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Supplemental Material

Simulation model

In the in silico evolution, we consider two evolving traits, basal production rate (p) and signal response

threshold (STh) for simulations in the absence of auto-regulation, whereas we introduce an additional evolving

trait, auto-regulation ratio (r) for simulations including the auto-regulation mechanism. Each individual in

the population pool has a single genotype which consists of those two or three evolving traits. The individuals

can make their own decisions to turn on or off cooperation as a function of signal mediated interactions,

which in turn depend on the physical and social environment. Specifically, the evolution process is described

in Main Text, Figure 6:

1) Total Npop genotypes with same initial traits (same pinit, SThinit and rinit) were generated to form a

population pool.

2) A certain number of genotypes (G, drawn from zero-truncated Poisson distribution, unless otherwise

specified) were randomly selected (with replacement) from the population pool and form a mixed

sub-population.

3) For each of Nenv sub-population testing environments, the signal concentration in the mixed sub-

population can be calculated as S∗ using Eq. (S2) (or Eq. (S7) for auto-regulation case).

4) Each genotype in the mixed sub-population was evaluated for its overall cooperation payoff separately

across all sub-population testing environments (where the cellular density was varied) using Eq. (S3)

(or Eq. (S8) in auto-regulation case): Each individual paid for its own cost for signaling and the cost

of cooperation, if any, but only gained a benefit when the number of cooperators in sub-population

were greater than a certain threshold, NTh.

5) Repeat 2) to 4) until the same size of population pool was formed.

6) All individuals were selected (with replacement) from the population pool to reproduce with a proba-

bility proportional to their overall cooperation payoff.

7) All evolving traits (p, STh and r) of the offspring were subject to mutation at rates λp, λSTh
and λr

with standard deviations SDp, SDSTh
or SDr for different traits. Specifically, for each evolving trait,

the actual number of individuals selected for mutation was drawn from a Poisson distribution with

the mean being λp, λSTh
and λr, respectively. The mutation operation was done by adding a value of
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N(0, SD) to the original trait value, where N(0, SD) is the normal distribution with a mean 0 and a

standard deviation SD to be SDp, SDSTh
or SDr for different traits.

8) Repeat 2) to 7) until Genmax generations were reached.

Model assumptions

For the computational models presented in the paper, we assume that:

1) A single signal type exists.

2) In the propagule pool, the cellular heterogeneity can be obtained via mutation and selection.

3) Each sub-population is founded by a defined number of founding cells G (1 to 10), picked randomly

from the propagule pool of the previous generation.

4) For each sub-population, the expected fitness of each founding cell is assessed across a range of testing

environments (cellular density varied from 101.5 to 105 cells per µL) where the founding cells imme-

diately grow until the total sub-population reaches a stationary phase density defined by its current

testing environment.

5) In each testing environment, the sub-population forms a closed system, i.e., no mass transfer.

6) For a given testing environment, an individual can be rewarded with a benefit for cooperation only if

the number of cooperators is greater than the defined threshold (NTh).

7) The signal concentration in each testing environment rapidly reaches equilibrium estimated by Eq. (S1)

or Eq. (S6), depending on whether invoking the auto-regulation mechanism.

Computational model of quorum sensing without auto-regulation

The computational model of signal dynamics for quorum sensing without auto-regulation is given as below:

dS

dt
= pN − uS, (S1)

where S is the local signal concentration, t is time, N is the local cell density, p is the basal signal production

rate, and u is the signal decay rate. The equilibrium of Eq. (S1) is given by:

S∗ =
pN

u
. (S2)
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In the absence of the auto-regulation mechanism, the individual genotype’s overall cooperation payoff

across all sub-population testing environments is assessed as follows:

Fi = B0 +Bcoop
∑
j

HBij − Ccoop
∑
j

HCij − Csigpi, (S3)

where i (i = 1, 2, · · · , Npop) represents an individual genotype, j (j = 1, 2, · · · , Nenv) represents the index

number of a sub-population testing environment, B0 is the baseline payoff, Bcoop, Ccoop, Csig are constants

for the benefit of cooperation, cost of cooperation and cost of signaling, respectively, pi is the basal signal

production rate of the genotype i. The function of cooperation cost of the individual i in the sub-population

testing environment j is defined as:

HCij
=


1 if 1

G

G∑
g

pgNj

u > SThg

0 otherwise

, (S4)

where G is the number of mixing genotypes in a sub-population, Nj is the local cellular density in the jth

sub-population testing environment, and pg and SThg
are the signal production rate and signal response

threshold of the genotype g (g = 1, 2, · · · , G) in the sub-population, respectively. Similarly, the function of

cooperative benefit of the individual i in the sub-population testing environment j is defined as:

HBij =


1 if 1

G

G∑
g
NjHCgj

> NTh

0 otherwise

, (S5)

where NTh is the cellular density threshold (defined as the median cellular density across all testing envi-

ronments).

Computational model of quorum sensing with auto-regulation

The computational model of signal dynamics for quorum sensing with auto-regulation is given as below:

dS

dt
= p

(
1 + r

S

K + S

)
N − uS, (S6)

where S is the local signal concentration, t is time, N is the local cell density, p is the basal signal production

rate, r is the ratio of auto-regulation production to basal signal production, K is the half concentration

value, and u is the signal decay rate. The equilibrium of Eq. (S6) is given by:

S∗ =
√
N2p2r2 + 2N2p2r +N2p2 − 2Nkpru+ 2Nkpu+ k2u2. (S7)
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Note that previous studies have indicated the choice of Hill function exponent to be 2 [1, 2]. However, for

the purpose of computational convenience, we used 1 as the Hill function exponent, which can lead to a close

form solution, Eq. (S7). When invoking the auto-regulation mechanism, the individual genotype’s overall

cooperation payoff across all testing environments is assessed as follows:

Fi = B0 +Bcoop
∑
j

HBij
− Ccoop

∑
j

HCij
− Csig

(
1 + ri

S∗
i

K + S∗
i

)
pi, (S8)

where i (i = 1, 2, · · · , Npop) represents an individual genotype, j (j = 1, 2, · · · , Nenv) represents the index

number of a sub-population testing environment, B0 is the baseline payoff, Bcoop, Ccoop, Csig are constants

for the benefit of cooperation, cost of cooperation and cost of signaling, respectively, pi and ri are the basal

signal production rate and auto-regulation ratio of the genotype i, respectively, and S∗
i =

∑
j S̄

∗
ij

/
Nenv

where S̄∗
ij is defined in Eq. (S9). The function of cooperation cost of the individual i in the sub-population

testing environment j is defined as:

HCij =


1 if S̄∗

ij = 1
G

G∑
g
S∗
gj > SThg

0 otherwise

, (S9)

where G is the number of mixing genotypes in a sub-population, S∗
gj (calculated by Eq. (S7)) and SThg

are

the equilibrium signal concentration and signal response threshold of the genotype g (g = 1, 2, · · · , G) in the

sub-population, respectively. The function of cooperative benefit of the individual i in the sub-population

testing environment j, and HBij
is defined as the same as in Eq. (S5).

Adding noise to signal

To investigate how clonal populations cope with signal noise to sustain cooperation, we added noise to the

equilibrium signal. In the simulations, the noise signal is drawn from a normal distribution with mean S∗

and standard deviation κ ·S∗, i.e., N(S∗, κ ·S∗), where S∗ is the equilibrium signal calculated from Eq. (S2)

or Eq. (S7) and κ is a constant indicating the strength of noise. Note we set all negative values for the noise

signal to be 0.

Generating genetic mixing

In the evolution simulations where we varied the genetic relatedness, different numbers of mixing genotypes

were introduced to form sub-populations to evaluate the overall cooperation payoff for each genotype in every

generation. Unless specified otherwise, the actual number of mixing genotypes in each sub-population in every
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generation was drawn from a zero-truncated Poisson distribution with the average being Ḡ = λG/(1−e−λG),

where (λG ∈ [0, 10]; step size: 0.1). We define the clonal case (G = 1) when λG = 0 where exact one genotype

will be selected to form the sub-population, i.e., no genetic mixing. Note that the number of sub-populations

may be different in every generation due to the variation of mixing genotypes in each subpopulation.

Constructing constitutive cooperators

To investigate how decision making interact with social behaviors of cooperation, we compared the overall

payoff of cooperation of individuals mediated by QS with those in the absence of collective control. Specifi-

cally, we constructed constitutive cooperators which do not have the ability to make social informed choices.

In the clonal case, wild-type individuals will always cooperate. This will incur a penalty to each of such

individuals for cooperating in wrong environments1. In the genetic mixing scenarios, the cooperative benefits

of wild-type individuals will be shared evenly with all group members. In the simulations, all individuals

were subject to mutation, switching from a wild-type to mutant, or mutant to wild-type depending on their

own initial type. The actual number of replacement individuals was drawn from a Poisson distribution with

the mean being 0.01. Note that mutant individuals will always reap the benefits of cooperation without

paying for any cost. Formally, the overall cooperation payoff in the constitutive cooperation scenarios can

be defined as:

Fi =

 B0 +Bcoop
Nnev

2 PWT − CcoopNnev if indivudal i is a wild-type

B0 +Bcoop
Nnev

2 PWT otherwise (mutant)
, (S10)

where PWT is the proportion of wild-type individuals in the sub-population with a group size G.

Introducing constitutive cheats

To challenge the quorum sensing system, in the simulations of invasion by a cheat phenotype, we replaced

a certain number of individuals2 chosen at random in the population pool with constitutive cheats in every

generation at a certain rate. The constitutive cheat is defined as a genotype with a zero basal production

rate and a maximum possible signal threshold. In other words, a constitutive cheat does not produce or

respond to signal. The actual number of cheats introduced into each generation is drawn from a Poisson

distribution with the mean being λCheat. Note that the constitutive cheats are both immutable, which means

they cannot be eliminated through mutation, and inheritable, which means their offspring are still cheats.
1Note that half of total testing environments are regarded as ‘wrong’ environments since we set NTh as the median cellular

density across all testing environments.
2Here, we only consider non-cheats. In other words, the existing cheats in the population pool will not be chosen.
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Measuring phenotypic assortment of cooperative investment

To test if the auto-regulation mechanism could be explained by the generalized reciprocity theory, we recoded

the mean value of cooperative investment3 within each sub-population in the genetic mixing scenario where

individuals are grouped into small collectives. We then plotted the group mean cooperative investment

against individual cooperative investment. Finally, the regression line was fitted using the generalized linear

model with a normal distribution. The slope of the regression line indicates the phenotypic assortment

of cooperative investment. When the slope is high, the behaviors among individuals shifts closer to each

other, investing more in cooperation. Otherwise, the behaviors of investment for cooperation vary among

individuals.

Partitioning selection on cooperative investment

To further uncover the influence of the auto-regulation mechanism on cooperative behaviors in our evolu-

tion simulations, we employed the powerful conceptual framework of the Price equation to partition the

selection on cooperative investment into both individual (within sub-populations) and group (between sub-

populations) level [3]. The Price equation describes the change in the average amount of a trait (z) from

one generation to the next (∆z) as a function of the covariance of between the fitness and the trait value

among individuals (Cov(wi, zi)), and the expected change in the amount of the trait value (E(wi∆zi)) due

to transmission error such as genetic drift, mutation bias, etc. The general form of the Price equation is

given as below:

w̄∆z = Covi(wi, zi) + Ei(wi∆zi), (S11)

where z represents the trait cooperative investment, wi is the number of offspring (fitness) produced by the

individual i, w̄ is the mean number of offspring produced, ∆zi represents the difference between the average

z value among the individual i’s offspring and i’s own z value, Covi(·) and Ei(·) denote the expectation and

covariance over all individuals i in the population respectively.

By introducing the genetic mixing in the simulations, individuals in the population have been assigned

into small groups. We are able to further partition that selection based on cooperative investment to account

for individuals that are nested within collectives. Specifically, we can expand Eq. (S11) by substituting it

into the expectation term in its right hand side. Note that the groups that form each subpopulation g are

the individuals ig. We can re-write the two-level Price equation as follows:
3The individual genotype’s cooperative investment is simply defined as the number of sub-population testing environments

where cooperation is turned on.
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w̄∆z = Covg (w̄g, z̄g) + Eg [Covi(wig, zig)] + Eig(wig∆zig), (S12)

where w̄g = E(wig) and z̄g = E(zig). The first covariance term on the right hand side of the equation indicates

the selection on cooperative investment at level of subpopulations (between-group selection), whereas the

second expectation term captures the selection at individual level (within-group selection).
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Figure S1. Evolution trajectories of basal production rate and signal threshold for high cost of
signaling. We evolved 5, 000 initially identical genotypes for 5, 000 generations in a patchy, variable density
environment (see Main Text Figure 6). In all simulations, the cost of cooperation was fixed and there was no
auto-regulation. We used a fixed cost of signaling (Csig = 1010), and recorded the evolution trajectories of
basal production rate and signal threshold. All reported results were averaged over 30 replications (shaded
area indicates the standard deviation). The remaining parameters used in the simulations can be found in
Table S1. Although the evolved traits were at equilibrium, the predicted transients are consistent with our
previous mathematical model [4]. It should be noted that when p = 0, STh will stop evolving due to the
cooperation collapse.
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Figure S2. The evolved traits against signaling cost, decay rate and noise for QS-controlled
cooperation. We evolved 5, 000 initially identical genotypes for 5, 000 generations. In all simulations, the
cost of cooperation was fixed and there was no auto-regulation. Specifically, the population was evolved
under three regimes: (A) Varying a range of decay rates (u ∈ [5× 10−6, 1.15× 10−4]; step size: 10−5) with
a fixed signaling cost and no noise (κ = 0), and (B) Varying levels of noise (κ ∈ [0, 1]; step size: 0.1) with a
fixed signaling cost and a fixed decay rate (u = 1.05× 10−4). Each dot represents the evolved mean results
(averaged over the last 50 generations). The color-bars indicate different values of u and κ from low (dark
blue) to high (dark red) in (A) and (B), respectively. The solid black line in (A) is the regression line
fitted using the generalized linear model with a normal distribution: R2 = 0.824, F -test, p = 4.443× 10−5.
The horizontal and vertical error bars represent the standard deviation over 30 replications. The remaining
parameters used in the simulations can be found in Table S1.
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Figure S3. The evolved traits under different decay rates and levels of noise. We evolved 5, 000
initially identical genotypes for 5, 000 generations. In all simulations, the cost of cooperation and the cost
of signaling were fixed. The decay rates, u, were varied in [5 × 10−6, 1.15 × 10−4] (step size: 10−5), and
the levels of noise, κ, were varied in [0, 1] (step size: 0.1). The results of basal and observed production
rates were reported in (A) and (C) for QS with no auto-regulation and auto-regulation, respectively. The
results of signal threshold were reported in (B) and (D) for QS with no auto-regulation and auto-regulation,
respectively. All reported results were averaged over 30 replications. Note that surfaces were smoothed using
the spline interpolation method. The remaining parameters used in the simulations can be found in Table S1.
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Figure S4. Evolved traits against genetic relatedness. We evolved 5, 000 initially identical genotypes
for 5, 000 generations with no auto-regulation (A) and auto-regulation (B), respectively. In all simulations,
the cost of cooperation and the cost of signaling were fixed. Each dot represents the evolved mean results
(averaged over the last 50 generations) for different average number of genotypes per group Ḡ (λG ∈ [0, 10];
step size: 0.1). The remaining parameters used in the simulations can be found in Table S1.
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Figure S5. Evolution trajectories of traits for QS-controlled cooperation with no auto-
regulation. For a population with an intermediate genetic mixing (λG = 2), we evolved 5, 000 initially
identical genotypes for 5, 000 generations with no auto-regulation. We used a fixed cost of cooperation and a
fixed cost of signaling, and recorded the evolution trajectories of basal production rate and signal threshold.
All reported results were averaged over 30 replications (shaded area indicates the standard deviation). The
remaining parameters used in the simulations can be found in Table S1.
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High Relatedness (Clonal) High Relatedness (Clonal)

Intermediate Relatedness (λG = 2) Intermediate Relatedness (λG = 2)

Low Relatedness λG = 10 Low Relatedness λG = 10

Figure S6. The diversity of traits in the evolved populations. We evolved 5, 000 initially identical
genotypes for 5, 000 generations under high (clonal, G = 1), intermediate (λG = 2, Ḡ ≈ 2.13) and low
(λG = 10, Ḡ ≈ 10.00) genetic mixing for both QS with no auto-regulation and auto-regulation, respectively.
The trait values evolved after 5, 000 generations were reported in (A), (C) and (E) for QS with no auto-
regulation and (B), (D) and (F) for QS with auto-regulation. All evolved trait values of 5, 000 individuals
are plotted with blue dots. The color difference indicates the population density in the joint evolution
of signal production (p) and signal threshold to response (STh). The remaining parameters used in the
simulations can be found in Table S1. The full evolution timelapse can be found in Supplemental Material,
Videos S1-S6.
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Figure S7. Overall cooperation payoff for fixed trait evolution. We used a fixed signal production
rate of 0.5 × 10−8 and a fixed response threshold of 3 µM for QS-controlled cooperation without auto-
regulation, respectively. In all cases, we evolved 5, 000 initially identical genotypes for 5, 000 generations.
Each dot represents the evolved mean results (averaged over the last 50 generations) for different average
number of genotypes per group Ḡ (λG ∈ [0, 10]; step size: 0.1). The vertical error bars represent the
standard deviation of overall cooperation payoff over 30 replications. The remaining parameters used in the
simulations can be found in Table S1.

15



Figure S8. Evolution trajectories of traits for QS-controlled cooperation with auto-regulation.
For a population with an intermediate genetic mixing (λG = 2), we evolved 5, 000 initially identical genotypes
for 5, 000 generations with no auto-regulation. We used a fixed cost of cooperation and a fixed cost of
signaling, and recorded the evolution trajectories of basal production rate, observed production rate and
signal threshold. All reported results were averaged over 30 replications (shaded area indicates the standard
deviation). Note that the basal production rate is slightly increasing which implies it is approaching the
observed production rate over a longer evolution timescale. However, the observed production rate is largely
converged. The remaining parameters used in the simulations can be found in Table S1.
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Figure S9. Evolved auto-regulation ratio against genetic relatedness. We evolved 5, 000 initially
identical genotypes for 5, 000 generations with auto-regulation. In the simulations, the cost of cooperation
and the cost of signaling were fixed. Each dot represents the evolved mean results (averaged over the last 50
generations) of auto-regulation ratio (r as in Eq. (S6)) for different average number of genotypes per group
Ḡ (λG ∈ [0, 10]; step size: 0.1). The vertical error bars represent the standard deviation over 30 replications.
The remaining parameters used in the simulations can be found in Table S1.
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Figure S10. Invasion of constitutive cheats to the system with quorum sensing. We evolved
5, 000 initially identical genotypes for 5, 000 generations with no auto-regulation (A) and auto-regulation
(B), respectively. In all simulations, the cost of cooperation and the cost of signaling were fixed. A certain
number of individuals (drawn from a Poisson distribution with λCheat = 0.1) chosen at random were replaced
with the constitutive cheats in every generation. Each dot represents the evolved mean results (averaged over
the last 50 generations) for different average number of genotypes per group Ḡ (λG ∈ [0, 10]; step size: 0.1),
indicated in the color-bar on the right. The star dot represents the clonal case when G = 1. The horizontal
and vertical error bars on each dot represent the standard deviation of the results over 30 replications. The
remaining parameters used in the simulations can be found in Table S1.
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Figure S11. Comparison of frequency of cheats for the evolved system with or without auto-
regulation. We evolved 5, 000 initially identical genotypes for 5, 000 generations with no auto-regulation
(A) and auto-regulation (B), respectively. In all simulations, the cost of cooperation and the cost of signaling
were fixed. A certain number of individuals (drawn from a Poisson distribution with λCheat = 0.1) chosen at
random were replaced with the constitutive cheats in every generation. Each round dot (no auto-regulation)
or square dot (auto-regulation) represents the evolved mean results (averaged over the last 50 generations)
for different average number of genotypes per group Ḡ (λG ∈ [0, 10]; step size: 0.1). The vertical error bars
represent the standard deviation over 30 replications. The remaining parameters used in the simulations can
be found in Table S1.
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Figure S12. Regression analysis for individual and group mean investment for cooperation
(G = 2). For fixed costs of cooperation and signaling with the number of mixing genotypes G = 2, we
collected 5, 000 same initial genotypes and evolved them for 5, 000 generations with no auto-regulation (A)
and auto-regulation (B). We recorded the individual and group mean investment for cooperation at the last
generation over 100 replications. Each blue dot represents an individual’s investment against its group mean
investment. The red lines are the regression lines fitted using the generalized linear model with a normal
distribution. The analysis of covariance shows there is a significant difference between the slope of no auto-
regulation in (A) and the slope of auto-regulation in (B) (F -test, p = 0.000). The remaining parameters
used in the simulations can be found in Table S1.
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Figure S13. Selection on cooperative investment within and between groups (G = 2). We
evolved 5, 000 initially identical genotypes for 5, 000 generations with no auto-regulation (A) and auto-
regulation (B), respectively. In all simulations, the cost of cooperation and the cost of signaling were fixed,
and the number of mixing genotypes was fixed G = 2. We recorded the two-level Price equation components
in every generation. The reported results were the average value over 100 replications. The remaining
parameters used in the simulations can be found in Table S1.
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Figure S14. Selection on cooperative investment within and between groups (G = 5). We
evolved 5, 000 initially identical genotypes for 5, 000 generations with no auto-regulation (A) and auto-
regulation (B), respectively. In all simulations, the cost of cooperation and the cost of signaling were fixed,
and the number of mixing genotypes was fixed G = 5. We recorded the two-level Price equation components
in every generation. The reported results were the average value over 100 replications. The remaining
parameters used in the simulations can be found in Table S1.
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Table S1. List of Model Parameters

Symbol Description Default Value

B0 baseline payoff 100 FU1

Bcoop constant value for the benefit of cooperation 1.5 FU per CTE2

Ccoop constant value for the cost of cooperation 0.5 FU per CB3

Csig constant value for the cost of signalling 109 FU per µM

Genmax the maximum of generations 5000

K half concentration value 50 µM

G

number of mixing genotypes, unless otherwise specified,

1drawn from a zero-truncated Poisson distribution with

the average being Ḡ = λG/(1− e−λG)

NTh threshold of cellular density 50016 cells per µL

Nenv number of sub-population testing environments4 100

Npop population size 5000

SDp standard deviations for basal production rate 10−10

SDr standard deviations for auto-regulation ratio 1

SDSTh
standard deviations for signal response threshold 0.1

SThinit initial value for signal response threshold 5 µM

SThmin/SThmax the minimum/maximum signal response threshold 0.001/20 µM

λp mutate rate for basal production rate 0.01

λr mutate rate for auto-regulation ratio 0.01

λG parameter used in the zero-truncated Poisson distribution 0 to 10

λSTh
mutate rate for signal response threshold 0.01

pmin/pmax the minimum/maximum basal production rate 0/2× 10−8 µMs−1 per cell

pinit initial value for basal production rate 0.5× 10−8 µMs−1 per cell

rmin/rmax the minimum/maximum auto-regulation ratio 0.01/50

rinit initial value for auto-regulation ratio 10

u signal decay rate 10−4 µLs−1

m mass transfer rate 0 to 5× 10−5 µLs−1

1 FU: fitness unit
2 CTE: cooperative testing environment
3 CB: cooperative behaviour
4 The local cellular densities are evenly spaced within the range 101.5 to 105 (cells per µL).
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