**Supplementary Table 1.** The 7-day treatment with BME (50 mg/kg)-induced changes in the expression levels of genes involved in neurogenesis and/or cognitive function in adolescent mice. A cutoff value of multimodal P < 0.05 and fold-change > 2 or < -2 were set. The fold change of down-regulation of genes was indicated by the values in brackets. The RNA-seq results were analyzed by using David software from 6 mice per group. Gene functions were identified by using Genecards database (https://www.genecards.org).

| Gene       | Gene name                       | Fold   | Function                                                                                           |
|------------|---------------------------------|--------|----------------------------------------------------------------------------------------------------|
| symbol     |                                 | change |                                                                                                    |
| Adnp       | Activity-dependent              |        | Potential transcription factor. May mediate some of the neuroprotective peptide VIP-associated     |
|            | neuroprotective protein         | 2.12   | effects involving normal growth and cancer proliferation. When isolated from the sequence,         |
|            |                                 |        | neuroprotective peptide provides neuroprotection against the amyloid-beta peptide.                 |
| Aff2 AF4/F | AF4/FMR2 family, member 2       | 2.32   | RNA-binding protein. Might be involved in alternative splicing regulation through an interaction   |
|            |                                 |        | with G-quartet RNA structure. Play a role in brain development and learning or memory.             |
| Barhl2     | BarH-like 2 (Drosophila)        |        | Potential regulator of neural basic helix-loop-helix genes. GOBP indicated that gen play a role in |
|            | 3.2.                            | 3.22   | nervous system development and neuron migration.                                                   |
| Cel5       | Chemokine (C-C motif) ligand 5  |        | May be an agonist of the G protein-coupled receptor GPR75, stimulating inositol trisphosphate      |
|            |                                 | (2.51) | production and calcium mobilization through its activation. May play a role in neuron survival     |
|            |                                 |        | through activation of a downstream signaling pathway involving the PI3, Akt and MAP kinases.       |
| Chat       | Choline acetyltransferase       | 3.97   | Catalyzes the reversible synthesis of acetylcholine (ACh) from acetyl CoA and choline at           |
|            |                                 |        | cholinergic synapses; phosphatidylcholine biosynthetic process, neurotransmitter secretion,        |
|            |                                 |        | neuromuscular synaptic transmission, and acetylcholine biosynthetic process and neurotransmitter   |
|            |                                 |        | biosynthetic process.                                                                              |
| Crh        | Corticotropin releasing hormone | (2.26) | Positive regulation of protein phosphorylation; synaptic transmission; dopaminergic; positive      |
|            |                                 |        | regulation of protein phosphorylation.                                                             |

| FERD3L | Fer3-like (Drosophila)                        | 5.56   | Regulation of neurogenesis; cell development                                                                                                                                                    |
|--------|-----------------------------------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Foxo6  | Forkhead box O6 (Foxo6)                       | (2.03) | Transcriptional activator; memory                                                                                                                                                               |
| Grpr   | Gastrin releasing peptide receptor            | 3.86   | Learning or memory; neuropeptide signaling pathway; phospholipase C-activating G protein-coupled receptor signaling pathway; G protein-coupled receptor signaling pathway, signal transduction. |
| Gsx1   | GS homeobox 1                                 | (2.31) | Spinal cord association neuron differentiation; central nervous system development                                                                                                              |
| Id3    | Inhibitor of DNA binding 3                    | (2.04) | Multicellular organism development; transcription, DNA-templated                                                                                                                                |
| Ier2   | Immediate early response 2                    | (2.25) | Neuron differentiation; cell motility; response to fibroblast growth factor                                                                                                                     |
| Igf2   | Insulin-like growth factor 2                  | 2.43   | Negative regulation of transcription by RNA polymerase II; skeletal system development; ossification; osteoblast differentiation; in utero embryonic development.                               |
| Il1b   | Interleukin 1 beta                            | (2.09) | Activation of MAPK activity; positive regulation of protein phosphorylation; positive regulation of T cell mediated immunity.                                                                   |
| Il1rn  | Interleukin 1 receptor antagonist             | 6.68   | Lipid metabolic process; inflammatory response; immune response; signal transduction; cytokine-mediated signaling pathway.                                                                      |
| Isl1   | ISL1 transcription factor,<br>LIM/homeodomain | 5.14   | Negative regulation of transcription by RNA polymerase II; neural crest cell migration; outflow tract septum morphogenesis.                                                                     |
| Lhx5   | LIM homeobox protein 5                        | 2.36   | Regulation of transcription, DNA-templated; cell-cell signaling; spinal cord association neuron differentiation; cerebellum development; cerebellar Purkinje cell differentiation.              |
| Lhx8   | LIM homeobox protein 8                        | 15.76  | Transcription factor involved in differentiation of certain neurons and mesenchymal cells.                                                                                                      |
| Musk   | Muscle, skeletal, receptor tyrosine           |        | Receptor tyrosine kinase which plays a central role in the formation and the maintenance of the                                                                                                 |
|        | kinase                                        | 4.14   | neuromuscular junction (NMJ), the synapse between the motor neuron and the skeletal muscle.                                                                                                     |
|        |                                               |        | May also play a role within the central nervous system by mediating cholinergic responses, synaptic                                                                                             |

|         |                                                                       |        | plasticity and memory formation.                                                                                                                                                                                         |
|---------|-----------------------------------------------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Neurod4 | Neurogenic differentiation 4                                          | 2.53   | Neuron migration; Notch signaling pathway; multicellular organism development                                                                                                                                            |
| Neurogl | Neurogenin 1                                                          | (4.28) | Acts as a transcriptional regulator. Involved in the initiation of neuronal differentiation. Associates with chromatin to enhancer regulatory elements in genes encoding key transcriptional regulators of neurogenesis. |
| Oprm1   | Opioid receptor, mu 1                                                 | 3.15   | Acute inflammatory response to antigenic stimulus; adenylate cyclase-activating dopamine receptor signaling pathway; G protein-coupled receptor signaling pathway.                                                       |
| Otx2    | Orthodenticle homeobox 2                                              | 2.20   | Regulation of transcription, DNA-templated; axon guidance; forebrain development                                                                                                                                         |
| Oxt     | Oxytocin                                                              | (2.63) | Signal transduction; G protein-coupled receptor signaling pathway.                                                                                                                                                       |
| Prdm12  | PR domain containing 12                                               | 3.37   | Neurogenesis; neuron projection development                                                                                                                                                                              |
| Shc3    | Src homology 2 domain-containing<br>transforming protein C3           | 2.66   | MAPK cascade, Ras protein signal transduction                                                                                                                                                                            |
| Sox3    | SRY (sex determining region<br>Y)-box 3                               | (2.53) | Regulation of transcription by RNA polymerase II; multicellular organism development; central nervous system development                                                                                                 |
| Trpc5   | Transient receptor potential cation<br>channel, subfamily C, member 5 | 2.81   | Nervous system development; positive regulation of cytosolic calcium ion concentration                                                                                                                                   |
| Wnt6    | Wingless-type MMTV integration site family, member 6                  | (2.04) | Multicellular organism development; positive regulation of gene expression; Wnt signaling pathway                                                                                                                        |

## Supplementary Fig. 1 (Fig. 3 Le et al, 2015)



Supplementary Fig. 1. Effects of bacosides on OGD-induced neuronal cell damage in OHSCs. (A) Experimental protocol. OHSCs were

treated with test drugs for 60 min before OGD and during the 45-min period of OGD. Neuronal cell damage was evaluated by measuring the PI uptake signal 1 day after the OGD challenge. **(B-i)** Typical PI staining images of OHSCs treated with 45-min OGD in the absence (vehicle) and presence of bacopaside N2 (Baco-N2: 25 $\mu$ M), bacopaside I (Baco-1: 25 $\mu$ M), a mixture of bacopaside II (Baco-II) and bacosaponin D (Baco-D: 25 $\mu$ g/ml), and the NMDA receptor antagonist MK-801 (25 $\mu$ M). **(B-ii)** Summarized data obtained from (B-i). (C) A dose-dependent effect of Baco-I. Each data column represents the mean  $\pm$  S.E.M (n=5-6). \*\*\*p<0.001 vs. normal OHSCs; #p<0.05, ##p<0.01, and ###p<0.001 vs. OHSCs treated with OGD alone.

Supplementary Fig. 2 (Fig. 7 Le et al, 2015)



Supplementary Fig. 2. Bacopaside I-induced increases in the expression level of p-Akt in OHSCs. (A) Experimental protocol. OHSCs were incubated with 5 and 25  $\mu$ M bacopaside I (Baco-I) for 3 days before Western blotting analysis. (B) Typical photos indicating the expression levels of Akt and p-Akt (Ser473) in the OHSCs. (C) Quantitative comparisons of the expression levels of Akt and p-Akt in OHSCs. Each data column represents the mean ± S.E.M (n=4). \*p<0.05 vs. vehicle-treated OHSCs.

## Reference

Le, X.T.; Nguyet Pham, H.T.; Van Nguyen, T.; Minh Nguyen, K.; Tanaka, K.; Fujiwara, H.; Matsumoto, K. Protective effects of Bacopa monnieri on ischemia-induced cognitive deficits in mice: the possible contribution of bacopaside I and underlying mechanism. *Journal of ethnopharmacology* **2015**, *164*, 37-45, doi:10.1016/j.jep.2015.01.041.