
Supplementary File 1

Python code for stratified sampling

import numpy as np

from tqdm import tqdm

def stratify(data , classes , ratios , qualities , ecgs_per_patient ,

nr_clean_folds =1):

""" Stratifying procedure. Modified from https :// vict0rs.ch

/2018/05/24/ sample -multilabel -dataset/ (based on Sechidis 2011)

data is a list of lists: a list of labels , for each sample.

Each sample ’s labels should be ints , if they are one -hot

encoded , use one_hot=True

classes is the list of classes each label can take

ratios is a list , summing to 1, of how the dataset should be

split

qualities: quality per entry (only >0 can be assigned to clean

folds; 4 will always be assigned to final fold)

ecgs_per_patient: list with number of ecgs per sample

nr_clean_folds: the last nr_clean_folds can only take clean

entries

"""

np.random.seed (0) # fix the random seed

data is now always a list of lists; len(data) is the number

of patients; data[i] is the list of all labels for patient i (

possibly multiple identical entries)

#size is the number of ecgs

size = np.sum(ecgs_per_patient)

Organize data per label: for each label l, per_label_data[l]

contains the list of patients

in data which have this label (potentially multiple

identical entries)

per_label_data = {c: [] for c in classes}

for i, d in enumerate(data):

for l in d:

per_label_data[l]. append(i)

In order not to compute lengths each time , they are tracked

here.

subset_sizes = [r * size for r in ratios] #list of

subset_sizes in terms of ecgs

per_label_subset_sizes = { c: [r * len(per_label_data[c]) for

r in ratios] for c in classes } #dictionary with label: list of

subset sizes in terms of patients

For each subset we want , the set of sample -ids which should

end up in it

stratified_data_ids = [set() for _ in range(len(ratios))] #

initialize empty

For each sample in the data set

print("Assigning patients to folds ...")

size_prev=size+1 #just for output

while size > 0:

if(int(size_prev /1000) > int(size /1000)):

print("Remaining patients/ecgs to distribute:",size ,"

non -empty labels:", np.sum([1 for l, label_data in

per_label_data.items() if len(label_data) >0]))

size_prev=size

Compute |Di|

lengths = {

l: len(label_data)

for l, label_data in per_label_data.items()

} #dictionary label: number of ecgs with this label that

have not been assigned to a fold yet

try:

Find label of smallest |Di|

label = min({k: v for k, v in lengths.items() if v >

0}, key=lengths.get)

except ValueError:

If the dictionary in ‘min ‘ is empty we get a Value

Error.

This can happen if there are unlabeled samples.

In this case , ‘size ‘ would be > 0 but only samples

without label would remain.

"No label" could be a class in itself: it’s up to

you to format your data accordingly.

break

For each patient with label ‘label ‘ get patient and

corresponding counts

unique_samples , unique_counts = np.unique(per_label_data[

label],return_counts=True)

idxs_sorted = np.argsort(unique_counts , kind=’stable ’)

[:: -1]

unique_samples = unique_samples[idxs_sorted] # this is a

list of all patient ids with this label sort by size descending

unique_counts = unique_counts[idxs_sorted] # these are

the corresponding counts

loop through all patient ids with this label

for current_id , current_count in zip(unique_samples ,

unique_counts):

subset_sizes_for_label = per_label_subset_sizes[label]

#current subset sizes for the chosen label

#if quality is bad remove clean folds (i.e. sample

cannot be assigned to clean folds)

if(qualities[current_id] < 1):

subset_sizes_for_label = subset_sizes_for_label [:

len(ratios)-nr_clean_folds]

2

Find argmax clj i.e. subset in greatest need of the

current label

largest_subsets = np.argwhere(subset_sizes_for_label

== np.amax(subset_sizes_for_label)).flatten ()

if there is a single best choice: assign it

if len(largest_subsets) == 1:

subset = largest_subsets [0]

If there is more than one such subset , find the one

in greatest need of any label

else:

largest_subsets2 = np.argwhere(np.array(

subset_sizes)[largest_subsets] == np.amax(np.array(subset_sizes

)[largest_subsets])).flatten ()

subset = largest_subsets[np.random.choice(

largest_subsets2)]

Store the sample ’s id in the selected subset

stratified_data_ids[subset].add(current_id)

There is current_count fewer samples to distribute

size -= ecgs_per_patient[current_id]

The selected subset needs current_count fewer

samples

subset_sizes[subset] -= ecgs_per_patient[current_id]

In the selected subset , there is one more example

for each label

the current sample has

for l in data[current_id]:

per_label_subset_sizes[l][subset] -= 1

Remove the sample from the dataset , meaning from all

per_label dataset created

for x in per_label_data.keys():

per_label_data[x] = [y for y in per_label_data[x]

if y!= current_id]

Create the stratified dataset as a list of subsets , each

containing the orginal labels

stratified_data_ids = [sorted(strat) for strat in

stratified_data_ids]

stratified_data = [

[data[i] for i in strat] for strat in stratified_data_ids

]

Return both the stratified indexes , to be used to sample the

‘features ‘ associated with your labels

And the stratified labels dataset

return stratified_data_ids , stratified_data

3

