or or the town on the
BMJ Open

252	Table 1: Incidence and Proportion of all heat related illnesses in women	and men in the Armed Force
-----	--------------------------------------------------------------------------	----------------------------

Dickson. 1994[29]UKDescriptive epidemiology1981-1991 (10yrs)Royal Air force, Royal Navy and Army (1448 cases)ICD-9-CM: 992.0 – 992.9Army Medical Surveillance Activity, 1998[30]USADescriptive epidemiology1997 – 1998 (1 year)US Army (1433 cases)ICD-9-CM: 992.0 – 992.9Army Medical Surveillance Activity, 2000[33]USADescriptive epidemiology1997 – 1999 (2 years)US Army and Marine Corps (3386 cases)ICD-9-CM: 992.0 – 992.9Army Medical Surveillance Activity, 2000[33]USADescriptive epidemiology1997 – 1999 (2 years)US Army and Marine Corps (3386 cases)ICD-9-CM: 992.0 – 992.9Army Medical Surveillance Activity, 2000[33]USADescriptive epidemiology1990 – 1997 (7 years)US Army (2290 cases)ICD-9-CM: 992.0 – 992.9	Women           11.43*           12.8‡           15.8‡	Men 41.87* 8.6‡ 12.0‡
Dickson. 1994[29]UKDescriptive epidemiology1981-1991 (10yrs)Royal Air force, Royal Navy and Army (1448 cases)ICD-9-CM: 992.0 – 992.9Army Medical Surveillance Activity, 1998[30]USADescriptive epidemiology1997 – 1998US Army (1433 cases)ICD-9-CM: 992.0 – 992.9Army Medical Surveillance Activity, 2000[33]USADescriptive epidemiology1997 – 1999 	11.43* 12.8‡ 15.8‡	41.87* 8.6‡ 12.0‡
Army Medical Surveillance Activity, 1998[30]USA epidemiologyDescriptive (1 year)1997 – 1998 1997US Army (1433 cases) 1997ICD-9-CM: 992.0 – 992.9 992.0 – 992.9Army Medical Surveillance Activity, 2000[33]USA epidemiologyDescriptive (2 years)1997 – 1999 (2 years)US Army and Marine Corps (3386 cases)ICD-9-CM: 992.0 – 992.9Army Medical 	12.8 [‡]	8.6‡ 12.0‡
Army Medical Surveillance Activity, 2000[33]       USA       Descriptive epidemiology       1997 – 1999 (2 years)       US Army and Marine Corps (3386 cases)       ICD-9-CM: 992.0 – 992.9         Army Medical Surveillance Activity, 2000[33]       USA       Descriptive pidemiology       1990 – 1997 (7 years)       Army (1896 cases) Marine Corps (1104 cases)         ICD-9-CM: 992.0 – 992.9       1990 – 1997 (7 years)       US Army (2290 cases)       ICD-9-CM: 992.0 – 992.9	<u>15.8</u> ‡	12.0ŧ
Army Medical Surveillance Activity, 2000[33]USADescriptive epidemiology1997 – 1999 (2 years)US Army and Marine Corps (3386 cases)ICD-9-CM: 992.0 – 992.9 (2 years)Army Medical Surveillance Activity, ProversionUSADescriptive epidemiology1990 – 1997 (7 years)US Army (1896 cases) US Army (2290 cases)ICD-9-CM: 992.0 – 992.9	2.0*	
Army Medical       USA       Descriptive       1990 – 1997       US Army (1896 cases)         Surveillance Activity,       epidemiology       (7 years)       ICD-9-CM: 992.0 – 992.9	2.0+	
Army MedicalUSADescriptive1990 – 1997US Army (2290 cases)ICD-9-CM: 992.0 – 992.9Surveillance Activity,epidemiology(7 years)	2.01	1.5†
Army MedicalUSADescriptive1990 – 1997US Army (2290 cases)ICD-9-CM: 992.0 – 992.9Surveillance Activity,epidemiology(7 years)	4.4†	2.0†
20021311	14.0%§	86.0%§
Case-control 1998 – 2001 US Army (5021 cases and 10,042 controls) (3 years)	20.7%§	79.3%§
Army MedicalUSADescriptive2002US Army (1816 cases)ICD-9-CM: 992.0 – 992.9Surveillance Activity,epidemiology(1 year)US Army (1816 cases)ICD-9-CM: 992.0 – 992.9	3.5†	5.1†
Carter et al, 2005[34] USA Cross-sectional 1980 – 2002 US Army (5246 cases) ICD-9-CM: 992.0 – 992.9 (22 years)	13.7%§	86.3%§
Bedno et al, 2014[35] USA Analytical cross- sectional 2005 - 2006 US Armed Forces (80 exertional heat ICD-9-CM: 992.0 – 992.9 9455 men 1913 women	0.680%	0.71%

### Gender-specific risk factors for heat illness

257	Three (3) studies identified the gender-specific risk factors that were associated with heat
258	illness (Table 2). [31, 34, 49] Two of the studies compared the risk of heat illness between
259	males and females while one study identified risk factors within each gender. In the two studies
260	that compared the risk of heat illness by gender, females had a greater risk of experiencing heat
261	illness (OR 1.5, 95% CI 1.4 to 1.7 and IDR 1.21, 95% CI 1.09 to 1.40) compared to males.[31,
262	34] Within gender, males with body mass index (BMI) of $\geq 26 \text{ kgm}^{-2}$ had a greater risk of
263	experiencing heat illness compared to males with BMI < 22 kgm ⁻² (OR 2.10, 95% CI 1.59 to
264	2.78).[49] In addition, males with run times of $\geq$ 12.9 minutes had almost six times the risk of
265	exertional heat illness compared to males with run times of < 10.3 minutes (OR 5.61, 95% CI
266	1.92 to 6.85). While females with run times of $\geq$ 6.9 minutes had five times the risk of
267	exertional heat illness compared to females with run times of $< 5.8$ minutes (OR 5.30, 95% CI
268	1.59 to 17.64).[49]

## 269 Table 2: Gender-specific risk factors associated with heat illness

Reference, year	Country	Study design and duration	Study population	Risk factors	OR or IDR (95% CI)
Army Medical Surveillance Activity, 2002[31]	USA	Case-control 1998 – 2001 (3 years)	US Army 5021 cases and 10,042 controls	Female	1.5 (1.4 - 1.7)
Carter et al, 2005[34]	USA	Cross-sectional 1980 – 2002 (22 years)	US Army 5246 cases of heat illness; 4521 males and 725 females	Female	1.21 (1.09 – 1.40)
Wallace et al, 2006[49]	USA	Case-control	US Marine Corps	$BMI \ge 26 \text{ kg/m}^2 \text{ (males)}$	2.10 (1.59 – 2.78
		1988 – 1996 (8 years)	Male (627 cases and 1679 controls)	Run time $\geq 12.9$ minutes (males)	5.61 (3.73 - 8.45)
		· • /	Female (49 cases and 123 controls)	Run time $\geq 6.9$ minutes (females)	5.30 (1.59 – 17.64

Heat tolerance in women and men 

Three studies compared heat tolerance classification in males and females using the HTT developed by the Israeli Defence Force (Table 3). [12, 27, 28] Druyan et al. investigated gender differences in Israeli Defence Force personnel who had sustained heat injury. The study reported that 67% of the women were found to be heat intolerant compared to 26% of their male counterparts.[12] In the studies conducted by Lisman et al. and Kazman et al. the study population comprised of participants from the university and military communities who had either no heat illness or a previous history of heat illness. Both studies reported that a greater proportion of women were classified as heat intolerant compared to men (42% vs 27% and 45% vs 18% respectively). [27, 28] 

281	
282	Table 3: Heat tolerance in women and men

Reference, year	Country	Study design and duration	Study population	Heat in tolerance rate Women	Heat in tolerance rate Men
Druyan et al, 2012[12]	Israel	Retrospective cross- sectional 2008 – 2010 (2 years)	170 males and 9 females	66.67%	25.79%
Lisman et al, 2014 [27]	USA	Analytical cross- sectional (duration not stated)	Military and university community members; 34 males and 12 females	42%	27%
Kazman et al, 2015[28]	USA	Analytical cross- sectional (duration not stated)	Military and university community members; 55 males and 20 females	45%	18%
USA = Uni	ted States of Am	nerica			
284					
285					
286					
287					

#### Assessment of methodological quality

The QATSDD scores ranged from 22.2% to 94.4% (Supplemental Table 3). Only six studies scored above 50% and included details about recruitment, data analysis, strengths and limitations of the research. The other studies had lower scores because they lacked detailed justification for the analytical methods, data collection, analysis, strengths and limitations. However, results of the methodological assessment should be interpreted with caution. Although the tool assesses methodological quality, it is more likely to be dependent on how the paper was written. In this review, 70% of the studies included were military reports on heat-related illnesses in the Armed Forces. These reports were published in a peer-reviewed journal and were retrospective analyses of data collected by Defence Medical Surveillance Systems. These studies may not have reported details about data collection, strengths and limitations, but they presented valid information on heat-related illness. el.e.

#### Discussion

The findings of this systematic review suggest that men have a slightly higher incidence of heat stroke compared to women. By contrast, women report a slightly higher incidence of other heat illness compared to men. In addition, among studies that reported all heat illnesses (where heat stroke and other heat illnesses have been combined), there was a higher rate of all heat illnesses in men compared to women as evidenced by the outcomes reported in five (5) of seven (7) studies. However, women had a greater risk of experiencing exertional heat illness and were more likely to be heat intolerant compared to men. Other gender-specific risk factors were longer run times for both men and women while higher BMI was associated with exertional heat illness for men only. However, the association between these factors and exertional heat illness is weak given the small number of articles that investigated the relationship. 

Page 17 of 35

#### **BMJ** Open

Furthermore, despite the higher proportion of heat intolerance reported among women; this finding should be interpreted with caution given the small sample size for females in the included studies and the differences in occupations of the women in the three studies. One study included women in the armed forces with a previous history of heat stroke, [12] while the other two studies recruited women from the general population as well as military members with either no history or a previous history of heat stroke. [27, 28]

#### Incidence and prevalence of exertional heat illnesses in women compared to men

In this review, women had a lower incidence of heat stroke, but a slightly higher incidence of other heat illness compared to men. The reported lower incidence of heat stroke/higher incidence of other heat illness in women compared to men could be because women in the military in the United States were excluded from combat positions until 2013 when the ban was lifted.[20] Evidence in the literature suggests that service members who were engaged in roles such as infantry or gun crew had an increased risk of heat illness, possibly reflecting a greater risk of heat illness for those in combat roles.[34] Furthermore, during military training exercises, men may have comparatively tolerated working in the heat beyond the endurance limits.[22] This finding was re-echoed in a previous systematic review that men in the general population had a higher rate of all types of heat illnesses compared to women.[21] Although the incidence of heat stroke was lower in women compared to men in this review, the incidence of heat stroke among women has increased over the past four years. This implies that as more women engage in specialised military roles their risk of exertional heat illness increases. 

#### Gender-specific risk factors for heat illness

Despite the lower incidence of heat stroke, women had a greater risk of exertional heat illnesses
compared to men.[30, 33] In addition one study attempted to investigate intra gender risk
factors for exertional heat illness.[49] The slower run time duration was associated with

#### **BMJ** Open

exertional heat illness among males and females respectively, while higher BMI was identified as a risk factor among males only.[49] The higher risk of exertional heat illnesses in women may likely be due to differences in physiological and physical characteristics between men and women.[50] Physiological characteristics such as hormones, use of contraceptive pills and lower evaporative heat loss may make women more susceptible to heat illness.[11, 13] However, conflicting evidence suggests that in highly trained women, exercise performance and heat loss is not affected by the menstrual cycle phase but is impaired in humid conditions.[51] In addition, physical characteristics such as lower aerobic fitness is a predictor of exertional heat illness.[50] Generally, women have lower aerobic fitness levels and lower overall work capacity which may contribute to the increased risk of exertional heat illness.[50] Individuals with low aerobic fitness levels are likely to exert themselves beyond their physical limit and are at increased risk of heat illness.[52] Other intra gender risk factors that were identified were longer run time duration and higher BMI.[49] Evidence suggests that slower run time duration which may be a reflection of lower aerobic fitness and higher BMI increases the risk of heat illness.[49, 53] However, the evidence is limited given that this was reported by only one study.[49] 

352 Heat tolerance in women and men

The risk of heat illness is dependent on thermal tolerance.[2] To determine the recovery and return to duty for HTT is conducted for members of the armed forces after a heat stroke event.[18] The test criteria define heat intolerance as peak rectal temperature  $> 38.5^{\circ}$ C, peak heart rate > 150 bpm, or the inability of these values to reach a plateau.[18, 19] Although, in the three studies, a higher proportion of women were classified as heat intolerant; this evidence should be interpreted with caution given that the female populations included in each study varied with respect to heat illness and occupations.[12, 27, 28] However, the studies acknowledged that gender differences in cardiorespiratory fitness, body fat percentage and 

Page 19 of 35

#### **BMJ** Open

surface area to mass ratio may account for the higher intolerance rates in women.[12, 27, 28] In addition, the three studies reported using the Israeli Defence Force heat tolerance test protocol and given that the test protocol was developed using male participants, there may be a need to re-evaluate the criteria for women to reduce false-positive results.[12, 27, 28] Furthermore, incomplete recovery and inaccurate determination of return to duty may negatively affect military operations and may end the careers of armed forces personnel.[14] Therefore, it is important to ensure that the heat tolerance test is valid and fair for females if it is to be used to determine return to duty for females in the armed forces. 

### 369 Strengths and limitations

To the authors' current knowledge, this is the first known systematic review investigating gender differences in exertional heat illness and heat tolerance in the armed forces. In addition, we identified potential gender-specific risk factors that are associated with exertional heat illness. However, the heterogeneity in the study designs contributed to the variable methodological quality of the included studies. Most of the articles in this review were military reports and may not be considered of high methodological quality when assessed using a formal critical appraisal tool. Also, most of the included studies utilized retrospective data as the data source with an increased likelihood of incompleteness and inaccuracy. There is a likelihood that misclassification bias could have been introduced into the studies. Three studies that explored the risk factors associated with heat-related illness used retrospective data. [31, 34, 49] The retrospective data may have been misclassified or incomplete at the time of entry and may have introduced misclassification bias into the studies. This type of bias may underestimate or overestimate the association between heat-related illness and risk factors. Although the gender-specific risk factors associated with heat illness were discussed; the review provided limited evidence of these factors, given the few numbers of studies that 

investigated the association. Furthermore, we included only studies published in Englishlanguage; studies published in other languages were excluded.

### 387 Implication for policy and future research

This systematic review demonstrates that there is limited research on exertional heat illness in women in the armed forces. Although men had a higher incidence of heat stroke; women had a higher incidence of other heat illnesses. Further research is needed to establish if this reflects physiological or behavioural differences. In addition, the limited and inconclusive evidence suggests that more women were classified as heat intolerant compared to men using the Israeli Defence Force heat tolerance test protocol. The current criteria may be unfair to women given that it was developed using male participants. More research is needed to determine the gender differences in heat tolerance as well as to consider re-evaluating the heat tolerance test protocol or the development of a new protocol that considers gender-specific factors.[12] Given that the heat tolerance test was conducted in a laboratory setting, more research is needed to replicate the findings in field based setting. 

### 399 Conclusion

In conclusion, this review suggests that men had a slightly higher incidence of heat stroke but women in the armed forces may have a greater risk of exertional heat illness. However, the current evidence is limited, and further research is required to investigate the influence of gender differences on heat tolerance and heat illness. In addition, further research is needed to evaluate the heat tolerance test protocol for women.

3 405 Authors' contribution

All authors contributed substantially to the study concept, design, data extraction, quality assessment and writing of the manuscript.

408 Conceptualization: Faith O. Alele, Bunmi S. Malau-Aduli, Aduli E. Malau-Aduli, Melissa
 409 Crowe

3 4	410	Methodo	logy: Faith O. Alele, Bunmi S. Malau-Aduli, Aduli E. Malau-Aduli, Melissa Crowe
5	411	Writing -	Original draft: Faith O. Alele
7 8 9	412 413	<b>Writing</b> - Melissa C	- review & editing: Faith O. Alele, Bunmi S. Malau-Aduli, Aduli E. Malau-Aduli, Crowe
10 11	414	All author	rs read and approved the manuscript for submission.
12 13 14	415 416	Funding: Research	The first author (FA) is supported by the Australian Government International Training Program Scholarship
15 16	417	Competin	ng Interests: The authors declare that they have no competing interests.
10 17 18	418	Patient c	onsent for publication: Not required
19 20	419	Data sha	ring statement: There are no additional or unpublished data available.
21 22	420		
23 24	421		
25 26	422	Referen	ices
27 28	423	1.	Becker JA, Stewart LK. Heat-related illness. Am Fam Phys 2011;83(11):1325-
29	424		1330.
30 31	425	2.	Epstein Y. Heat intolerance: Predisposing factor or residual injury? Med Sci Sports
32	426		Exerc 1990;22(1):29-33.
33	427 428	3.	Grubenhoff JA, du Ford K, Roosevelt GE. Heat-related illness. Clin Pediatr Emerg Med 2007;8(1):59-64
34	120	1	Mehta SR Jaswal DS Heat Stroke Med LArmed Forces India 2003:59(2):140-3
35 36	429	4. 5	Xiang J Peng B Pisaniello D Hansen A Health impacts of workplace heat
37	431	0.	exposure: an epidemiological review Ind Health 2014:52(2):91-101
38	/32	6	Xiang I Hansen A Pisaniello D Bi P Extreme heat and occupational heat illnesses
39	432	0.	in South Australia 2001–2010 Occup Environ Med 2015: 72:580-586
40 41	433 /13/		doi:10.1136/0emed-2014-102706 [published Online First 18 June 2015]
42	125	7	Enstein V Druvan A Heled V Heat injury prevention $a$ military perspective. The
43	435	7.	I Strength Cond Res 2012: 26:82-6
44	430 127	8	McCristall P. Baggaley K. The progressions of a gendered military: A theoretical
45 46	437	0.	avamination of gender inequality in the Canadian military. I Mil Vateran Fam
47	430		Hoghth 2010:5(1):110.26
48	439	0	Realul. 2019, J(1). 119-20.
49	440	9.	Kazinan JB, Heleu Y, Lisinan PJ, Diuyan A, Deuslei PA, O Connoi FG. Exeruonar
50	441		Heat liness: The Role of Heat Tolerance Testing. Curr Sports Med Rep
51	442		2013;12(2):101-5.
52 53	443	10.	Kenney WL. A review of comparative responses of men and women to heat stress.
54	444		Environ Res 1985;37(1):1-11.
55	445	11.	Shapiro Y, Pandolf KB, Avellini BA, Pimental NA, Goldman RF. Physiological
56	446		responses of men and women to humid and dry heat. J Appl Physiol 1980;49(1):1-
57	447		8.
58 50	448	12.	Druyan A, Makranz C, Moran D, Yanovich R, Epstein Y, Heled Y. Heat tolerance
60	449		in women-Reconsidering the criteria. Aviat Space Environ Med 2012;83(1):58-60.

3 4 5	450 451 452	13.	Tenaglia SA, McLellan TM, Klentrou PP. Influence of menstrual cycle and oral contraceptives on tolerance to uncompensable heat stress. Eur J Appl Physiol Occup Physiol 1999;80(2):76-83
0 7	452	14	O'Conner EC, Heled V, Deuster DA, Exertional heat strake the return to play
/ 8	455	14.	desision and the role of heat televenue testing a clinician's dilements. Com Sport
9	454		decision, and the role of heat tolerance testing: a clinician's dilemma. Curr Sport
10	455		Med Rep. 2018;17(7):244-8.
11	456	15.	O'Connor FG, Casa DJ, Bergeron MF, Carter III R, Deuster P, Heled Y, Kark J,
12	457		Leon L, MCDermott B, O'Brien K, Roberts WO. American College of Sports
13	458		Medicine Roundtable on exertional heat stroke-return to duty/return to play:
15	459		conference proceedings. Curr Sport Med Rep. 2010;9(5):314-21.
16	460	16.	McDermott BP, Casa DJ, Yeargin SW, Ganio MS, Armstrong LE, Maresh CM.
17	461		Recovery and return to activity following exertional heat stroke: considerations for
18	462		the sports medicine staff. J Sport Rehabil. 2007;16(3):163-81.
19 20	463	17.	Department of the Army. Standards of Medical Fitness. Army Regulation 40-
20 21	464		501.2019: 30 - 32
22	465	18.	Moran DS, Heled Y, Still L, Laor A, Shapiro Y. Assessment of heat tolerance for
23	466		post exertional heat stroke individuals. Med Sci Monit 2004;10(6):Cr252-7.
24	467	19.	Shapiro Y, Magazanik A, Udassin R, Ben-Baruch G, Shvartz E, Shoenfeld Y. Heat
25	468		intolerance in former heatstroke patients. Ann Intern Med 1979:90(6):913-6.
20 27	469	20	Nindl BC Jones BH Van Arsdale SJ Kelly K Kraemer WJ Operational physical
28	470	-0.	performance and fitness in military women: physiological musculoskeletal injury
29	471		and optimized physical training considerations for successfully integrating women
30	471 172		into combat-centric military occupations. Mil Med 2016:181(suppl 1):50-62
31	472 172	21	Gifford RM Todisco T Stacey M Eulisawa T Allerhand M Woods DR et al Risk
2∠ 33	475	21.	of heat illness in men and women: A systematic review and meta-analysis Environ
34	474		$P_{os} = 2010 \cdot 171 \cdot 24$ 25
35	475	22	Hunt AD Dilling DC Dettorson MI Coldwall IN Host strain during military
36	470	22.	training activities: The dilemme of belonging force protection and experimental
37	477		canability. Temp 2016;2(2):207.17
30 39	478	22	Capability. Tellip 2010,5(2).507-17.
40	479	23.	Moner D, Liberati A, Tetziari J, Altman DG. Preferred reporting items for
41	480		systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med.
42	481		2009;151 (4):264-9
43	482	24.	Sirriyeh R, Lawton R, Gardner P, Armitage G. Reviewing studies with diverse
44 45	483		designs: the development and evaluation of a new tool. J Eval Clin Pract
46	484		2012;18(4):746-52.
47	485	25.	World Health Organization. International statistical classification of diseases and
48	486		related health problems.10th revision version for 2016. 2016 (Accessed August 20,
49 50	487		2019). Available at https://apps.who.int/iris/handle/10665/39473
50 51	488	26.	World Health Organization. International statistical classification of diseases and
52	489		related health problems.10th revision version for 2016. 2016 (Accessed August 20,
53	490		2019). Available at https://icd.who.int/browse10/2016/en
54	491	27.	Lisman P, Kazman JB, O'Connor FG, Heled Y, Deuster PA. Heat tolerance testing:
55 56	492		association between heat intolerance and anthropometric and fitness measurements.
50 57	493		Mil Med. 2014 Nov 1;179(11):1339-46.
58			
59			

1 2			
2 3	404	28	Kazman IB Purvis DI Heled V Lisman P Atias D Van Arsdale S et al Women
4	494	20.	and evertional heat illness: identification of gender-specific risk factors US Army
5	495		Med Den I 2015:58-66
6 7	490	29	Dickinson IG Heat illness in the services IR Army Med Corps 1994.140(1):7-12
8	497 198	30	Army Medical Surveillance Activity Reported heat and cold injuries. United States
9	490	50.	Army January 1997 - December 1997 MSMR 1998:4(1):16
10	499 500	31	Army Medical Surveillance Activity Heat-associated injuries US Army 1991-
12	500	51.	2002 MSMR 2002-8(4)-2-7
13	502	32	Army Medical Surveillance Activity Heat-related injuries US Army 2002
14	502	52.	MSMR 2003.9(4).2-4
15	504	33	Army Medical Surveillance Activity Heat-related injuries among active duty
10	505	55.	soldiers and Marines 1997-1999 MSMR 2000.6(3):2-3
18	506	34	Carter Iii R Cheuvront SN Williams JO Kolka MA Stephenson LA Sawka MN
19	507	0	et al. Epidemiology of hospitalizations and deaths from heat illness in soldiers. Med
20	508		Sci Sports Exerc 2005:37(8):1338-44.
21 22	509	35	Bedno SA Urban N Boivin MR Cowan DN Fitness obesity and risk of heat
23	510		illness among army trainees. Occup Med (Lond) 2014:64(6):461-7.
24	511	36.	Army Medical Surveillance Activity, Heat-related injuries, U.S. Army, 2005.
25	512		MSMR 2006:12(5):2-4.
20 27	513	37	Armed Forces Health Surveillance Branch Heat-related Injuries U.S. Armed
28	514		Forces. 2006. MSMR 2007:14(2):14-5.
29	515	38.	Armed Forces Health Surveillance Branch. Update: Heat injuries among U.S.
30 21	516		military members. 2007. MSMR 2008:15(2):2-3.
32	517	39.	Armed Forces Health Surveillance Branch. Update: Heat injuries among active
33	518		component members, U.S. Armed Forces, 2008. MSMR 2009;16(3):8-9.
34	519	40.	Armed Forces Health Surveillance Branch. Update: Heat injuries, active
35	520		component, U.S. Armed Forces, 2009. MSMR 2010;17(3):6-8.
30 37	521	41.	Armed Forces Health Surveillance Branch. Update: Heat injuries, active
38	522		component, U.S. Armed Forces, 2010. MSMR 2011;18(3):6-8.
39	523	42.	Armed Forces Health Surveillance Branch. Update: Heat injuries, active
40	524		component, U.S. Armed Forces, 2011. MSMR 2012;19(3):13-5.
41 42	525	43.	Armed Forces Health Surveillance Branch. Update: Heat injuries, active
43	526		component, U.S. Armed Forces, 2012. MSMR 2013;20(3):17-20.
44	527	44.	Armed Forces Health Surveillance Branch. Update: Heat injuries, active
45	528		component, U.S. Armed Forces, 2013. MSMR 2014;21(3):10-3.
46 47	529	45.	Armed Forces Health Surveillance Branch. Update: Heat injuries, active
48	530		component, U.S. Armed Forces, 2014. MSMR 2015;22(3):17-20.
49	531	46.	Armed Forces Health Surveillance Branch. Update: Heat injuries, active
50	532		component, U.S. Army, Navy, Air Force, and Marine Corps, 2015. MSMR
51	533		2016;23(3):16-9.
53	534	47.	Armed Forces Health Surveillance Branch. Update: Heat Illness, Active
54	535		Component, U.S. Armed Forces, 2016. MSMR 2017;24(3):9-13.
55	536	48.	Armed Forces Health Surveillance Branch. Update: Heat illness, active component,
56 57	537		U.S. Armed Forces, 2017. MSMR 2018;25(4):6-12.
58			
59			
60			

538 539	49.	Wallace RF, Kriebel D, Punnett L, Wegman DH, Wenger C, Gardner JW, et al. Risk factors for recruit exertional heat illness by gender and training period. Aviat
540		Space Environ Med 2006;77(4):415-21.
541	50.	Epstein Y, Yanovich R, Moran DS, Heled Y. Physiological employment standards
542		IV: integration of women in combat units physiological and medical considerations.
543		Eur J Appl Physiol 2013;113(11):2673-90.
544	51.	Lei, Tze-Huan et al. "Influence of menstrual phase and arid vs. humid heat stress
545		on autonomic and behavioural thermoregulation during exercise in trained but
546	50	unacclimated women. J Physiol 2017; $595(9)$ :2823-2837.
547 E 4 9	52.	Cleary M. Predisposing fisk factors on susceptibility to exertional neat filness: clinical decision making considerations. I Sport Rehabil 2007;16(3):204-14
546 570	53	Selkirk GA McLellan TM Influence of aerobic fitness and body fatness on
550	55.	tolerance to uncompensable heat stress. I Appl Physiol 2001;91(5):2055-63
550		
552	Figure	legends
553	Figure 1	: PRISMA flow chart of the study selection protocol
554	Figure 2	: The incidence rate of exertional heat stroke between men and women in the armed
555	forces fr	om 2006 to 2018
556 557	Figure 3 effects o	: Incidence rate of other heat illnesses (including heat exhaustion and unspecified f heat and light) between men and women in the armed forces from 2006 to 2018
558		
559		
560		
561		



Figure 1: PRISMA flow chart of the study selection protocol







	Medline search strategy
 1.	Women (MeSH)
2.	Gender expression
3.	Gender identity (MeSH)
4.	Gender
5.	Wom\$
6.	Sex
7	Heat strok*
8	Heatstrok*
9	Heat collapse
10	Heat exhaustion
11	Heat prostration
12	Heat cramp
12.	Heat cramps
13.	Heat stress disorder
15	Heat stress disorders (MeSH)
15.	Thermal stress
10.	Heat illness
17.	Heat illness
10.	Heat initiesses
19.	Heat injurio
20.	Heat injuries
21.	Heat related diseases
22.	Heat disorder
23.	Heat disorders
24.	Heat related disorder
25.	Heat related disorders
26.	Heat related filless
27.	Heat related illnesses
28.	Heat related injuries
29.	Heat related injury
30.	Environmental heat illness
31.	Heat stress
32.	Heat adaptation
33.	Heat tolerance
 34.	Heat tolerances
 35.	Heat resistance
 36.	Thermal resistance
 37.	Thermoresistance
38.	Thermotolerance (MeSH)
39.	Heat endurance
40.	1 OR 2 OR 3 OR 4 OR 5 OR 6
41.	7 OR 8 OR 9 OR 10 OR 11 OR 12 OR 13 OR 14 OR 15 OR 16 OR
	17 OR 18 OR 19 OR 20 OR 21 OR 22 OR 23 OR 24 OR 25 OR 26
	OR 27 OR 28 OR 29 OR 30 OR 31 OR 32 OR 33 OR 34 OR 35 OR
 	36 OR 37 OR 38 OR 39
 42.	40 AND 41

## Supplemental Table 1

#### Supplemental Table 2 Summary of all included studies

Reference, year	Country	Study design and duration	Population	Study findings [§]
Dickson. G, 1994[29]	UK	Descriptive epidemiology 1981-1991	Royal Airforce, Royal Navy and Army; 1448 all heat injuries cases	Women         All heat injuries: 11.43#         Men         All heat injuries: 41.87#
Army Medical Surveillance Activity, 1998[30]	USA	Descriptive epidemiology; 1997 - 1998	US Army; 1433 all heat injuries cases (1997-1998) 1997	Women All heat injuries: 12.8 [‡]
				<u>Men</u> All heat injuries: 8.6 <del>1</del>
			1998	Women All heat injuries: 15.8 [‡]
				<u>Men</u> All heat injuries: 12.0 [‡]
Army Medical Surveillance Activity,	USA	Descriptive epidemiology; 1997 - 1999	US Army and Marine Corps; 3386 all heat injuries cases [®]	Women All heat injuries: 2.0†
2000[33]			Army (1896 cases)	Men All heat injuries: 1.5†
			Marine Corps (1104 cases)	Women All heat injuries: 4.4† Men
Army Medical	USA	Descriptive epidemiology	US Army;	All heat injuries: 2.0† Women
Surveillance Activity, 2002[31]		1990 - 1997	2290 all heat injuries cases [®]	All heat injuries: 14.0%
				Men All heat injuries: 86.0%
		Case – control 1998 - 2001	US Army; 5021 cases and 10,042 controls (all heat	Women All heat injuries: 20.7%
			injuries)"	Men All heat injuries: 79.3%

Army Medical Surveillance Activity, 2003[32]	USA	Descriptive epidemiology; 2002	US Army; 1816 all heat injuries cases ^ℙ	Women       All heat injuries: 3.5†
				Men All heat injuries: 5.1†
Carter et al, 2005[34]	USA	Cross-sectional 1980 - 2002	US Army; 5246 all heat injuries cases [®] 4521 males and 725 females	Women         All heat injuries: 13.7%         Men         All heat injuries: 86.3%         Bisk factors
A mark Madinal	LIC A	Description or identical start	LIC Armed Ferrera	Female: IDR: 1.21 (1.09 – 1.40)
Army Medical Surveillance Activity, 2006[36]	USA	2005	204 heat stroke cases 958 heat exhaustion cases	Women Heat stroke: 0.26† Heat exhaustion: 2.89† <u>Men</u> Heat stroke: 0.48† Heat exhaustion: 1.98‡
Wallace et al, 2005[49]	USA	Case-control 1988 - 1996	US Army; 5246 cases of heat illness; 4521 males and 725 females	Risk factors         Females         Run time $\ge 6.9$ minutes:         OR; 5.30 (1.59 – 17.64)         Males         Run time $\ge 12.9$ minutes:         OR; 5.61 (3.73 – 8.45)         BMI $\ge 26$ kg/m ² :         OR; 2.10 (1.59 – 2.78)
Armed Forces Health Surveillance Branch, 2007[37]	USA	Descriptive epidemiology; 2006	US Armed Forces; 259 heat stroke cases 1854 heat exhaustion cases	Women Heat stroke: 0.14† Heat exhaustion: 1.49† <u>Men</u> Heat stroke: 0.22† Heat exhaustion: 1.34†
Armed Forces Health Surveillance Branch,	USA	Descriptive epidemiology; 2007	US Armed Forces; 329 heat stroke cases 1853 heat exhaustion cases	Women Heat stroke: 0.14† Heat exhaustion: 1.62† Men

BMJ Open

				Heat exhaustion: 1.34†
Armed Forces Health	USA	Descriptive epidemiology;	US Armed Forces;	Women
Surveillance Branch,		2008	299 heat stroke cases	Heat stroke: 0.16†
2009[39]			1467 heat exhaustion cases	Heat exhaustion: 1.35 ⁺
				Men
				Heat stroke: 0.22 ⁺
				Heat exhaustion: 1.78 [†]
Armed Forces Health	USA	Descriptive epidemiology;	US Armed Forces;	Women
Surveillance Branch,		2009	323 heat stroke cases	Heat stroke: 0.15 ⁺
2010[40]			2038 other heat injuries cases*	Other heat injuries: 1.78 [†]
				Men
				Heat stroke: 0.24 [†]
				Other heat injuries: 1.35 [†]
Armed Forces Health	USA	Descriptive epidemiology;	US Armed Forces;	Women
Surveillance Branch,		2010	311 heat stroke cases	Heat stroke: 0.12†
2011[41]			2576 other heat injuries cases*	Other heat injuries: 2.32 [†]
				Men
				Heat stroke: 0.23 [†]
				Other heat injuries: 1.67 [†]
Armed Forces Health	USA	Descriptive epidemiology;	US Armed Forces;	Women
Surveillance Branch,		2011	362 heat stroke cases	Heat stroke: 0.10†
2012[42]			2652 other heat injuries cases*	Other heat injuries: 2.63 [†]
				Men
				Heat stroke: 0.27 [†]
				Other heat injuries: 1.68 [†]
Druyan et al, 2012[12]	Israel	Retrospective cross-	Israeli Defence Forces;	Heat tolerance parameters
		sectional	170 males and 9 females	Women
		2008 - 2010		Heat intolerance rate: 66.6%
				Mar
				Ivien Host intoloropco rato: 25 70%
Armod Earnag Haalth		Descriptive enidemiele ave	US Armed Foreast	We was an
Surveillance Dranch	USA	2012	265 hast stroke assos	<u>women</u> Heat strake: 0.15‡
		2012	2257 other heat injuries cases*	Other heat injurios: 2.25*
2015[45]			2257 other heat injuries cases	Mon
				<u>Ivien</u> Heat stroke: 0.27*
				Other heat injuries: $1.44$
				Other heat injuries. 1.44
		_ ·		
		For peer review	only - http://bmjopen.bmj.com/site/about/g	uidelines.xhtml

BMJ Open

Surveillance Branch, 2014[44]	USA	Descriptive epidemiology; 2013	US Armed Forces; 324 heat stroke cases 1701 other heat injuries cases*	Women Heat stroke: 0.15† Other heat injuries: 1.30†
				<u>Men</u> Heat stroke: 0.24† Other heat injuries: 1.19†
Bedno et al, 2014[35]	USA	Analytical cross-sectional	US Armed Forces; 80 exertional heat illness cases	Women Heat illness: 0.680% <u>Men</u> Heat illness: 0.71%
Lisman et al, 2014[27]	USA	Analytical cross-sectional	Military and university community members;	Heat intolerance parameters Women Heat intolerance rate: 42%
			34 males and 12 lemales	Men Heat intolerance rate: 27%
Armed Forces Health Surveillance Branch, 2015[45]	USA	Descriptive epidemiology; 2014	US Armed Forces; 314 heat stroke cases 1410 other heat injuries cases*	Women         Heat stroke: 0.14†         Other heat injuries: 1.31†         Men         Heat stroke: 0.27†         Other heat injuries: 1.21†
Kazman et al, 2015[28]	USA	Analytical cross-sectional	Military and university community members; 55 males and 20 females	Heat tolerance parameters         Women         Heat intolerance rate: 45%         Men         Heat intolerance rate: 18%
Armed Forces Health Surveillance Branch, 2016[46]	USA	Descriptive epidemiology; 2015	US Armed Forces; 417 heat stroke cases 1625 other heat injuries cases*	Women Heat stroke: 0.16† Other heat injuries: 1.54† <u>Men</u> Heat stroke: 0.35† Other heat injuries: 1.48†
Armed Forces Health Surveillance Branch, 2017[47]	USA	Descriptive epidemiology; 2016	US Armed Forces; 401 heat stroke cases 2135 other heat injuries cases*	Women         Heat stroke: 0.19†         Other heat injuries: 1.90†         Men         Heat stroke: 0.33†

				Other heat injuries: 1.61 [†]
Armed Forces Health Surveillance Branch, 2018[48]	USA	Descriptive epidemiology; 2017	US Armed Forces; 464 heat stroke cases 1699 heat exhaustion cases	<u>Women</u> Heat stroke: 0.25† Other heat injuries: 1.38† <u>Men</u> Heat stroke: 0.41† Other heat injuries: 1.41†
§ Proportions and # Incidence rate re ‡ Incidence rate per † Incidence rate re * Other heat injurie P heat injuries incl UK = United King	incidences in ported per 1 100,000 per ported per 1 es include " ude heat stro gdom; USA =	reported are of the total case. 00,000 person-years. erson- months. 000 person-years. heat exhaustion" and "unspector oke and other heat injuries. = United States of America	s reported in the articles	
		For peer review o	only - http://bmjopen.bmj.com/site/a	about/guidelines.xhtml

#### BMJ Open

QATSDD Criteria	1	2	3	4	5	6	7	8	9	10	11	12	Total score	% of total score
Dickinson' 94[29]	0	1	2	0	1	3	0	0	3	2	0	2	14/36	38.9
AMSA'98[30]	2	1	1	0	0	0	0	0	2	2	0	0	8/36	22.2
AMSA'00[33]	2	1	2	0	0	1	0	0	2	3	0	0	11/36	30.6
AMSA'02[31]	3	0	2	0	1	1	0	0	2	0	2	0	11/36	30.6
AMSA'03[32]	2	1	1	0	1	1	0	0	2	2	0	0	10/36	27.8
Carter et al' 05[34]	3	3	3	2	2	3	1	2	3	3	2	0	27/36	75
AMSA'06[36]	2	1	1	0	1	1	0	0	2	2	0	0	10/36	27.8
Wallace et al' 06[49]	3	3	3	2	2	3	1	2	3	3	2	2	29/36	80.6
AFHSB'07[37]	1	1	1	0	0	1	0	0	2	2	0	0	8/36	22.2
AFHSB' 08[38]	1	1	1	0	0	1	0	0	2	2	0	0	8/36	22.2
AFHSB' 09[39]	1	1	1	0	0	1	0	0	2	2	0	0	8/36	22.2
AFHSB' 10[40]	1	1	2	0	0	1	0	0	2	2	0	2	11/36	30.6
AFHSB' 11[41]	2	1	2	0	0	1	0	0	2	2	0	2	12/36	33.3
Druyan et al'12[12]	3	3	3	1	0	2	0	3	3	2	2	1	23/36	63.9
AFHSB' 12[42]	2	1	2	0	0	1	0	0	2	2	0	2	12/36	33.3
AFHSB' 13[43]	2	2	2	0	0	2	0	0	2	2	0	2	14/36	38.9
AMSA' 14[44]	2	2	2	0	0	2	0	0	2	3	0	2	15/36	41.7
Lisman et al,'14 [27]	3	3	3	2	2	3	2	3	3	3	3	3	33/36	91.7
AFHSB' 15[45]	3	2	2	0	0	2	0	0	2	3	0	2	16/36	44.4
Bedno et al, 2015[35]	3	3	3	2	2	3	3	3	3	3	3	3	34/36	94.4
Kazman et al' 15[28]	3	3	3	2	2	3	2	3	3	3	3	3	33/36	91.7
AFHSB' 16[46]	3	2	2	0	0	2	0	0	2	3	0	2	16/36	44.4
AFHSB' 17[47]	3	2	2	0	0	2	0	0	2	3	0	2	16/36	44.4
AFHSB' 18[48]	3	2	2	0	0	2	0	0	2	3	0	2	16/36	44.4

(3) Description of research setting

(4) Sample size;

(5) Representative sample of target group

(10) Fit between research question and method of analysis (Quantitative only) QATSDD rating scale: 0=not at all; 1=very slightly; 2=moderately; 3=complete; AMSA = Army Medical Surveillance Activity

(8) Detailed recruitment data

ed (12) Strengths and limitations.

(9) Fit between research question and method of data collection (Quantitative only)

# PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported on page #
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1
ABSTRACT			
Structured summary 2 Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.		2	
Rationale	3	Describe the rationale for the review in the context of what is already known.	4,5,6
) Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	7
METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	7
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	7
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	7
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	7, supplemental table 1
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	Figure 1
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	8
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	8
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	8, 9
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	9
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I ² ) for leaghemetarianalysis. http://bmjopen.bmj.com/site/about/guidelines.xhtml	9



# PRISMA 2009 Checklist

4		Page 1 of 2	
5 6 Section/topic 7	#	Checklist item	Reported on page #
⁸ Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	8
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	
RESULTS			
14 15 Study selection 16	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	10, Figure 1
17 Study characteristics 18 19	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	10, Supplemental table 2
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	15
2 22 Results of individual studies 23 24	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	10,11, 12, 13, 14, Figure 1 and Figure 2
25 Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	NA
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	
28 Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	N/A
	1		
31 Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	15
33 ₃₄ Limitations 35	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	18, 19
6 Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	15, 16, 17, 18
34 FUNDING	1		
³⁹ Funding 40	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	20
42 From: Moher D, Liberati A, Tetzlaff	f J, Altm	an DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Me	ed 6(6): e1000097.
43		For more information, visit: www.prisma-statement.org. Page 2 of 2	
<del>44</del> 45		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	
46			
47			