
 

1 
 

Additional file 1: Supplementary text, tables and figures 

For: 

Discovery of 20 novel ribosomal leader candidates in bacteria and 

archaea 

Iris Eckert1 and Zasha Weinberg1,* 

 

Supplementary Text 

Candidate r-leaders are consistent with available transcriptomic data 

Each of the 20 r-leader motifs has between 67 and 8,743 examples in various genomic locations in 

various organisms, with a total of 29,730 r-leader examples (Additional file 1: Table S2). We hypothesize 

that each r-leader example regulates its immediately downstream gene, and possibly additional co-

transcribed genes. Thus, if our hypothesis is correct, each r-leader example should be located 

downstream of the transcription start site (TSS) for its regulated gene. By contrast, if the TSS occurs 

downstream of the r-leader, the r-leader would not be transcribed, which could suggest that our 

hypothesis is incorrect. A TSS could also be located within the r-leader such that important conserved 

features would not be transcribed. Such a TSS position would also contradict our hypothesis. Therefore, 

we wished to determine if TSS positions are consistent with our r-leader predictions.  

TSS positions could, in principle, be determined on a genome-wide scale using standard RNA-seq 

experiments. However, such experiments do not provide reliable TSS predictions, because an apparent 

TSS in RNA-seq data could correspond to the 5′ end of a processed RNA [1]. Fortunately, differential 

RNA-seq (dRNA-seq) addresses this problem [1]. We thus searched (explained in next section, sub-

heading “Searching for differential RNA-seq (dRNA-seq) datasets”) for studies that used dRNA-seq or 

related methods to determine TSS sites for organisms that contain a predicted r-leader. In some cases, 

no TSS was provided for the gene that we predicted is regulated by the relevant r-leader. We did not 

analyze these cases, since we cannot be certain where the relevant TSS is. 

Ultimately, we found TSS positions for 11 distinct regulated genes out of the 29,730 r-leader examples 

(Figure S12, Table S3). These 11 regulated genes include examples of eight of the 20 motifs. (Some 

motifs have multiple examples with TSS data.) Most organisms lack published dRNA-seq results, and 

most of our motif examples occur in metagenomic sequences, which also lack dRNA-seq experiments. 

Therefore, only a small fraction of the total r-leader examples had usable TSS data, and we analyzed 

these available data. 

As expected, the TSS sites for all 11 genes were positioned so as to transcribe the r-leader (Figure 

S12). In two cases, there were TSSes that would cause up to two nucleotides of the r-leader to be 
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skipped (Figure S12, see ”L31-Actinobacteria” and “S15-Halobacteria”). However, in both cases, the 

skipped nucleotides are not well conserved, and therefore likely do not belong to the r-leader. Thus, in all 

cases, conserved nucleotides and stems are located downstream of all TSSes 

Searching for differential RNA-seq (dRNA-seq) datasets 

To search for relevant dRNA-seq datasets, we enumerated genera in which many examples of each of 

the 20 novel r-leader motifs occur. We then searched for dRNA-seq data in these genera using multiple 

strategies. The most successful strategy was to use Google Scholar [2] to search for the names of the 

various genera containing the r-leader motifs within papers citing the study that introduced dRNA-seq [1]. 

We also performed ad hoc Google Scholar searches. Our remaining strategy was to search for RNA-seq 

studies within the Short Read Archive (SRA) [3] on the NCBI Web site, especially for the term “dRNA-

seq”. However, we found that the type of experiment was not consistently stated in the SRA metadata. 

Predicting the ligands of new r-leaders based on the ligands of previously established r-

leader 

As noted in the main text, we wish to generate a hypothesis for the ligand of each of the 20 newly found r-

leaders. For r-leaders that are predicted to only regulate genes encoding one r-protein, it is clear that this 

r-protein is the most likely ligand. For r-leaders that regulate genes encoding multiple r-proteins, we 

proposed in the main text that the most likely ligand is whichever r-protein has previously been 

established as the ligand of an earlier r-leader. There is no experimentally established counter-example to 

this rule. 

However, it is clear, given the relatively low number of r-leaders with validated ligands, that we cannot 

rule out the possibility that exceptions might be proven in the future. Also, whereas an E. coli r-leader 

exists whose ligand is L4, experiments suggested L4 does not bind the putative r-leader in B. subtilis that 

regulates similar genes [4]. While these results are suggestive, they do not establish that the ligand is not 

L4 [4]. First the experiments merely failed to show L4 binding, and did not validate a different ligand. 

Second, the experiments were conducted in a surrogate host. Despite these caveats, we believe that the 

use of previously established r-leader ligands is likely to provide good hypotheses for the ligands of newly 

predicted r-leaders. 

Additional notes on motifs, including motifs not described in the main text 

L2 

We found an r-leader upstream of genes that encode L2 in Alphaproteobacteria (Figure S2). In E. coli, the 

L2 and L4 genes form an operon, and the L4 protein is the ligand of an r-leader. However, the 

Alphaproteobacterial operons lack the L4 gene. Therefore, we presume that the most likely ligand is that 

encoded by the immediately downstream genes, i.e., L2. 
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We regard this motif as a borderline prediction (Table 1), because of the relative lack of conserved 

nucleotides around the stems and relatively frequent non-conserved insertions (Additional files 2-4). 

Thus, although this motif likely functions as an r-leader, especially given the precedent that many 

bacterial ribosomal genes are regulated by r-leaders, the data are not as convincing as with other motifs. 

L4 

The L4-Archaeoglobi r-leader motif has many examples that overlap protein-coding genes, which is 

unusual for cis-regulatory RNAs. Our conclusion is that the motif is very likely to correspond to an RNA 

with a conserved secondary structure, and that the motif remains a credible r-leader candidate. However, 

in view of the unusual locations of these r-leaders, we have marked the motif’s assignment as an r-leader 

as relatively borderline (Table 1). We explain our reasoning in detail in the following text. 

Roughly 54% of L4-Archaeglobi r-leader examples (254 sequences) are found within the coding 

regions of genes predicted to encode RNA methyltransferases defined by Pfam [5] entry PF02598. The 

remaining 46% of L4-Archaeglobi r-leader examples (215 sequences) do not occur inside such genes, or 

in other types of genes. We believe many of the 254 r-leaders do, in fact, overlap a coding region, i.e., 

this overlap is not the result of a genome annotation error. This conclusion follows because of the large 

number of overlapping predictions, and since we observed insertions in multiples of three nucleotides 

among affected r-leader sequences. Such insertions suggest a coding function because each codon is 

three nucleotides. Additionally, of the 254 sequences that overlap these genes, there are zero stop 

codons in the third reading frame (i.e., starting with the third nucleotide in each sequence, which 

corresponds to the reading frame of the methyltransferase genes). Based on the number of codons and 

the frequencies of the four nucleotides, the expected number of stop codons in random nucleotides would 

be 217. 

It also appears that many L4-Archaeoglobi motif examples do not overlap the gene, i.e., the absence 

of the gene is also not a genome annotation error. For example, we chose a non-overlapping motif 

example (in RefSeq accession NZ_CM001555.1) and compared it and its surrounding genomic 

nucleotides to a protein encoding an overlapping gene (protein accession WP_049993178.1) using 

BLASTX (which internally translates nucleotide sequences into amino acid sequences in all frames). We 

did not find any similarity with an E-value better than 1. This result provides additional evidence that this 

sequence does not code for an RNA methyltransferase like Pfam entry PF02598. 

We also analyzed whether any of the 215 sequences that do not overlap a gene contained stop 

codons. Such stop codons would suggest the absence of coding function. We investigated all three 

reading frames on the sense strand, and found they all had many stop codons. In the first reading frame, 

there were 6,141 codons among the 215 sequences, of which 117 were stop codons. Based on the 

number of codons and frequencies of the four nucleotides, 206 stop codons would be expected. In the 

second reading frame, 313 of 6,104 codons were stop codons, versus an expected 212. In the third 

reading frame, 79 of 5,971 codons were stop codons, versus 200 expected. Overall, there is no clear 

evidence of coding function in these sequences. 
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One possible concern with this r-leader motif is that, in performing homology searches, we 

inadvertently included sequences that are not homologous. In particular, perhaps the L4-Archaeoglobi 

motif sequences that overlap the methyltransferase genes are not actually homologous to the motif 

sequences that do not overlap these genes. We therefore compared all overlapping sequences to all non-

overlapping sequences using the blastn program from NCBI’s BLAST [6] package with a word size of 7 

and an E-value cutoff of 10-5. Out of the 254 gene-overlapping sequences, 252 had a match to a non-

overlapping sequence that BLAST could find. In the reverse direction, BLAST was able to match 75 L4-

Archaeoglobi motifs examples that do not overlap a methyltransferase gene against motif examples that 

do overlap genes. Since BLAST is not designed for RNA and does not consider secondary structure, it is 

noteworthy that it is able to detect so many similarities. We also used the Infernal software [7] to train a 

covariance model on the motif examples that overlap genes, and used it to search the sequences of non-

overlapping motif examples. We found 175 (out of 215) of the sequences with an E-value better than 10-5, 

and 190 with an E-value better than 10-2. Therefore, there is strong evidence that the motif examples that 

overlap genes are homologous to the motif examples that do not overlap genes. 

Additionally, we found that an alignment of the 254 sequences that overlap genes exhibits covariation 

according to R-scape—including E-values better than 10-5. An alignment of the 215 sequences that do 

not overlap RNA methyltransferase genes similarly exhibits covariation, with R-scape E-values below 10-

5. Thus, each group of motif examples independently has evidence of covariation. 

Thus, the L4-Archaeoglobi motif likely represents an RNA that sometimes occurs within a protein-

coding gene, and sometimes does not. The RNA could therefore regulate the downstream gene from 

transcripts that include the overlapping methyltransferase genes. Since 46% of L4-Archaeoglobi RNAs 

neither overlap nor are near to methyltransferase genes, it seems unlikely that the function of the RNA is 

primarily related to these protein-coding genes. However, the unusual arrangements of this motif reduce 

our confidence L4-Archaeoglobi RNAs function as r-leaders (as reflected in Table 1). 

Another possibility to consider is that the motif does not function as a cis-regulatory RNA and does not 

have a conserved RNA secondary structure. However, the covariation information is significant both 

quantitatively (Table S2 and above text) and qualitatively. Therefore, we believe that the motif likely does 

function as an RNA. 

L13 

This motif consists of two adjacent hairpins: a 5´ and a 3´ hairpin (Figure S3). Although the 3´ hairpin in 

this motif is well supported by covariation, the 5´ hairpin is less clear, due to a relatively high variation in 

lengths of unpaired regions, and the relative absence of strong sequence conservation. This combination 

of features allows the possibility that the base pairs arise by chance. In this view (that the base pairs are 

not biological, but rather arise by chance), the variable lengths of unpaired regions give the computer 

great flexibility in finding spurious base pairs located somewhere in a relatively long sequence. Thus, 

such variable lengths can be associated with false-positive stems. Arguing against this view, however, we 

do notice that even sequences that share the same lengths exhibit covariation within the putative 5´ 
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hairpin. Since the sequences have similar lengths, they appear to be related, and the covariation within 

these sequences is less likely to arise by chance. Moreover, if the 5´ hairpin truly occurs in these related 

sequences, then it is reasonable to assume that it occurs in other sequences. Therefore, this 5´ hairpin is 

likely of biological importance to the host, although our level of confidence is not as high as with other 

hairpins in the drawings of the various motifs. 

L17 

This motif (Figure S5) has a 5´ hairpin whose biological significance is not completely clear because of 

variation in lengths of unpaired regions and a relative lack of sequence conservation, similar to the case 

with the L13 r-leader motif, above. As with the L13 hairpin, the 5´ hairpin in the L17 r-leader motif exhibits 

covariation even among similar sequences. There are, however, two identical sequences in which no 

compelling stem can be found. We conclude that the hairpin in the L17 motif is likely to be biological, at 

least in most members of the motif. 

L20 

The r-leader is immediately upstream of the L20 gene and immediately downstream of the L35 gene. In 

E. coli and B. subtilis, the L35 gene occurs immediately upstream of the L20 gene, but in these 

organisms, the relevant r-leaders occur immediately upstream of the L35 gene. Thus, the order of the 

genes is the same, but the r-leader in Deltaproteobacteria occurs between the genes. Given the 

precedents that L20 is an r-leader ligand, we hypothesize that the new Deltaproteobacteria motif also 

binds L20, and that the position of the L35 gene is therefore of little importance. 

L31 

Zinc proteins and L31 motifs 

To determine if the L31 motifs are likely to have a function related to the zinc binding properties of some 

L31 proteins, we analyzed the regulated proteins to determine how often the motifs regulated proteins 

that contained or did not contain the zinc-binding peptide motif. For the L31-Coriobacteria and L31-

Firmicutes motifs, 60% and 67% of the regulated genes encode proteins with the zinc-binding element 

(Table S5). Thus, there is a mixture of zinc-binding and non-binding proteins encoded by the genes that 

are apparently regulated by these motifs. Thus, these two motifs probably have no relationship to zinc 

levels. 

In contrast, the other three L31 motifs are consistently associated with one type of protein (Table S5), 

but the association is not consistent across these three motifs. In particular, while the motifs in 

Gammaproteobacteria and Actinobacteria are almost always associated with proteins that appear 

capable of binding zinc, the Corynebacteriacaea L31 motif only regulates genes encoding proteins that 

lack the zinc-binding pattern. It is possible that these three L31 motifs do act in zinc regulation, but it 

seems mostly likely that all five L31 motifs should have the same biochemical function. Moreover, we note 

that there is no organism that contains more than one type of these motifs. Therefore, it does not appear 
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to be the case that one motif regulates zinc-binding proteins, while another motif regulates proteins that 

do not bind zinc. Thus, if it is indeed the case that all five motifs have the same biochemical function, 

these data suggest that the L31 motifs are not likely to play a role in zinc homeostasis. 

Other information on L31 r-leaders 

Three motifs are found in the phylum Actinobacteria, specifically those distributed in the taxa 

Actinobacteria, Coriobacteria and Corynebacteriaceae (Table 1, “Lineage”). However, these three motifs 

occur in distinct organisms; no single organism contains more than one type of L31 motif. 

Among the L31 motif examples in Firmicutes, the sequence CUU is found often immediately upstream 

of the conserved hairpin. This sequence could bind the downstream gene’s Shine-Dalgarno sequence. 

However, a much larger number of motif instances lack the conserved CUU. Therefore, its significance is 

unclear. We have depicted a subset of L31 r-leaders in Firmicutes that have a CUU extension on their 5´ 

ends (Figure S7). 

There is a potential stem in the L31-Gammaproteobacteria motif involving the SD sequence. The 5´ 

side of the stem involves nucleotides in the region depicted as “5-12 nt” (Fig. 2) and the GC dimer that 

occurs immediately 5´ to that region. The stem’s 3´ side involves nucleotides in the SD sequence and the 

U nucleotide immediately 3´ it. We did not indicate this stem in drawings or alignments, because it is not 

supported by covariation. However, it is plausible and might form part of a regulatory mechanism. 

The L31-Gammaproteobacteria motif has the sequence UUCUGUAU(5-7nucs)GCC 40-120 

nucleotides upstream of many r-leaders. However, these sequences seem to be associated with 

upstream genes that encode a DEAD-like helicase. When these genes are absent, the sequence is not 

found. Therefore, we do not believe that this partially conserved sequence is related to the L31-

Gammaproteobacteria r-leader motif. 

S4 

Although Firmicutes have only one previously established S4 r-leader, two distinct multiple-sequence 

alignments have been prepared of this r-leader (Figure S8). The first alignment to be published [8] was 

based on a comparative analysis of sequences upstream of S13 genes. A subsequent study [9] 

considered experimental data [10, 11] and adjusted the earlier alignment to conform to these 

experimental results. Both of these alignments exhibit a highly conserved GUAA sequence nearby to, and 

5´ to a hairpin. In both alignments, there is a conserved GCU in the hairpin’s terminal loop. In the earlier 

study [8], there is also a conserved YGA sequence 3´ to the hairpin, which is not aligned in the second 

study [9]. 

Our S4 motif in Fusobacteria has the GUAA sequence 5´ to a stem that contains a three-stem 

junction. (The motif has additional conserved nucleotides 5´ to the GUAA sequence, but this region is not 

conserved in the Firmicutes r-leader.) 3´ to the enclosing stem in the new Fusobacteria motif is a 

conserved YGA sequence, resembling the Firmicutes motif in the earlier study’s [8] analysis. Oddly, the 

GUAA and YGA sequences are shifted in their positions relative to the stem when comparing the 
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Firmicutes motif to the Fusobacterial motif. This dissimilarity cannot be resolved by removing or adding 

base pairs. The Fusobacterial motif does not have a GCU sequence in either of the terminal loops that 

the stem encloses. However, one of the stems does have a conserved GUA sequence. It is not clear if 

these conserved sequences are related. 

The four novel motifs differ in terms of which genes they regulate in addition to the S4 gene (rpsD), but 

the regulated genes for each new r-leader are similar to those of some previously published r-leaders. 

Two S4 r-leaders have been published. The Gammaproteobacteria S4-binding r-leader occurs 

immediately upstream of the S13 gene (rpsM), and S4 is encoded by the third gene in the regulated 

operon [12], with a gene encoding S11 in between. The relevant r-leader in Firmicutes is immediately 

upstream of the S4 gene, and the S13 and S11 genes are located elsewhere in the genome. Among the 

novel r-leaders, the Fusobacteria and Clostridia S4 motifs (Table 1) occur upstream of the S13 gene, with 

S11 and S4 genes located further downstream. These r-leader motifs are also immediately upstream of 

the L36 gene. These characteristics of the Fusobacteria and Clostridia S4 motifs are similar to those of 

the Gammaproteobacterial r-leader. Two other new r-leader motifs (in Bacteroidia and Flavobacteria; see 

Table 1) are found directly upstream of the S4 gene (rpsD), and genes encoding S13 and S11 are found 

immediately upstream of the r-leaders. This gene order is the same as in E. coli, but in that organism, the 

r-leader is upstream of the S13 gene. 

S6:S18 

The start codon downstream of S6:S18-Chlorobi r-leaders is conserved as UUG in annotated positions 

(Figure S9). Although gene annotations often contain incorrect start codons, the consistency of the 

predictions in all sequences suggests that the start codon was correctly annotated. 

S15 

The new motif upstream of S15 genes in Flavobacteria (Figure S10) has strong evidence to support its 

assignment as an RNA, but its function as an r-leader is less clear. The sequences belonging to the S15-

associated motif in Flavobacteria contain a non-essential hairpin that exhibits covariation. The typical 

sequence pattern (TAxxTTTG) corresponding to a Flavobacteria promoter [13] occurs immediately 

upstream of the motif. The hairpin follows in most sequences, but many sequences have a short 

sequence (usually fewer than 6 nucleotides) that does not form base pairs. 3´ to the hairpin region are 

several conserved nucleotides that end in the start codon. Given the promoter sequence and the 

covariation in the hairpin, it is clear that this motif is transcribed as RNA. However, sequences missing the 

hairpin thereby lack any demonstrable secondary structure, while all r-leaders studied so far are believed 

to exhibit a conserved secondary structure in all cases. Moreover, we do not find any compelling similarity 

between the conserved nucleotides and the rRNA binding site for S15. Therefore, it is unclear whether 

this motif functions as an r-leader. 
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There are some positions within the archaeal motifs that could correspond to stacked G-C, G-U base 

pairs, one of the conserved features of the rRNA’s S15 protein binding site. However, we judged the 

similarity to be uncompelling, given that this is such a simple pattern.  

S16 

The S16 motif in Flavobacteria (Figure S11) is consistently located upstream of genes encoding S16. 

Downstream of the S16 gene are usually rimM genes. rimM genes encode proteins involved in 16S rRNA 

processing, and do not encode an r-protein. Despite the presence of rimM genes, this motif likely 

functions as an S16-binding r-leader for two reasons. First, it is less clear that the rimM genes are part of 

the regulated operon, due to an inconsistent distance between the genes (often close to 300 nucleotides) 

and occasional cases in which the rimM gene is missing. If the rimM genes are, in fact, not part of the 

operon, then it is clear that they have no relevance for the function of the RNA motif. 

Second, previously validated r-leaders are known to regulate genes that do not encode r-proteins [12]. 

For example, the experimentally validated L20 r-leader in B. subtilis is found immediately upstream of infC 

genes, which encode translation initiation factor 3 [12]. However, this r-leader binds the L20 r-protein, 

which is actually encoded by the third gene in the operon. Another similar example is that of the S6:S18 r-

leaders validated in E. coli and B. subtilis [12]. This r-leader binds S6:S18, but regulates genes that 

encode single-strand-DNA-binding proteins. Thus, there are at least two established r-leaders that bind r-

proteins, but regulate genes that do not encode r-proteins. 

Thus, the rimM genes might not be part of the operon regulated by the S16-associated r-leaders. 

Moreover, if the rimM genes are part of the operon, this would not contradict the hypothesis that the motif 

is an S16 r-leader, given the precedents mentioned in the previous paragraph for L20 and S6:S18 r-

leaders. 

The S16 r-protein is not established or proposed as the ligand of any previously published r-leader.  
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Supplementary Tables and Figures 

Table S1. Previously published or predicted r-leaders. This table is expanded from a previously published 

review paper [12], using data from Rfam [14] and a recent paper [15]. The table includes only motifs that 

are either experimentally confirmed or have a published predicted multiple-sequence alignment. “R-

protein ligand”: the experimentally verified or proposed ligand protein, according to the original paper. 

Multiple r-leaders that exhibit distinct structures and bind the same protein ligand are listed in separate 

rows. In some cases, the ligand has not been proposed. In such cases, the products of the proximal 

genes in the downstream operon are listed. “Experimentally confirmed?”: “yes” if any confirmatory 

experiment was performed. Information on experimentally confirmed r-leaders is available in a previous 

review [12]. “Lineage”: the taxon that contains known examples of the r-leader. “Alignment citation”: 

citations reflect works that produced multiple-sequence alignments including multiple homologs. If such 

an alignment is not available, an earlier paper describing an r-leader in a single organism is given. “Rfam 

Database accession”: accessions are given for r-leaders present in the Rfam Database [14]. Special 

annotations: (a) Although the L7Ae protein is part of the archaeal ribosome, it is also present in many 

other RNA-protein complexes [16, 17], so it is at least not purely an r-protein. Thus, the assignment of this 

RNA as an r-leader depends on the precise definition of the term “r-leader”. We included it in the table, 

since the published r-leader has been shown to regulate the L7Ae gene by binding L7Ae. (b) The 

alignment in the Rfam Database is independent of the alignment present in the cited work. The 

alignments might complement each other. (c) The motif occurs downstream of the associated genes, and 

therefore likely functions in the 3´ UTR. This motif is therefore technically not an r-leader, even though it 

might bind the L17 r-protein and participate in feedback regulation. (d) No alignment is available for this r-

leader, which is known only in one organism. (e) These alignments exhibit little or no covariation, except 

in a Rho-independent terminator, so the true secondary structure is unclear, and it is difficult to compare 

them to the other predicted S7 or S12 r-leaders. Therefore, it is uncertain if these are truly distinct 

structures. (f) S10 refers to the product of the first gene in an operon that contains many genes that each 

might encode the ligand of this gene. The correct ligand has not been experimentally determined. 

R-protein ligand 

(confirmed or 

predicted) 

Experimentally 

confirmed? 

Lineage Alignment 

citation 

Rfam Database 

accession (if 

any) 

L1 Yes Archaea & Bacteria [18]  

L4 Yes Gammaproteobacteria [18]  

L7Ae (a) Yes Archaea [16, 17]  

L10 Yes Bacteria [18] RF00557 (b) 

L13, S9 No Firmicutes [8] RF00555 

L13 Yes Gammaproteobacteria [15]  

L17 (c) No Firmicutes [19] RF01708 
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L19 No Firmicutes [8] RF00556 

L20 Yes Firmicutes [9] RF00558 

L20 Yes Gammaproteobacteria [18]  

L20 Yes E. coli (d) [20]  

L21, L27 No Firmicutes [8] RF00559 

L25 Yes Enterobacteria [21]  

L28 No Gammaproteobacteria [15]  

L34 No Gammaproteobacteria [15]  

S1 No Cyanobacteria [22]  

S1 Yes Gammaproteobacteria [18]  

S2 No Pelagibacter [23] RF01815 

S2 Yes Bacteria [18] RF00127 (b) 

S4 Yes Gammaproteobacteria [18] RF00140 

S4 Yes Firmicutes [9]  

S6:S18 Yes Bacteria (but not Chlorobi) [24, 25]  

S7 Yes Gammaproteobacteria [18]  

S7, S12 (e) No Pelagibacter [23] RF01823 

S7, S12 (e) No Pseudomonas [26] RF01773 

S7, S12 (e) No Rickettsia [26] RF01774 

S8 Yes Gammaproteobacteria [18]  

S10 (f) No Firmicutes [8]  

S15 No Actinobacteria [27]  

S15 Yes Alphaproteobacteria [27]  

S15 No Chlamydia (d) [27]  

S15 Yes Firmicutes [9]  

S15 Yes Gammaproteobacteria [18] RF00114 

S15 Yes Thermus thermophilus (d) [28]  

S20 Yes E. coli (d)  [29]  
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Table S2. Base pair and covariation statistics of predicted r-leaders, including statistical support of RNA 

covariation from R-scape. Note: due to issues described in Methods, we additionally evaluated 

covariation information manually. This table provides the following information for each predicted r-leader 

(including the three r-leaders we found that strongly resemble previously established leaders). “Number of 

seqs.”: the number of instances of the r-leaders within the sequence databases we searched. Note: the 

29,730 r-leader examples mentioned in the main text do not include the three motifs (L19-Flavobacteria, 

L25-Gammaproteobacteria and S10-Clostridia) that we concluded are very similar in conserved features 

to previously published r-leader motifs. “Avg. len.”: the average length in nucleotides of the motif. “All”: the 

total number of base pairs in the alignment. Note: this includes aligned columns that have gaps in the 

vast majority of motif members, since there is often significant variation in the lengths of stems. 

“Invariant”: the Watson-Crick or G-U base pair is not observed to change. (Corresponds to red shading in 

our diagrams.) “Covary (R2R)”: covariation is predicted by R2R, but not by R-scape. (Corresponds to blue 

shading in our diagrams.) “Covary (R-scape)”: covariation is predicted by R-scape (and possibly also by 

R2R). (Corresponds to green shading in our diagrams.) Covariation predicted by R-scape [30] is 

statistically significant and has an E-value < 0.05. (E-values are similar to p-values.) Note: base pairs in 

gappy columns are generally not drawn in the diagrams, but are reflected in the numbers in this table. 

Therefore, these numbers will generally be higher than the number of base pairs in the corresponding 

diagrams. 

r-leader Number 

of seqs. 

Avg. 

len. 

Number of base pairs 

   All Invariant Covary  

(R2R) 

Covary  

(R-scape) 

L2-Alphaproteobacteria 808 70 42 9 3 13 

L4-Archaeoglobi 654 94 49 5 10 24 

L13-Bacteroidia 1380 76 26 3 5 16 

eL15-Euryarchaeota 1001 57 153 46 27 11 

L17-Actino-Proteobacteria 548 56 26 6 6 13 

L19-Flavobacteria 2361 28 9 3 1 5 

L20-Deltaproteobacteria 202 68 25 4 12 6 

L25-Gammaproteobacteria 6732 26 139 19 36 18 

L31-Actinobacteria 1737 49 40 3 9 11 

L31-Coriobacteria 303 33 8 1 2 4 

L31-Corynebacteriaceae 360 76 51 5 10 8 

L31-Firmicutes 8296 32 18 0 6 6 

L31-Gammaproteobacteria 8743 54 27 4 8 11 
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S4-Bacteroidia 558 38 10 2 3 5 

S4-Clostridia 496 65 65 3 26 17 

S4-Flavobacteria 931 34 11 1 0 7 

S4-Fusobacteriales 561 65 36 5 12 11 

S6:S18-Chlorobi 67 78 31 4 14 6 

S10-Clostridia 1294 86 41 4 19 13 

S15-Flavobacteria 2449 62 26 7 10 6 

S15-Halobacteria 285 67 55 14 7 11 

S15-Methanomicrobia 194 79 49 21 10 7 

S16-Flavobacteria 157 35 11 2 3 3 
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Table S3. Additional data on experimentally annotated transcription start sites (TSSes) and predicted r-

leaders. This table presents data underlying and relating to Figure S12. “R-leader name”: as in Figure 

S12. “Organism (RefSeq sequence accession)”: the full name of the organism, and the RefSeq [31] 

accession of the relevant chromosome. “Citation”: a citation of the source of the TSS data. The 

coordinates in these papers refers to the RefSeq sequence accession given in the previous column. (In 

some cases, they refer to a sequence in the GenBank database [32] that is identical to the given RefSeq 

accession.) ”Upstream gene position”: the coordinates of the 5′ and 3′ ends of the upstream gene (which 

may encode a protein or a tRNA). If the 5′ coordinate (first number) is greater than the 3′ coordinate 

(second number), then the upstream gene is located on the reverse-complement strand of the RefSeq 

sequence. This information comes from the RefSeq genome annotation. “Position of TSS(es)”: list of TSS 

positions. This information comes from the given citation. “R-leader position”: the coordinates of the 5′ 

and 3′ ends of the r-leader regulating the given gene (next column). This information comes from our 

alignments (Additional file 2). “Regulated gene”: the coordinates of the 5′ and 3′ ends of the gene 

immediately downstream of the r-leader. We predicted that this gene is regulated by the r-leader. This 

information comes from the RefSeq genome annotation. “TSS pos.”: same meaning as in Figure S12. 

These values can be calculated from the “Position of TSS(es)” and “R-leader position” columns. 

 

R-leader name Organism 

(RefSeq 

sequence 

accession) 

Citation Upstream 

gene 

position 

Position 

of 

TSS(es) 

R-leader 

position 

Regulated 

gene 

position 

TSS 

pos. 

eL15-

Euryarchaeota 

Haloferax 

volcanii DS2 

(NC_013967.1) 

[33] 497121-

496045 

495928 495895-

495835 

495816-

495226 

-33 

eL15-

Euryarchaeota 

Thermococcus 

kodakarensis 

KOD1 

(NC_006624.1) 

[34] 1280610-

1281680 

1280551 1280545-

1280502 

1280482-

1279898 

-6 

L20-Delta-

proteobacteria 

Geobacter 

sulfurreducens 

(NC_002939.5) 

[35] 1664628-

1664825 

1664821,

1664819,

1664816 

1664846-

1664908 

1664915-

1665268 

-25 

L31-

Actinobacteria 

Streptomyces 

coelicolor A3(2) 

(NC_003888.3) 

[36] 5828747-

5829895 

5829951 5829950-

5829996 

5830020-

5830244 

+1 

L31-Coryne-

bacteriaceae 

Coryne-

bacterium 

glutamicum 

[37] 928712-

928398 

928804,9

28836,92

8840 

928877-

928932 

928944-

929210 

-37 
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ATCC 13032 

(NC_006958.1) 

L31-Firmicutes Bacillus 

licheniformis 

DSM 13 

(NC_006322.1) 

[38] 3780008-

3781291 

3779958 3779923-

3779890 

3779880-

3779680 

-35 

L31-Firmicutes Staphylo-

coccus aureus 

USA300-

ISMMS1 

(NC_010079.1) 

[39] 2237762-

2236446 

2236392 2236367-

2236338 

2236328-

2236074 

-25 

L31-

Gammaproteo-

bacteria 

E. coli 

(NC_000913.3) 

[40] 4126810-

4124612 

4126908,

4126911,

4126913 

4126954-

4127006 

4127013-

4127225 

-41 

L31-

Gammaproteo-

bacteria 

Shewanella 

oneidensis MR-

1 

(NC_004347.2) 

[41] 4280501-

4279464 

4279371,

4279364 

4279346-

4279296 

4279288-

4279076 

-18 

S6:S18-

Chlorobi 

Chlorobaculum 

tepidum TLS 

(NC_002932.3) 

[42] 2021087-

2020326 

2020246 2020240-

2020165 

2020134-

2019739 

-6 

S15-

Halobacteria 

Haloferax 

volcanii DS2 

(NC_013967.1) 

[33] 1048559-

1048630 

1048442 1048444-

1048382 

1048314-

1047847 

+2 
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Table S4. R-leaders and their operons in E. coli and B. subtilis. Based on data compiled in [12]. The 

column “Distinct RNA structures?” refers to whether the E. coli and B. subtilis r-leaders belong to different 

structural classes. Question marks indicate cases where no relevant r-leader in B. subtilis has been 

established or its ligand has not been experimentally determined. Out of eight r-leaders in E. coli that 

regulate operons containing multiple genes, five of their protein ligands are also ligands of an r-leader in 

B. subtilis, and in two of these five cases, the r-leaders are not structurally related. In the remaining three 

cases, no B. subtilis r-leader is known for any of the r-proteins encoded by the operons. The data in this 

table support two conclusions regarding multi-gene operons, as described in the main text. First, for r-

leaders that regulate multi-gene operons, the ligand is often not encoded by the immediately downstream 

gene. For example, the top row shows that the immediately downstream gene of the L1-binding r-leader 

in E. coli actually encodes L11. Thus, the ligand (L1) is not encoded by the immediately downstream 

gene (which encodes L11). Second, this table also agrees with the hypothesis that certain r-proteins are 

the target of multiple r-leaders in multiple organisms, even when the r-leaders exhibit distinct structures. 

For example, the fifth row concerns the two r-leader motifs that bind L20, one in E. coli and one in B. 

subtilis. In both cases, L20 is the ligand, even though L35 is also encoded by a gene in the regulated 

operon. 

R-proteins 

encoded by operon 

in E. coli (in order 

of genes) 

Ligand of r-leader 

in E. coli 

R-proteins 

encoded by operon 

in B. subtilis (in 

order of genes) 

Ligand of r-leader 

in B. subtilis 

Distinct RNA 

structures? 

L11, L1 L1 L1 L1 No 

S10, L3, L4, L23, 

L2, S19, L22, S3, 

L16, L29, S17, 

L14, L24 

L4 S10, L3, L4, L23, 

L2, S19, L22, S3, 

L16, L29, S17, 

L14, L24, L5, S14, 

S8, L6, L18, S5, 

L30, L15 

? ? 

L10:L7/L12 L10:L7/L12 L10:L7/L12 L10:L7/L12 No 

L13, S9 L13  ? ? 

L35, L20 L20 L35, L20 L20 Yes 

L25 L25  ? ? 

S1 S1  ? ? 

S2 S2 S2 S2 No 

S13, S11, S4, L17 S4 S4 S4 Yes 
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S6:S18, L9 S6:S18 S6:S18 S6:S18 No 

S7 S7  ? ? 

L5, S14, S8, L6, 

L18, S5, L30, L15 

S8 S10, L3, L4, L23, 

L2, S19, L22, S3, 

L16, L29, S17, 

L14, L24, L5, S14, 

S8, L6, L18, S5, 

L30, L15 

? ? 

S15 S15 S15 S15 Yes 

S20 S20  ? ? 
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Table S5. Association of L31 r-leader motifs with CXXC zinc-binding peptide motifs. Some r-motifs (i.e., 

the L31 r-leader motifs in Coriobacteria and Firmicutes) do not appear to correlate with zinc-binding. 

These motifs are very unlikely to play a role in zinc homeostasis. The remaining three motifs are either 

consistently associated with zinc-binding or consistently associated with non-zinc-binding proteins. It is 

possible that one or more of these three motifs is a regulator related to zinc, but we find this possibility 

less likely in view of the fact that the five motifs are not consistent with each other. See Supplementary 

Text for details. 

Motif Name Number of 

regulated genes 

encoding 

complete proteins 

with CXXC 

(i.e., zinc-binding) 

Number of 

regulated genes 

encoding complete 

proteins lacking 

CXXC (i.e., non-

zinc-binding) 

Percentage 

that 

contain 

CXXC 

L31-Actinobacteria 2052 0 100.0% 

L31-Coriobacteria 50 33 60.2% 

L31-Corynebacteriaceae 0 100 0.0% 

L31-Firmicutes 555 277 66.7% 

L31-Gammaproteobacteria 500 1 99.8% 
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Table S6. Alignments from the Rfam Database [14] that were used to analyze binding sites within rRNAs. 

Domain of life rRNA molecule Rfam accession 

Bacteria and Archaea 5S RF00001 

Bacteria 16S RF00177 

Bacteria 23S RF02541 

Archaea 16S RF01959 

Archaea 23S RF02540 
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Table S7. Papers used to analyze rRNA nucleotides that are known to interact with specific r-proteins. All 

r-proteins were analyzed using PyMol as described in Methods, but where a paper was available, we 

found that the PyMol results did not deviate significantly from the previously established interactions. 

 

R-protein Citations 

L2 [43–45] 

L3 [46, 47] 

L4 [48, 49] 

L6 [50, 51] 

L13 None 

L15 [52] 

L17 None 

L19 None 

L20 [20, 53, 54] 

L25 [55, 56] 

L31 None 

S4 [57–59] 

S6 [24, 25] 

S13 [60, 61] 

S15 [12, 27, 62, 63] 

S16 [64] 
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Figure S1 (next page). New r-leader motifs whose structural features are essentially the same as a 

previously published r-leader. Left panel: novel motifs (this study); the text “novel” refers to the alignments 

produced in this work. Middle panel: relevant binding sites in rRNA. Right panel: previously published r-

leaders binding the same r-proteins that were experimentally validated or computationally predicted, and 

that have published multiple-sequence alignments. Annotations are the same as in Figs. 2 and 3. Helix 

numbers refer to the same source as Fig. 3. All drawings of previously predicted r-leaders in all Figures 

S1-S11 use alignments that were included as supplementary data of the relevant paper or are available in 

the Rfam Database [14] (identifying information in Table S1). (a) L25 r-leader in Gammaproteobacteria. 

Our alignment is similar to the previously published alignment [21], but has additional potential hairpins 

and is present in a wider variety of Gammaproteobacteria. The binding site in 5S rRNA for L25 is shown, 

with yellow shading as in Fig. 3. The previously published alignment was not made available in machine-

readable format, and is therefore not shown. (b) S10 r-leader in Fusobacteria (this study). Two disjoint 

S10-binding regions in 16S rRNA and the L4-binding region are shown in the middle column. S10 is 

encoded by the immediately downstream gene, and L4 is a previously established r-leader ligand [8]. The 

yellow shading of the r-leader motifs shows a possible similarity with the rRNA binding site for S10, based 

on our analysis. (c) L19 r-leader in Flavobacteria. The internal loop enclosed by a C-G and a U-A base 

pair significantly resembles the previously published Firmicutes motif [8]. Two relevant binding sites in 

different parts of 16S rRNA and in 23 rRNA are shown. The figure appears on the next page. 
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Figure S2. Novel r-leaders, rRNA and previously established r-leaders related to r-proteins L2 and L4. 

The left, middle and right panels have the same meaning as in Figure S1. Annotations are the same as in 

Figs. 2 and 3. Helix numbers refer to the same source as Figure 3. 
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Figure S3. Novel r-leader, rRNA and previously established r-leaders related to r-protein L13. The left, 

middle and right panels have the same meaning as in Figure S1. Two disjoint regions of the rRNA make 

contact with the r-protein. Annotations are the same as in Figs. 2 and 3. Helix numbers refer to the same 

source as Fig. 3. 
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Figure S4. Novel r-leader, rRNA and previously established r-leaders related to r-protein eL15. The left, 

middle and (empty) right panels have the same meaning as in Figure S1. The right panel is empty 

because no eL15 r-leader has previously been established or predicted. The information in this figure is 

the same as in Fig. 3. We included it as a supplementary figure so that the supplementary figures are 

comprehensive. Annotations are the same as in Figs. 2 and 3. Helix numbers refer to the same source as 

Fig. 3. 
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Figure S5. Novel r-leader, rRNA and previously established r-leaders related to r-protein L17. The left, 

middle and right panels have the same meaning as in Figure S1. The previously published L17 

Downstream Element (L17DE) motif [19] is shown. However, if the L17DE motif does bind the L17 

protein, it would function in the 3´ UTR, and therefore would not fit the strict definition of an r-leader. 

Annotations are the same as in Figs. 2 and 3. Helix numbers refer to the same source as Fig. 3. 
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Figure S6. Novel r-leader, rRNA and previously established r-leaders related to r-protein L20. The left, 

middle and right panels have the same meaning as in Figure S1. An additional previously published L20 

r-leader in Gammaproteobacteria is not shown because no alignment for it is available [12]. Annotations 

are the same as in Figs. 2 and 3. Helix numbers refer to the same source as Fig. 3. 
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Figure S7. Novel r-leaders, rRNA and previously established r-leaders related to r-protein L31. The left, 

middle and right panels have the same meaning as in Figure S1. A version of the Firmicutes L31 motif 

with a conserved CUU sequence on its 5’ end is depicted. This version of the motif was not depicted in 

Fig. 2 because we are not persuaded that the CUU sequence is truly of biological significance (see 

Supplementary text). The right panel is empty, because no r-leaders for L31 have previously been 

published. Annotations are the same as in Figs. 2 and 3. Helix numbers refer to the same source as Fig. 

3. 
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Figure S8 (next page). Novel r-leaders, rRNA and previously established r-leaders related to r-protein S4. 

The left, middle and right panels have the same meaning as in Figure S1. An additional region of 16S 

rRNA that interacts with the S4 is shown that is not depicted in Fig. 3. This region was not depicted in Fig. 

3 because it does not seem similar to any of the motifs. The rRNA binding site of S13 is also shown 

because two of the motifs are found immediately upstream of genes that encode S13. We did not, 

however, find any meaningful evidence of rRNA imitation related to S13. Two versions of an alignment of 

S4 leaders in Firmicutes have been published. We compared our motifs to both (see text). They are 

labelled in the figure as “(previously known, Yao, et al.)” [8] and “(previously known, Deiorio-Haggar, et 

al.)” [9]. Annotations are the same as in Figs. 2 and 3. Helix numbers refer to the same source as Fig. 3. 

The figure appears on the next page. 
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Figure S9. Novel r-leader, rRNA and previously established r-leaders related to r-proteins S6:S18. The 

left, middle and right panels have the same meaning as in Figure S1. Annotations are the same as in 

Figs. 2 and 3. Helix numbers refer to the same source as Fig. 3. 
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Figure S10. Novel r-leaders, rRNA and previously established r-leaders related to r-protein S15. The left, 

middle and right panels have the same meaning as in Figure S1. The putative promoter upstream of the 

Flavobacteria S15 r-leader motif (see Supplementary Text) is shown using DNA nucleotides (i.e., T 

instead of U), and there is a gap between the DNA sequence and the potential start of the RNA 

sequence. The hairpin depicted in cartoon form exhibits covariation, but is only present in 89% of the 

sequences. Archaeal and bacterial versions of the rRNA binding site are shown, due to the mixture of 

bacterial and archaeal motifs we found. The previously predicted S15 r-leader in Thermus thermophilus is 

not shown because no alignment is available. Annotations are the same as in Figs. 2 and 3. Helix 

numbers refer to the same source as Fig. 3. 
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Figure S11. Novel r-leader, rRNA and previously established r-leaders related to r-protein S16. The left, 

middle and right panels have the same meaning as in Figure S1. No S16 r-leaders have previously been 

proposed. Annotations are the same as in Figs. 2 and 3. Helix numbers refer to the same source as Fig. 

3. 
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Figure S12. Experimentally determined transcription start sites (TSSes) are consistent with a cis-

regulatory role for our r-leader motifs. We found experimentally annotated TSS data for 11 specific genes 

that we predicted to be regulated by an example of one of the 20 new r-leaders (see Additional file 1: 

Supplementary text, under sub-heading “Candidate r-leaders are consistent with available transcriptomic 

data”). “R-leader name”: predicted ligand and lineage of relevant r-leader (refers to Table 1). Some 

lineages are abbreviated. “Organism”: the organism in which TSS experiments were conducted. “TSS 

pos.”: position of the TSS relative to the 5′ end of the r-leader. If there are multiple TSSes, the TSS 

nearest the gene is used. Negative values mean that the TSS is upstream of the r-leader, so the r-leader 

is transcribed. Positive values mean that the given number of r-leader nucleotides would be skipped. 

These numbers are low (at most +2; see text). Genome cartoons are to scale (scale bar: lower right). 

Genes and r-leaders are depicted as arrows whose direction corresponds to their DNA strand. The TSS 

or TSSes for the putatively regulated gene are shown as vertical lines, with a thin arrow above them. The 

name of the regulated gene is given. Additional data, citations and underlying numbers are provided 

(Additional file 1: Table S3). 
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