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S1 SchNet for excited states

As a machine learning (ML) model, the deep continuous-filter convolutional

neural network SchNet, that is described in detail in Ref.1,2 is used and

adapted for excited states to train excited-state energies, forces, spin-orbit

couplings (SOCs), and nonadiabatic couplings (NACs).

The molecular descriptor is constructed by SchNet1 that treats atoms

in their chemical and structural environment. A cutoff is defined to specify

the environment that is included for the description of an atom. Hence the

molecular properties are obtained as atom-wise contributions. A continuous-

filter convolutional layer and several additional interaction layers define and

optimize the atom representations. These representations are mapped to

different properties via fully connected layers with shifted softplus activation

functions. These prediction blocks, which use a common descriptor network,

are separately designed for energies, SOCs, and NACs, whereas the forces are

derived with respect to atomic coordinates from outputs of the ML model for

energies. The loss function is a combined loss function of all the properties.

A trade-off is defined to weigh the properties according to their magnitude.

The properties that should be learned have to be specified along with the

corresponding trade-off in an additional input file.

S1.1 Standard loss function, L2

The overall L2 loss function as implemented in SchNet for excited states,

reads:

L2 = tE || EQC − EML ||2 +tF || FQC − FML ||2 +

tSOC || CQC
SOC − CML

SOC ||2 +tNAC || CQC
NAC − CML

NAC ||2,
(1)

where tE , tF , tSOC , and tNAC define the trade-offs for the properties E (en-

ergies), F (forces), CSOC (SOCs), and CNAC (NACs), respectively. Corre-
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sponding labels with an index "QC" refer to the reference value and with an

index "ML" to the the SchNet predictions.

S1.2 Phase-less loss function, Lph

In order to train on inconsistent SOCs and NACs with respect to their sign,

we have developed a phase-less loss-function. This is based on the L2 loss,

but here, the squared error of the predicted properties, P , is computed more

often, i.e. 2NS−1-times with NS being the total number states. The value,

LP , that enters the overall loss function, Lph, is the minimum function of all

possible squared errors, εkP , for a given property, P :

LP = min
(
{εkP }

)
with 0 ≤ k ≤ 2NS−1 (2)

with

εkP =


∑NS

i

∑NS
j 6=i

1
NA

∑NA
m || PQC

ij,m − PML
ij,m · pki · pkj ||2 if dim(P) ≥ 3∑NS

i

∑NS
j 6=i || P

QC
ij − PML

ij · pki · pkj ||2 if dim(P) ≤ 2


(3)

for vectorial and non-vectorial properties, respectively. The error εkP for a

specific phase is computed as the mean squared error of a property P from

quantum chemistry (index QC) and machine learning (index ML). The

property P couples different states, indicated by i and j. Since the wave

function of each of the states can have an arbitrary phase, the property Pij

that couples state i and j has to be multiplied with a product of the phases

for these states, pi · pj . The phases for all states together form a vector p

with entries of either +1 and -1. Which of the 2NS−1 possible combinations

for p is chosen, is indicated by the index k, also defined in eq. (2). Since we

are free to choose one of the phases, we set the phase of the first state always

to +1. The relative signs within one vector remain and must be predicted
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correctly for successful training.

The overall loss function used in this work is a combination of such

phase-less errors and mean squared errors obtained for all properties with a

trade-off factor to account for their relative magnitude (as already specified

in equation 1):

Lph = tE || EQC−EML ||2 +tF || FQC−FML ||2 +tSOC ·LSOC+tNAC ·LNAC

(4)

This cost function removes the influence of the arbitrary phase during the

learning process of a ML model and further reduces the computational costs

for the training set generation.

We tested on several alternatives, such as a loss function that addition-

ally includes the norm of a vector, variations of a minimum function and

another type of phase-free loss function, that can be used if only one type

of coupling, i.e. SOCs or NACs, or dipole moments are trained. This error

is also implemented in SchNet for excited states and the error of a property

that couples state i and j, εkP is computed as follows:

εk,±P =

 || P
QC
ij ± PML

ij ||2 if dim(P) ≤ 2

1
NA

∑NA
m || PQC

ij,m ± PML
ij,m ||2 if dim(P) ≥ 3

(5)

As can be seen, the error is computed twice – once assuming a correct phase

of predicted properties and once a phase switch, that are both combined

subsequently in case dim(P) ≥ 3:

ekP = εk,−p · C+
ij + εk,+p · C−ij (6)

with

C±ij =
εk,±p

εk,−p + εk,+p

. (7)
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The value, LP , that enters the loss function is then either a combination

of both possibilities for vectorial properties or a minimum function of the

two possible errors, εk,±P . This variation gives comparably accurate results

and also leads to a phase-free training. Experiments have shown, that – e.g.

in the case of the SO2 molecule – more data points, but shorter training is

necessary. This alternative error can be more favorable in cases, where only

one coupling type is needed and many states are involved, since computation

of all possible combinations can be omitted. All other tested variations

turned out to be less successful in learning the shape of couplings.

S1.3 Machine learning models

The model parameters for each molecular system are given in Table S1 in-

cluding the number of data points and states trained. The errors for the

remaining test set (i.e. the data points not used for training and validation)

are listed as mean absolute values resulting from all states. For the CH2NH+
2

and CSH2 models, the ML predictions reach chemical accuracy and in some

cases the error is even below 0.043 eV (1 kcal/mol). If not stated otherwise,

256 features with 3 hidden layers are used for each model. The batch size

ranges from 20 to 50 and is set in order to comply with the maximum allowed

memory of a used GPU. The learning rate is set to 0.0001 and is reduced by

a factor of 0.8 down to a value of 0.000001 with a patience of 15 steps. The

maximum number of epochs is set to 5000. The trade-off for each property

is defined, so that the mean squared errors in the first few epochs is equally

large for all properties.
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Table S1: Parameters for the trained SchNet models for excited states. For
SO2, CSH2, and CH2NH+

2 200 to 500, 200 and 100 data points are used for
validation, respectively. Hence at least 200,000, 503, and 900 data points
are used for testing. The MAEs and RMSEs are reported in eV, eV/Å, and
a.u. for energies, gradients and all type of couplings, respectively. If not
mentioned otherwise, the data sets are not phase corrected.
Molecule training S/T properties (t) cutoff Loss MAE (RMSE)

points [Å]
SO2 5,000 3/0 E (1.0) 5.0 L2 0.069 (0.20)

F (0.25) 0.20 (0.67)
SO2 20,000 3/0 E (1.0) 8 .0 Lph 0.062 (0.184)

F (0.1) 0.24 (0.65)
NAC (0.004) 0.13 (1.15)

SO2 5,000 3/3 E (1.0) 5.0 Lph 0.029 (0.068)
F (0.25) 0.12 (0.26)

SOC (300) 7.7 · 10−6 (3.1 · 10−5)
SO2 20,000 3/3 E (1.0) 8.0 Lph 0.027 (0.068)

F (0.25) 0.11 (0.26)
NAC (0.0001) 0.52 (23.8)
SOC (300) 1.2 · 10−5 (4.4 · 10−5)

CH2NH+
2 3,000 3/0 E (1.0) 10.0 L2 0.059 (0.13)

F(1.0) 0.15 (0.30)
NAC (0.001) 0.22 (0.89)

CH2NH+
2 3,000 3/0 E (1.0) 10.0 Lph 0.059 (0.14)

F(1.0) 0.14 (0.32)
NAC (0.004) 0.15 (0.55)

CH2NH+
2 3,000 3/0 E (1.0) 10.0 L2 0.042 (0.087)

phase F(1.0) 0.096 (0.22)
corrected NAC (0.0001) 0.21 (0.83)

CH2NH+
2 3,000 3/0 E (1.0) 10.0 Lph 0.050 (0.16)

phase F(1.0) 0.13 (0.32)
corrected NAC (0.004) 0.15 (1.1)

CH2NH+
2 3,000 3/0 E (1.0) 10.0 L2 0.048 (0.12)

F(1.0) 0.13 (0.30)
CSH2 4,000 2/2 E (1.0) 10.0 Lph 4.1 · 10−4 (6.1 · 10−4)

F(1.0) 6.2 · 10−4 (1.1 · 10−3)
SOC (500) 6.1 · 10−6 (1.6 · 10−5)
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S2 Training sets and reference computations

S2.1 Training set generation

SchNet models for excited states are trained on a linear vibronic coupling

model (LVC) of SO2
3,4, the methylenimmonium cation, CH2NH+

2 and thio-

formaldehyde, CSH2.

The molecular geometries and corresponding properties are saved in a

database format provided by the atomic simulation environment5. No data

points of the dynamics simulations to which we compare SchNarc models

are included in the training sets. The phase corrected training set for the

methylenimmonium cation, CH2NH+
2 , is taken from Ref.6 and consists of

4000 data points. The energies, gradients, and nonadiabatic couplings of

geometries of this training set were recomputed with the same level of theory,

MR-CISD(6,4)/aug-cc-pVDZ, but without applying any pre-processing, such

as phase correction, in order to provide a non-phase corrected training set.

The program suite COLUMBUS7 was used for this purpose, resulting in

3998 converged single point calculations. For the dynamics simulations with

SchNarc, 1000 trajectories (resulting from 20,000 initial conditions sampled

from a Wigner distribution8) are propagated for 100 fs using a time step of

0.5 fs.

The training set for thioformaldehyde, CSH2, is generated in the same

way as it is done in Ref.6 for CH2NH+
2 . Initial configurations are sampled

via scans of different reaction coordinates, such as normal modes. Addi-

tionally, adaptive sampling for excited states is carried out using two simple

multi-layer feed-forward neural networks. At a number of 4855 data points,

the networks seem to be converged and dynamics simulations can be repro-

duced. The training set consists of 4703 data points, where samples showing

a smaller energy gap than 0.01 H between triplet-triplet states are sorted out
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due to problematic data points in those regions. Without these points the

NNs converge much better, in about half of the time. The RMSE of forces

is slightly larger, the rest of the errors are comparable. The level of theory

is CASSCF(6,5)/def2-SVP and 2 singlet and 2 triplet states are included.

Quantum chemistry calculations are carried out using Molpro9. In addition

to energies, forces, SOCs, and NACs, the permanent and transition dipole

moments are included in the training set. For the dynamics simulations of

CSH2, 40,000 initial conditions are sampled from a Wigner distribution8

and excited to the first excited singlet state (2.0-2.5 eV). 100 trajectories are

propagated with the reference method for 3 ps with a time step of 0.5 fs.

The resulting populations are compared to 959 trajectories obtained from

SchNarc.

For the SO2 molecule, that is based on a "one-shot" linear vibronic cou-

pling model3 and serves as a reference, we refer to dynamics simulations

with the linear vibronic coupling model to generate the training set. After

sampling of 10,000 initial conditions from a Wigner distribution8 and excita-

tion between 0 and 10 eV, surface hopping molecular dynamics simulations

are carried out with SHARC. The first 200 trajectories are taken for the

training set generation. This procedure is done twice - once only singlet

states are considered and once singlet and triplet states are taken into ac-

count, resulting in 280,200 data points for each training set. Additional 1000

initially sampled geometries are excited and trajectories are simulated with

SHARC to provide a comparison to SchNarc dynamics. All trajectories are

propagated with NAC vectors for 700 fs with a time step of 0.5 fs. Due to

symmetry, the SO2 model contains NACs only between the S1 state and the

S2 state as well as between the T1 state and the T3 state. We considered

this restriction for the SchNarc computations by setting the other couplings

to zero.
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It is worth mentioning that SO2 needs more data points for training

than CSH2 and CH2NH+
2 , since for the latter molecules, adaptive sampling

was applied and for SO2 we used data directly from dynamics simulations

with the LVC model. The dynamics with the LVC model are extremely

fast and hence for the training set generation the usual adaptive sampling

approach6,10,11 is far more costly and time-intensive. Since reference compu-

tations are even cheaper than ML predictions, it is not our goal to provide a

perfect training set with a minimum number of data points for this model,

but rather to provide an easy-to-use but yet challenging test system to vali-

date our method.

S2.2 Surface hopping molecular dynamics

In order to compute nonadiabatic molecular dynamics simulations, the SHARC12–14

method, an extension of Tully’s fewest switches algorithm15, is applied. This

mixed quantum-classical approach allows for on-the-fly computation of the

PESs with electronic structure methods, on which the nuclei move according

to Newton’s second equation of motion. In order to account for nonadiabatic

transitions between states of same spin multiplicity, instantaneous switches

from one state to the others are allowed in regions of high hopping probabil-

ity. After every simulation, the trajectories are analyzed using the SHARC

diagnostic tools to check improper behaviour, such as energy fluctuations.

A few reference trajectories are sorted out in each case – mainly due to im-

proper convergence of quantum chemistry calculations in critical regions of

the potential energy surfaces. Decoherence correction is applied16 and the

hopping probabilities are computed from SOCs and NACs from electronic

structure calculations in case of reference dynamics or from ML models in

case of SchNarc dynamics14. The velocities are corrected along the direc-

tion of the NAC vectors in each simulation and for dynamics with quantum
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chemistry, the phase is tracked along an independent trajectory.

S3 Nonadiabatic couplings

As mentioned in the main text, NACs are either approximated or derived

from a virtual property built by SchNarc. In order to define the virtual

property, which SchNarc builds internally, we start by the derivative of the

electronic Hamiltonian, Hel, with respect to the atomic coordinates of a

molecule, R:

∂Helij (r,R)

∂R

=
∂

∂R
〈Ψi | Hel(r,R) | Ψj〉 (8)

= 〈 ∂

∂R
Ψi | Hel(r,R) | Ψj〉+ 〈Ψi |

∂Hel(r,R)

∂R
| Ψj〉+ 〈Ψi | Hel(r,R) | ∂

∂R
Ψj〉

Since the adiabatic wavefunctions are eigenfunctions of Hel(r,R), we can

reformulate equation (8):

∂Helij (r,R)

∂R

= Ej〈
∂

∂R
Ψi | Ψj〉+ 〈Ψi |

∂Hel(r,R)

∂R
| Ψj〉+ Ei〈Ψi |

∂

∂R
Ψj〉 (9)

By using the relation, 〈Ψi | ∂
∂RΨj〉 = −〈 ∂

∂RΨi | Ψj〉, we can write:

∂Helij (r,R)

∂R
= (Ei − Ej) · 〈Ψi |

∂

∂R
Ψj〉+ 〈Ψi |

∂Hel

∂R
| Ψj〉. (10)

Applying the Hellmann-Feynman theorem17, we obtain the diagonal el-
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ements as the gradients,

∂

∂R
Helij = ∇Eij for i = j, (11)

and obtain the NAC terms as properties that are inversely proportional to

the corresponding energy gap of two adiabatic electronic states:

CNAC
ij ≈ 〈Ψi |

∂

∂R
Ψj〉 =

1

Ei − Ej
〈Ψi |

∂Hel

∂R
| Ψj〉 for i 6= j. (12)

The virtual property that SchNarc is generating is then the multi-dimensional

anti-derivative of the latter expression in equation 12, 〈Ψi | ∂Hel
R | Ψj〉. eably,

due to the Berry phase18–20 the NAC vector field is not conservative21 and a

line integral remains path dependent. Hence this approach does not include

the effects of the Berry phase, which is also neglected in approaches such as

the Zhu-Nakamura approximation22,23 that does not contain a phase at all,

or the phase correction algorithm6,24. The mixed ML-classical dynamics are

thus assumed to be mostly unaffected6,24, which might not be the case in

quantum dynamics simulations.

S3.1 NAC approximation and timing

The approximation of NAC vectors, as explained in the main text and

adapted from Refs.21,25,26, relies on the approximation of the Hessian from

energy potentials between two states. It is especially powerful for ML mod-

els trained on quantum chemistry methods, where implementations of NAC

vectors are largely missing, such as linear-response methods and here espe-

cially between the first excited state and the ground state, with the ADC(2)

method being a prominent example27. Such an ML approach could fur-

ther be used to pave the way towards efficient Hessian computations for all

the states treated in quantum dynamics simulations using the variational
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multi-configurational Gaussian method, where the direct Hessian computa-

tion often remains the time limiting step28,29.

The used NAC approximation is valid in the vicinity of a conical inter-

section and hence relies on a threshold to define the energy gap, for which

the approximation is applied. In order to avoid additional computations, the

Hessians are thus only computed if one of the energy differences between all

possible singlet-singlet or triplet-triplet potentials is within the given thresh-

old (as default we set 0.5 eV and 1.0 eV for singlet-singlet and triplet-triplet

gaps). Since the gaps of the PESs are overestimated in case of CH2NH+
2
6,

this threshold is increased by 30%. This means, that based on this pre-

defined threshold, SchNarc decides whether NAC vectors are computed or

not. In all other cases, the NAC vectors are set to zero. It is advisable

to check the used thresholds for certain cases and adapt them, where neces-

sary. It is worth mentioning, that this approach is limited to same-symmetry

electronic states, which are, nevertheless, the most probable avoided state

crossings in case of real, polyatomic systems26.

Timing

For the thioformaldehyde molecule, the evaluation of the 4 Hessians takes

approximately 2 seconds, for the methylenimmonium cation, the computa-

tion of 3 Hessians takes 3-4 seconds, both on a CPU. A test computation

of a 24 atom molecule was further carried out with SchNarc, which showed

that the evaluation of 1 Hessian took around 45 sec on a CPU, which could

be reduced to 14 sec on a GPU. In future work, we thus seek to adapt the

code in order to compute only the relevant Hessians, i.e., those of close-lying

states with respect to the active state during a dynamics simulation. To

this aim, we seek to give the information of the active state to the SchNarc

model, which is not yet implemented for our pySHARC3,6 wrapper (python
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Table S2: Comparison of the timings of 100 steps of a dynamics simulations
using SchNarc with learned and approximated NACs as well as SHARC
with quantum chemistry or the LVC model for SO2. We used 2x Intel Xeon
E5-2650 v3 CPUs, and GeForce GTX 1080 Ti GPUs.

# 100 time steps [s/CPU] (Training[h/GPU]/data points)
States SchNarc SchNarc SHARC
S/T NAC learned NAC excluded

SO2 3/0 5 (50.8/20,000 ) 6 (3.7/5,000 ) 1-2
SO2 3/3 13 (308/200,000 ) 17(18.3/5,000 ) 1-2
CSH2 2/2 7 (13.0/4,000 ) 8 (12.9/4,000 ) 52

CH2NH+
2 3/0 12 (19.9/3,000 ) 126 (11.1/3,000 ) 37,112

wrapper for the SHARC code, which avoids heavy file I/O). Hence the Hes-

sians would only be computed for the states that are close enough to the

active state and the dynamics simulations are then still very efficient com-

pared to pure quantum chemistry dynamics simulations. A comparison of

the timings of 100 time steps for a dynamics simulation with the current

SchNarc implementations and SHARC is given in Table S2.

As can be seen, the LVC dynamics using the pySHARC wrapper are very

cheap and only serve as a test system. It is however clearly visible that the

training of NACs in this case needs way more data points and hence it takes

longer to train the models. The dynamics of the CH2NH+
2 molecule using

the MR-CISD method are expensive and ML can substantially decrease the

simulation time. It can be seen that the Hessian computation with ML

becomes more expensive, the larger the molecule becomes or the more states

are involved in a simulation.
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S4 Quality of ML models

S4.1 Excited-states of sulfur dioxide, SO2

To assess the quality of approximated NACs and learned SOCs, a linear

vibronic coupling (LVC) model3,4 of sulfur dioxide, SO2, is used. The LVC

model of sulfur dioxide, SO2,3 contains 3 singlet states and 3 triplet states,

with symmetry allowed NACs between the first and second excited singlet

states as well as the first and third triplet states, as well as SOCs between

singlet and triplet states. It is used to train two ML models: One, where the

NACs are learned and another, where the NACs are approximated according

to equation 7 in the main text. The ML models for dynamics simulations

with approximated NACs, i.e. ML models that are trained only on energies

and gradients for singlet states only and energies, gradients, and SOCs for

singlet and triplet states, used 5,000 data points. To train also on NACs

20,000 data points are required. Those training points are randomly selected

from data sets consisting of 280,200 points.

Fig. S1 shows the quality of ML energies (A), gradients (B), SOCs be-

tween singlet and triplets (C), and NACs between singlet states (D, E). The

NACs in panel (D) are obtained from an ML model trained on energies, gra-

dients, and NACs, whereas the NACs in panel (E) are approximated from

an ML model trained on energies and gradients. Since the test set is very

large (i.e. it contains more than 250,000 data points), the first 1,000 data

points of the randomly shuffled test set are plotted.

The accuracy of the ML Hessians is assessed by a computation of the

frequencies and normal mode coordinates of the equilibrium conformation.

The results are included as a supplementary file in molden format and the

frequencies are compared to reference values in Table S3. The first normal

mode is underestimated by about 10% and the other two normal modes agree
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Figure S1: Scatter plots for SO2 showing the distribution of (A) energies, (B)
gradients, (C) spin-orbit couplings, and (D) NACs from ML models that are
trained on NACs and (E) from ML models that are solely trained on energies
and gradients. The NACs are approximated from energies, gradients and
Hessians of the ML model in the latter case.

to the reference very well within about 98% accuracy.

Table S3: Comparison of frequencies of SO2 obtained from LVC and SchNarc
Hessians.

Normal mode LVC [cm−1] SchNarc [cm−1]
1 519 451
2 1165 1189
3 1405 1409

In Fig. S2, the potential energy curves from both LVC and ML along the

asymmetric stretching mode of the singlet states (left plot) and the triplet

states (right plot) are shown along with the norm of the respective NAC

vectors. As can be seen, the shape as well as the height of the peak of

the norm of trained NACs (dashed lines) and approximated NACs (dotted
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lines) are comparable to those of the LVC model (continuous lines). The

approximated NACs approach zero faster than the trained NACs, which

is due to the applied threshold that is set for the energy gap to compute

NACs. Noticeably, the learned NACs between the triplet states show a

decrease, when the corresponding triplet energies are close to each other.

This might be an effect due to the Berry phase that can not be captured

with our approach leading to artifacts in some regions.

Figure S2: Potential energy curves and the norm of the NAC vectors be-
tween singlet states (A) and triplet states (B) along the asymmetric stretch-
ing mode of SO2. Continuous line represent LVC(MR-CISD) and dotted
(dashed) lines show results obtained from SchNarc models trained on only
energies and gradients (as well as NACs for comparison) of 3 singlets and 3
triplet states.

Importantly, the NACs can be predicted accurately with ML in most

of the regions around the conical intersections. We first consider a singlet-

only model in order to support this assumption with dynamics simulations,

see Fig. S3. LVC populations show minor population transfer between the

second excited singlet state and the first excited singlet state, which can be

reproduced with both SchNarc models (upper panels (A)-(C)).

Also when including triplet states, the SchNarc models can reproduce the

dynamics (lower panels (D)-(F)). Here, population is mostly transferred from

17



Figure S3: Quantum populations using LVC(MR-CISD) of SO2 (left panels),
SchNarc trained on NACs (middle panels) and SchNarc using approximated
NACs from energies and gradients (right panels). Dynamics are shown of
1000 initially excited configurations considering only singlet states (upper
line) and additionally triplet states (lower line).

the first excited singlet state to the triplet states. Note that populations in

surface hopping are often only accurate to within 10%, such that we judge

the deviations of the ML populations from the LVC reference as small (see

Ref. 30 for examples, where dynamics is not reproduced by ML although

potentials seemingly are).

S4.2 Excited states of the methylenimmonium cation, CH2NH+
2

The quality of the ML excited-state energies (A), gradients (B), and NAC

values (C, D) of the methylenimmonium cation, CH2NH+
2 , are assessed via

scatter plots of the test set in Fig. S4. A scan along a reaction coordinate in

Fig. S5, which includes two conical intersections, shows the ability of ML to

reproduce energies and couplings also in critical regions.

The reference energies and couplings obtained with quantum chemistry
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Figure S4: Scatter plots showing the distribution of (A) energies, (B) gradi-
ents, and (C) NACs of CH2NH+

2 obtained from ML models that are trained
on NACs and (D) from ML models that are solely trained on energies and
gradients. The NACs are approximated from energies, gradients and Hes-
sians in the latter case.

clearly show an artifact in the S2 state for geometries around the avoided

crossing between the S0 and the S1 state. This artifact is not reproduced

with ML, leading to artificially larger errors in such cases. Hence scatter

plots have to be considered with care and large errors might not result from

inaccurate ML potentials, but from inconsistencies within quantum chem-

ical calculations. Such artifacts can be a result of an intruder state, i.e.

an electronic state, that is very high in energy at the reference equilibrium

geometry, but is low in energy for another geometry, or of a change in the ac-

tive space along certain reaction coordinates. With regards to nonadiabatic

19



molecular dynamics simulations, it is important to predict the magnitude

of the couplings approximately correctly to compute an accurate hopping

probability. The exact value of NACs is less important, which we have dis-

cussed in detail in Ref.30. It is more relevant that the couplings are large

when two states are close to each other and that they are small elsewhere.

This behaviour can be reproduced with both versions of ML NACs – learned

NACs and approximated ones.

Figure S5: Potential energy curves and the norm of the NAC vectors be-
tween singlet states along a reaction coordinate of CH2NH+

2 with two critical
points. Continuous lines represent the quantum chemical reference method
MR-CISD(6,4)/aug-cc-pVDZ and dashed lines the ML predictions. Dotted
lines show the norm of NACs obtained from approximated NACs using ML
predicted energies, gradients, and Hessians.

The Hessians are further used to compute the frequencies of the equilib-

rium geometry of CH2NH+
2 . The results are included as a supplementary file

in molden format and are compared to reference quantum chemistry values

in Table S4. In addition, we compare to frequencies that are computed with

previously6 trained multi-layer feed-forward neural networks on energies and

gradients of CH2NH+
2 . The Hessian is is obtained via numerical differentia-

tion in the latter case. Both ML models agree well with the reference method.
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Table S4: Comparison of frequencies of CH2NH+
2 obtained from the quan-

tum chemistry (QC) reference method MR-CISD(6,4)/aug-cc-pVDZ, from
SchNarc Hessians and from previously trained multi-layer feed-forward neu-
ral networks (MLFF)6. In the latter case, Hessians are obtained via numer-
ical differentiation.

Normal mode QC [cm−1] SchNarc [cm−1] MLFF [cm−1]
1 940 926 936
2 969 1090 1006
3 1074 1096 1165
4 1174 1142 1211
5 1369 1451 1389
6 1473 1520 1494
7 1612 1632 1582
8 1790 1831 1771
9 3223 3189 2924
10 3357 3295 3385
11 3550 3547 3432
12 3663 3631 3501

S4.3 Excited states of thioformaldehyde, CSH2

The scatter plots of the ML excited-state energies (A), gradients (B), and

SOCs (C) of thioformaldehyde, CSH2, are given in Fig. S6 for the test set.

A scan along the C-S bond-stretching, where the S1 and T1 states approach

each other, is shown in Fig. S5 and compares the potential energy curves

and SOCs of ML models and quantum chemistry. The reference energies

and SOCs obtained with quantum chemistry and ML agree very well.

The Hessians are further used to compute the frequencies of the equilib-

rium geometry of CSH2. The results are included as a supplementary file

in molden format and are compared to reference quantum chemistry values

in Table S5. They agree well to reference values, but are slightly underesti-

mated.
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Figure S6: Scatter plots showing the distribution of energies (A), gradients
(B), and spin-orbit couplings (C) from ML models used to compute Fig. 4
in the main text.

Table S5: Comparison of frequencies of CSH2 obtained from the quan-
tum chemistry (QC) reference method CASSCF(6,5)/def2-SVP and from
SchNarc Hessians.

Normal mode QC [cm−1] SchNarc [cm−1]
1 1014 956
2 1026 990
3 1038 1008
4 1577 1531
5 3267 3247
6 3380 3366
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Figure S7: Potential energy curves and the spin-orbit couplings (summed real
and imaginary values) between singlets and triplets along the C-S stretching
coordinate of CSH2. Continuous lines represent the quantum chemical refer-
ence method CASSCF(6,5)/def2-SVP and dashed lines the ML predictions.
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