Supplemental information

Lucina pectinata Oxyhemoglobin (II-III) heterodimer pH susceptibility

Darya Marchany-Rivera^a, Clyde A. Smith^b, Josiris D. Rodriguez-Perez^a, and Juan López Garriga^{a*}

^aDepartment of Chemistry, P.O. Box 9000 University of Puerto Rico, Mayagüez Campus, Puerto Rico 00681.

^bStanford Linear Accelerator Center (SLAC) National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA

Method

Kinetics and optical absorption

Dissociation of O₂ from HbII-HbIII was determined at pH 5 and 7 by monitoring the decay of the (HbII-HbIII)-O₂ absorption signal at 414 nm, using a SHIMADZU UV-2600 spectrophotometer. Briefly, small volumes (140 μ L) of 98 μ M (HbII-HbIII)-O₂ solution were mixed rapidly with a large volume of deoxygenated buffer (2 mL) at pH 7 and 5. The kinetic traces, as well as spectra associated with the kinetics, were acquired for a period of 3 hr.

Results

Figure S1 shows that at pH 5, O₂ dissociation from (HbII-HbIII)-O₂ is near 1.6 times faster by than at pH 7, with k_{off} values of 0.0051 s⁻¹ and 0.0026 s⁻¹, respectively. The k_{off} results are approximately within the range of the reported values for HbII (0.056 s⁻¹) and recombinant HbII (0.053 s⁻¹) by Ramos, *et al.*, and HbII (0.011 s⁻¹) and HbIII (0.008 s⁻¹) by Kraus *et. al.*

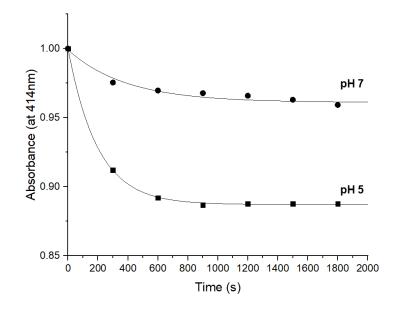


Figure S1: Kinetic traces of O₂ dissociation at pH 5 (squares) and 7 (circles).

References

- C. Ramos, R. Pietri, W. Lorenzo, E. Román, L. B. Granell, C. L. Cadilla, J. López-Garriga, Protein J. 29 (2010) 143-151.
- D. Kraus, J.B. Wittenberg, J. Biol. Chem. 265 (1990) 16043-16053.