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General Information

All reactions were carried out under an argon or nitrogen atmosphere in oven-dried glassware
with magnetic stirring. All solvents were purified by passing through a bed of activated alumina,
dried over 3A molecular sieves, and then degassed using the freeze-pump-thaw method (3-4
cycles). Purification of reaction products was carried out by flash chromatography on Biotage
Isolera 4 systems with Ultra-grade silica cartridges or by preparative HPLC. Reverse phase
preparative HPLC was performed on a Gilson preparative HPLC with the following conditions:
Phenomenex Kinetex C18 50 x 30 mm (short column) or 150 x 21 mm (long column). Gradients
ranged from of 5-98 % acetonitrile:water with 0.1 % formic acid over 5 or 25 min, respectively,
followed by 1 min at 98 % acetonitrile. The flow rate was 50 mL/min for the short column and 20
mL/min for the long column. Silicycle SiliaFlash P60 silica gel 60 (230-400 mesh) was used for
column chromatography. Analytical thin layer chromatography was performed on EM Reagent
0.25 mm silica gel 60-F plates. Visualization was accomplished with UV light.

'"H NMR spectra were recorded on AVANCE III 500 MHz w/ direct cryoprobe (500 MHz)
spectrometer and are reported in ppm using solvent as an internal standard (CDCls at 7.26 ppm).
Data are reported as (ap = apparent, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet,
b = broad; coupling constant(s) in Hz; integration.) Proton-decoupled *C NMR spectra were
recorded on an AVANCE III 500 MHz w/ direct cryoprobe (125 MHz) spectrometer and are
reported in ppm using solvent as an internal standard (CDCl; at 77.16 ppm). Reactions were
monitored by LCMS or GCMS using a WATERS Acquity-H UPLC-MS with a single quad
detector (ESI) or an Agilent 7890 gas chromatograph equipped with a 5975C single quadrupole
EI-MS, respectively. High-resolution mass spectrometry (HRMS) was obtained using an Agilent
6201 MSLC-TOF (ESI). All photocatalytic reactions were carried out in a SynLED Parallel
Photoreactor (465-470 nm) purchased from Sigma-Aldrich. Enantioselectivity measurements
were made on an Agilent 1290 Infinity SFC using Chiralpak [A-3, IB-3, IC-3, ID-3, 1G-3 chiral
stationary phases. Electrochemical measurements were recorded on a NuVant EZstat Pro using
platinum working, platinum counter, and Ag/Ag" pseudoreference electrodes in a 0.04 M solution
in MeCN with 0.1M N(bu)4PFs electrolyte. Voltages are reported relative to SCE based on an
internal ferrocene standard. [Ir(dF(CF3)ppy)2(dtbpy)]PFs (IrdF, PC-1) was purchased from Strem
Chemicals and used as received or synthesized according to the literature procedure." No
discrepancies were observed using synthesized or commercially available PC-1.
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Optimization Table

Ph
0
)]\ EtO,C CO,Et o
Ph N/\N + | | Az-1 (15 mol %), Cs,CO3 (15 mol %); )J\/Ph
= Me™ N Me [Ir(dFCFppy).(dtbpy)]PFg (1 mol %) Ph
1a 2a (1 5 eqUiV.) THF (01 M), Blue LEDs, 16 h 3a
entry deviation from standard GC yield (%)2P
1 none 63
2 PC-2 instead of PC-1 11
3 PC-3 instead of PC-1 0
4 PC-4 instead of PC-1 42
5 Az-2 instead of Az-1 14
6 Az-3 instead of Az-1 0
7 Az-4 instead of Az-1 0
8 Az-5 instead of Az-1 11
9 Az-7 instead of Az-1 0
10 Az-8 instead of Az-1 0
11 CsOAc instead of Cs,CO4 38
12 K>COgj instead of Cs,CO3 8
13 Li,COg instead of Cs,COg3 0
14 + LiCl 0
15 + Mg(OTf), 26
16 +4 AMS 12
17 CH3CN instead of THF 72
18 CH.CI, instead of THF 41
19 DMF instead of THF 65
Me Me / \ / \
\ \ Me
© ®N l@ ®N N N
S IS TR G -
Me cl Mes PFe Ph
Az-3 Az-4 Az-5 Az-7 Az-8

R
NC CN
R R
R
R = carbazole
[Ir(dFCF3ppy)o(dtbpy)]PFg fac-Ir(ppy)s Ph-Mes-Acr 4-CzIPN
(PC-1) (PC-2) (PC-3) (PC-4)

* GC yield based on calibration curve using 1,3,5-trimethoxybenzene as internal standard.
Reactions performed at a 0.1 mmol scale.
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General Synthetic Procedures and Spectral Data for New Compounds

General procedure for the synthesis of acyl imidazoles:

O o)

CDI
R)I\OH DCM, rt > J\N/\

4 1a-x

Acyl imidazoles 1a-x were prepared based on the method of Lee and Scheidt:* The appropriate
acid (10 mmol, 1.0 equiv) was dissolved in dry dichloromethane (0.3 M), and CDI
(carbonyldiimidazole, 15 mmol, 1.5 equiv) was added slowly (caution, exothermic). The resulting
mixture was stirred for 12 h at room temperature. Upon completion, the solution was transferred
to a separatory funnel and washed with deionized water (2x25 mL), and then the organic layer
was dried over MgSQOs. Concentration under reduced pressure afforded the acyl imidazole, which
was used in the following reaction without further purification.

All alkyl radical precursors (Hantzsch esters and Meyer nitriles) were synthesized according to
the established literature procedure and matched the reported spectral data.*”

General Procedure (1) for the alkylation of acyl azoliums using Hantzsch esters:

Me\N\&(’?/Me
N=/1®

lo) (15 mol o/o) o)

Cs,CO3 (15 mol %)
EtO,C CO,Et 23 1
Ar)J\N« + 2 2 > Ar)k('q

\\/N || PC-1 (1 mol %) ,
== Me N Me CH3CN (0.1 M), rt R
H 467 nm LEDs
1 2 (1.5 equiv) 3

All reactions were set up inside a glovebox under N, atmosphere. To an oven-dried 2-dram vial
containing a stir bar was added the respective benzyl Hantzsch ester (1.5 equiv, 0.38 mmol),
respective acyl imidazole (1.0 equiv, 0.25 mmol), PC-1 (2.50 pmol, 1 mol %),
dimethyltriazolium iodide NHC precursor (8.8 mg, 0.15 equiv, 38 umol), and cesium carbonate
(12 mg, 0.15 equiv, 38 umol). Acetonitrile (2.5 mL, 0.1M) was added, and the reaction was
capped and taken out of the glovebox. Parafilm was wrapped around the cap to prevent air from
entering and the vial was stirred in a SynLED Parallel Photoreactor (blue LEDs) with monitoring
by GCMS or LCMS. When complete consumption of the acyl imidazole was observed (typically
4-16 h), the reactions were concentrated under reduced pressure and then purified by column
chromatography or preparative HPLC.
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General Procedure (2) for the alkylation of acyl azoliums using Meyer nitriles:

Me\N/%(B,Me
R2 \—/ ©
RI_|_R®
fo) (15 mol °/o) o)
L N+ EOC COLE Cs,CO; (15 mol %) - )K'<R1
Fh “{\\/N | ] PC-4 (1 mol %) Fh R2
= Me” SN Me CH5CN (0.1 M), rt R
H 467 nm LEDs
1 2 (1.5 equiv) 3

All reactions were set up inside a glovebox under a nitrogen atmosphere. To an oven-dried 2-
dram vial containing a stir bar was added the respective Meyer nitrile (1.5 equiv, 0.38 mmol),
appropriate acyl imidazole (1.0 equiv, 0.25 mmol), 4-CzIPN (0.01 equiv, 1 mol %),
dimethyltriazolium iodide NHC precursor (8.8 mg, 0.15 equiv, 38 umol), and cesium carbonate
(12 mg, 0.15 equiv, 38 pmol). Acetonitrile (2.5 mL, 0.1M) was added to the vial, and the reaction
was capped and taken out of the glovebox. Parafilm was wrapped around the cap to prevent air
from entering and the vial was in a SynLED Parallel Photoreactor (blue LEDs) with monitoring
by GCMS or LCMS. When complete consumption of the acyl imidazole was observed (typically
4-16 h), the reactions were concentrated under reduced pressure and then purified by column
chromatography.

General Procedure (3) for the in situ activation reactions:

Me

N
N\
\NQMe
~ 7/

N ©, (15 mol %)

(0]
j\ CDI L W Bn-HE (2a, 1.5 equiv.) j\@
R “OH RT NN J IrdF (1 mol %) R

\</ Cs,CO;5 (15 mol %)
4 . MeCN (0.1 M), 23 °C
not isolated Blue LEDs (467 nm) 3orb5

All reactions were set up inside a glovebox under nitrogen atmosphere. To an oven-dried 2-dram
vial containing a stir bar were added CDI (1.0 equiv., 0.25 mmol) and the appropriate carboxylic
acid (1.0 equiv., 0.25 mmol). The solids were dissolved in acetonitrile (2.5 mL, 0.1 M) and the
reaction was allowed to stir in the glovebox at room temperature for 2 h or until the solution
became homogenous. Note: If the reaction did not become homogenous, 0.400 mL of DMF was
added to the vial to help solubilize the carboxylic acid, and the reaction was allowed to stir for
another 4 h. At this time, to a separate vial containing a stirbar was added the respective benzyl
Hantzsch ester (1.5 equiv., 0.38 mmol), PC-1 (0.01 equiv., 1 mol %), and dimethyltriazolium
iodide NHC precursor (8.8 mg, 0.15 equiv., 38 umol). The vial containing the in situ generated
acyl imidazole was added to the vial containing the solids, followed by the addition of cesium
carbonate (12 mg, 0.15 equiv., 38 pmol). The vial was capped and taken out of the glovebox.
Parafilm was wrapped around the cap to prevent air from entering and the vial was stirred in a
SynLED Parallel Photoreactor (blue LEDs). The reaction was allowed to stir for 24 h unless
otherwise noted. Following completion, the reactions were concentrated under reduced pressure
and then purified by column chromatography.
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1,2-diphenylethan-1-one (3a). Prepared according to the general procedure (1) for the alkylation
of acyl azoliums using the respective acyl imidazole (43 mg, 1.0 equiv.) and benzyl Hantzsch
ester. PC-1 was used as the photocatalyst. The reaction mixture was purified by column
chromatography (wet loaded with toluene, 5-15% ethyl acetate/hexanes) to yield the desired
product as a white solid (63%). Can also be prepared with general procedure (3) using benzoic
acid to afford the desired material (31 mg, 65%). Product is a known substrate and matched the
literature data.®

O

Me I

2-phenyl-1-(p-tolyl)ethan-1-one (3b). Prepared according to the general procedure (1) for the
alkylation of acyl azoliums using the respective acyl imidazole (46.5 mg, 1.0 equiv.) and benzyl
Hantzsch ester. PC-1 was used as the photocatalyst. The reaction mixture was purified by column
chromatography (wet loaded with toluene, 2-20% ethyl acetate/hexanes) to yield the product as a
white solid (42 mg, 80%). Product is a known substrate and matched the literature data.®

O
Me I
2-phenyl-1-(m-tolyl)ethan-1-one (3¢). Prepared according to the general procedure (1) for the
alkylation of acyl azoliums using the respective acyl imidazole (46.5 mg, 1.0 equiv.) and benzyl
Hantzsch ester. PC-1 was used as the photocatalyst. The reaction mixture was purified by column

chromatography (0-5% ethyl acetate/hexanes) to yield the product as an off-white solid (34 mg,
65%). Product is a known substrate and matched the literature data.’

o

1-(4-fluorophenyl)-2-phenylethan-1-one (3d). Prepared according to the general procedure (1) for
the alkylation of acyl azoliums using the respective acyl imidazole (47.5 mg, 1.0 equiv.) and
benzyl Hantzsch ester. PC-1 was used as the photocatalyst. The reaction mixture was purified by
column chromatography (wet loaded with toluene, 2-20% ethyl acetate/hexanes) to yield the
product as a white solid (41 mg, 76%). Product is a known substrate and matched the literature
data.®



O
T
1-(3-fluorophenyl)-2-phenylethan-1-one (3e). Prepared according to the general procedure (1) for
the alkylation of acyl azoliums using the respective acyl imidazole (48 mg, 1.0 equiv.) and benzyl
Hantzsch ester. PC-1 was used as the photocatalyst. The reaction mixture was purified by column

chromatography (dry loaded with silica, 2-20% ethyl acetate/hexanes) to yield the desired product
as a white solid (32 mg, 60%). Product is a known substrate and matched the literature data.'’

0]

Cl I

1-(4-chlorophenyl)-2-phenylethan-1-one (3f). Prepared according to the general procedure (1)
for the alkylation of acyl azoliums using the respective acyl imidazole (51.6 mg, 1.0 equiv.) and
benzyl Hantzsch ester. PC-1 was used as the photocatalyst. The reaction mixture was purified by
column chromatography (wet loaded with toluene, 2-20% ethyl acetate/hexanes) to yield the
product as a white solid (57.7 mg, 76%). Product is a known substrate and matched the literature

data.”
MeO. O

o)

methyl 4-(2-phenylacetyl)benzoate (3g). Prepared according to the general procedure (1) for the
alkylation of acyl azoliums using the respective acyl imidazole (57.6 mg, 1.0 equiv.) and benzyl
Hantzsch ester. PC-1 was used as the photocatalyst. The reaction mixture was purified by
preparative HPLC (long column, 20-90% MeCN/H,0) to yield the desired product as an oft-
white solid (40.2 mg, 63%). Product is a known substrate and matched the literature data.®

o}

A
| -
2-phenyl-1-(pyridin-3-yl)ethan-1-one (3h). Prepared according to the general procedure (1) for
the alkylation of acyl azoliums using the respective acyl imidazole (43.0 mg, 1.0 equiv.) and
benzyl Hantzsch ester. PC-1 was used as the photocatalyst. The reaction mixture was purified by
preparative HPLC (short column, 10-90% MeCN/H,0) to yield the desired product (34.0 mg,
69%). Product is a known substrate and matched the literature data.'



0

1-(1H-indol-3-yl)-2-phenylethan-1-one (3i). Prepared according to the general procedure (1) for
the alkylation of acyl azoliums using the respective acyl imidazole (53 mg, 1.0 equiv.) and benzyl
Hantzsch ester. PC-1 was used as the photocatalyst. The reaction mixture was purified by column
chromatography (wet loaded with toluene, 20-60% ethyl acetate/hexanes) to yield the desired
product as a white solid (29.5 mg, 50%). 'H NMR (500 MHz, DMSO-ds) § 11.99 (s, 1H), 8.52 (d,
J=3.0 Hz, 1H), 8.22 — 8.11 (m, 1H), 7.46 (dt, J = 8.1, 1.0 Hz, 1H), 7.37 — 7.33 (m, 2H), 7.32 —
7.27 (m, 2H), 7.23 — 7.14 (m, 3H), 4.15 (s, 2H). *C NMR (126 MHz, DMSO-ds) § 192.6, 136.7,
136.5, 134.6, 129.3, 128.2, 126.1, 125.5, 122.8, 121.7, 121.3, 116.0, 112.1, 45.7. HRMS
(ESITOF) m/z: [M+Na]" Caled. for CisH;3NONa 258.0895; Found 258.0895. IR has been

reported for this compound. !
Q)
\/\O O

1-(4-(allyloxy)phenyl)-2-phenylethan-1-one (3j). Prepared according to the general procedure (1)
for the alkylation of acyl azoliums using the respective acyl imidazole (57 mg, 1.0 equiv.) and
benzyl Hantzsch ester. PC-1 was used as the photocatalyst. The reaction mixture was purified by
column chromatography (dry loaded with silica, 2-20% ethyl acetate/hexanes) to yield the desired
product as a white solid (39.7 mg, 69%). Analytical data for 3j: Note NMR contains a mixture of
tautomers. '"H NMR (500 MHz, Chloroform-d) Ketone form: & 8.03 — 7.96 (m, 2H), 7.32 (dd, J =
8.1, 6.8 Hz, 2H), 7.29 — 7.22 (m, 3H), 6.97 — 6.90 (m, 2H), 6.04 (ddt, J=17.3, 10.5, 5.3 Hz, 1H),
547 —5.29 (m, 2H), 4.59 (dt, J = 5.3, 1.5 Hz, 2H), 4.23 (s, 2H). Enol form: 6 9.89 (s, 0.04 H),
7.84 (m, 0.12 H), 7.02 (m, 0.12 H), 4.63 (m, 0.08 H). “C NMR (126 MHz, Chloroform-d) &
196.3, 162.6, 135.0, 132.5, 131.0, 129.8, 129.5, 128.7, 126.9, 118.4, 114., 69.02, 45.3. HRMS
(ESI/TOF) m/z: [M+H]" Calcd. for Ci7H;70, 253.1228; Found 253.1223. FTIR (ATR) cm™:
Pt

3098, 3061, 3034, 2901, 1680.
OMe
i
F

2-(4-methoxyphenyl)-1-(4-(prop-2-yn-1-yloxy)phenyl)ethan-1-one (3k). Prepared according to
the general procedure (1) for the alkylation of acyl azoliums using the respective acyl imidazole
(53 mg, 1.0 equiv.) and benzyl Hantzsch ester. PC-1 was used as the photocatalyst. The reaction
mixture was purified by column chromatography (dry loaded with silica, 2-10% ethyl
acetate/hexanes) to yield the desired product as a white solid (34 mg, 52%). Analytical data for
3k: '"H NMR (500 MHz, Chloroform-d) § 8.05 — 7.96 (m, 2H), 7.23 — 7.15 (m, 2H), 7.05 — 6.98
(m, 2H), 6.91 — 6.83 (m, 2H), 4.75 (d, J = 2.4 Hz, 2H), 4.17 (s, 2H), 3.78 (s, 3H), 2.55 (t, /=24
Hz, 1H). *C NMR (126 MHz, Chloroform-d) § 196.7, 161.5, 158.7, 131.0, 130.6, 127.0, 114.8,
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1143, 779, 76.4, 56.0, 55.4, 44.6. HRMS (ESI/TOF) m/z: [M+H]" Calcd. for CisH70s
281.1177; Found 281.1175. FTIR (ATR) cm™: 3305, 3263, 2994, 1684.

O

1-(naphthalen-2-yl)-2-phenylethan-1-one (31). Prepared according to the general procedure (1) for
the alkylation of acyl azoliums using the respective acyl imidazole (55.6 mg, 1.0 equiv.) and
benzyl Hantzsch ester. PC-1 was used as the photocatalyst. The reaction mixture was purified by
column chromatography (wet loaded with toluene, 2-20% ethyl acetate/hexanes) to yield the
desired product as a white solid (38 mg, 62%). Product is a known substrate and matched the
literature data.®

0O

BocN

tert-butyl 4-(2-phenylacetyl)piperidine-1-carboxylate (3m). Prepared according to the general
procedure (1) for the alkylation of acyl azoliums using the respective acyl imidazole (69.8 mg,
1.0 equiv.) and benzyl Hantzsch ester. PC-1 was used as the photocatalyst. The reaction mixture
was purified by column chromatography (wet loaded with toluene, 2-20% ethyl acetate/hexanes)
to yield the desired product as a clear oil (31 mg, 41%). Analytical data for 3m: 'H NMR (500
MHz, Chloroform-d) & 7.38 — 7.29 (m, 2H), 7.30 — 7.26 (m, 1H), 7.19 (dd, J = 7.2, 1.7 Hz, 2H),
4.11 (m, 2H), 3.75 (s, 2H), 2.74 (t, J = 12.7 Hz, 2H), 2.59 (tq, J = 11.4, 3.8 Hz, 1H), 1.74 (m,
2H), 1.55 (dtd, J = 13.4, 11.7, 4.3 Hz, 2H), 1.44 (s, 9H). *C NMR (126 MHz, Chloroform-d) &
209.5, 154.7, 134.0, 129.5, 128.8, 127.2, 79.7, 48.0, 47.9, 28.5, 27.7. HRMS (ESI/TOF) m/z:
[M+Na]" Caled. for CisHasNOsNa 326.1732; Found 326.1732. FTIR (ATR) cm™: 3006, 2977,

2929, 1680.
i
O NHBoc

tert-butyl (S)-(3-oxo-1,4-diphenylbutan-2-yl)carbamate (3m). Prepared according to the general
procedure (1) for the alkylation of acyl azoliums using the respective acyl imidazole (78.8 mg,
1.0 equiv.) and benzyl Hantzsch ester. PC-1 was used as the photocatalyst. The reaction mixture
was purified by preparative HPLC (short column, 30-95% MeCN/H,0) to yield the product as an
off-white solid (34 mg, 40%). Analytical data for 3n: '"H NMR (500 MHz, Chloroform-d) § 7.38
—7.22 (m, 6H), 7.11 (dd, J=16.5, 7.3 Hz, 4H), 5.10 (d, /= 7.8 Hz, 1H), 4.63 (q, J= 7.0 Hz, 1H),
3.77 — 3.58 (m, 2H), 3.00 (qd, J = 13.8, 6.7 Hz, 2H), 1.41 (s, 9H). *C NMR (126 MHz,
Chloroform-d) 6 206.7, 155.2, 136.3, 133.2, 129.7, 129.0, 128.84, 128.7, 127.2, 127.1, 80.1, 59.6,
48.0, 37.9, 28.4. HRMS (ESI/TOF) m/z: [M+Na]" Calcd. for C,1H2sNOsNa 362.1732; Found
362.1730. FTIR (ATR) cm™: 3379, 3029, 2978, 1723, 1681.
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O/E\Q
1-cyclohexyl-2-phenylethan-1-one (30). Prepared according to the general procedure (1) for the
alkylation of acyl azoliums using the respective acyl imidazole (46.6 mg, 1.0 equiv.) and benzyl
Hantzsch ester. PC-1 was used as the photocatalyst. The reaction mixture was purified by column

chromatography (wet loaded with toluene, 0-10% ethyl acetate/hexanes) to yield the desired
product as a clear oil (24 mg, 47%). Product is a known substrate and matched the literature

data.’
i QO

1,4-diphenylbutan-2-one (3p). Prepared according to the general procedure (1) for the alkylation
of acyl azoliums using the respective acyl imidazole (50 mg, 1.0 equiv.) and benzyl Hantzsch
ester. PC-1 was used as the photocatalyst. The reaction mixture was purified by preparative
HPLC (short column, 30-95% MeCN/H,0) to yield the product as a clear oil (23 mg, 41%).
Product is a known substrate and matched the literature data."

OMe
i O

2-(4-methoxyphenyl)-1-phenylethan-1-one (3q). Prepared according to the general procedure (1)
for the alkylation of acyl azoliums using the respective acyl imidazole (43.0 mg, 1.0 equiv.) and
benzyl Hantzsch ester. PC-1 was used as the photocatalyst. The reaction mixture was purified by
column chromatography (dry loaded with silica, 0-10% ethyl acetate/hexanes) to yield the desired
product as a white solid (36 mg, 64%). Product is a known substrate and matched the literature

data.”?
OMe
/‘/k/‘/
MeO

1,2-bis(4-methoxyphenyl)ethan-1-one (3r). Prepared according to the general procedure (1) for
the alkylation of acyl azoliums using the respective acyl imidazole (51 mg, 1.0 equiv.) and benzyl
Hantzsch ester. PC-1 was used as the photocatalyst. The reaction mixture was purified by column
chromatography (dry loaded with silica, 2-10% ethyl acetate/hexanes) to yield the desired product
as a white solid (37 mg, 58%). Product is a known substrate and matched the literature data."

F

2-(4-fluorophenyl)-1-phenylethan-1-one (3s). Prepared according to the general procedure (1) for
the alkylation of acyl azoliums using the respective acyl imidazole (43 mg, 1.0 equiv.) and benzyl
Hantzsch ester. PC-1 was used as the photocatalyst. The reaction mixture was purified by column
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chromatography (dry loaded with silica, 2-20% ethyl acetate/hexanes) to yield the desired product
as a white solid (65 mg, 66%). Product is a known substrate and matched the literature data.'’

AN

2-(4-chlorophenyl)-1-phenylethan-1-one (3t). Prepared according to the general procedure (1) for
the alkylation of acyl azoliums using the respective acyl imidazole 43 mg, 1.0 equiv.) and benzyl
Hantzsch ester. PC-1 was used as the photocatalyst. The reaction mixture was purified by column
chromatography (dry loaded with silica, 0-10% ethyl acetate/hexanes) to yield the desired product
as a white solid (44 mg, 76%). Product is a known substrate and matched the literature data.'®

cyclohexyl(phenyl)methanone (3u). Prepared according to the general procedure (1) for the
alkylation of acyl azoliums using the respective acyl imidazole (43 mg, 1.0 equiv.) and Hantzsch
ester. PC-1 was used as the photocatalyst. The reaction mixture was purified by column
chromatography (wet loaded with toluene, 2-20% ethyl acetate/hexanes) to yield the desired
product (24 mg, 50%). Product is a known substrate and matched the literature data.'®

i Q)
Me

1,2-diphenylpropan-1-one (3v). Prepared according to the general procedure (1) for the alkylation
of acyl azoliums using the respective acyl imidazole (43 mg, 1.0 equiv.) and benzyl Hantzsch
ester. PC-1 was used as the photocatalyst. The reaction mixture was purified by column
chromatography (dry loaded with silica, 2-20% ethyl acetate/hexanes) to yield the desired product
as a clear oil (40 mg, 76%). Product is a known substrate and matched the literature data."” Az-6
was used for the enantioselective variant of this reaction (see below). For entry 2, the SynLED
photoreactor was placed inside a cold room registering 5 °C. Enantiomeric ratio was measured by
chiral phase SFC (Chiralpak IG-3, 5% MeOH/CQO., flow rate = 2.5 mL/min, 250 nm, Rt (major) =
3.6 min, Rt (minor) = 4.1 min; Entry 1 er: 60:40, Entry 2 er: 66:34.

1,2,2-triphenylethan-1-one (3w). Prepared according to the general procedure (2) for the
alkylation of acyl azoliums using the respective acyl imidazole (43 mg, 1.0 equiv.) and Meyer
nitrile. 4-CzIPN was used as the photocatalyst. The reaction mixture was purified by column
chromatography (wet loaded with toluene, 0-20% ethyl acetate/hexanes) to yield the desired
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product as a white solid (44 mg, 50%). Product is a known substrate and matched the literature

data.'
i
O Me Me

2-methyl-1,2-diphenylpropan-1-one (3x). Prepared according to the general procedure (2) for the
alkylation of acyl azoliums using the respective acyl imidazole (43 mg, 1.0 equiv.) and Meyer
nitrile. 4-CzIPN was used as the photocatalyst. The reaction mixture was purified by column
chromatography (wet loaded with toluene, 0-20% ethyl acetate/hexanes) to yield the desired
product as a clear oil (28 mg, 50%). Product is a known substrate and matched the literature

data.”®
(0]
Me
Me
Me

2,2-dimethyl-1-phenylpropan-1-one (3y). Prepared according to the general procedure (2) for the
alkylation of acyl azoliums using the respective acyl imidazole (43 mg, 1.0 equiv.) and Meyer
nitrile. Note: PC-1 was used as the photocatalyst for this reaction. The reaction mixture was
purified by column chromatography (dry loaded with silica, 2-10% ethyl acetate/hexanes) to yield
the desired product as a clear oil (14 mg, 35%). Product is a known substrate and matched the

literature data.?’
Me
N Me Ph
'
Nas N 0

N
\Me

1-(4'-((1,7'-dimethyl-2'-propyl-1H,3'H-[ 2,5'-bibenzo[ d]imidazol]-3'-yl)methyl)-[ 1,1'-biphenyl]-2-

yl)-2-phenylethan-1-one (5a). Prepared according to the general procedure (3) for the alkylation
of acyl azoliums (in situ activation) using telmisartan (51.5 mg, 1.0 equiv.) and the respective
benzyl Hantzsch ester. PC-1 was used as the photocatalyst. The reaction mixture was purified by
column chromatography (wet loaded with toluene, 60-100% ethyl acetate/hexanes) to yield the
desired product as an off-white solid (54 mg, 91%). Analytical data for Sa: "H NMR (500 MHz,
Chloroform-d) 6 7.81 — 7.76 (m, 1H), 7.51 (d, J= 1.6 Hz, 1H), 7.46 (td, J=17.5, 1.5 Hz, 1H), 7.44
—7.40 (m, 2H), 7.38 — 7.24 (m, 7H), 7.15 — 7.06 (m, 5H), 6.85 — 6.80 (m, 2H), 5.45 (s, 2H), 3.73
(s, 3H), 3.55 (s, 2H), 2.98 — 2.87 (m, 2H), 2.78 (s, 3H), 1.87 (dt,J=15.3, 7.5 Hz, 2H), 1.03 (t, J =
7.3 Hz, 3H). “C NMR (126 MHz, Chloroform-d) & 204.4, 156.5, 154.7, 143.3, 142.9, 140.5,
140.3, 139.3, 136.7, 135.8, 135.2, 133.9, 130.8, 130.3, 129.7, 129.6, 129.5, 128.4, 128.23, 127.7,
126.9, 126.7, 124.1, 124.0, 122.6, 122.4, 119.6, 109.7, 108.9, 49.6, 47.0, 31.9, 29.9, 22.0, 17.0,
14.2. HRMS (ESI/TOF) m/z: [M+H]" Calcd. for C4H37N4O 589.2967; Found 589.2965. FTIR
(ATR) cm™: 3062, 3028, 2964, 2931, 1692.
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(8)-2-(3-ethoxy-4-(2-phenylacetyl)phenyl)-N-(3-methyl-1-(2-(piperidin-1-
yl)phenyl)butyl)acetamide (Sb). Prepared according to the general procedure (3) for the
alkylation of acyl azoliums (in situ activation) using repaglinide (45.3 mg, 1.0 equiv.) and the
respective benzyl Hantzsch ester. PC-1 was used as the photocatalyst. The reaction mixture was
purified by column chromatography (wet loaded with toluene, 0-40% ethyl acetate/hexanes) to
yield the desired product as a white solid (27.1 mg, 52%). Analytical data for 5b: 'H NMR (500
MHz, Chloroform-d) 6 7.60 (d, J= 7.8 Hz, 1H), 7.32 — 7.15 (m, 7H), 7.08 — 7.01 (m, 2H), 6.84 —
6.77 (m, 2H), 6.72 (d, J = 8.1 Hz, 1H), 5.35 (td, /= 8.7, 6.6 Hz, 1H), 4.30 (s, 2H), 4.11 — 3.95 (m,
2H), 3.50 (s, 2H), 2.91 (s, 2H), 2.59 (t, J = 10.2 Hz, 2H), 1.74 — 1.64 (m, 2H), 1.64 — 1.46 (m,
6H), 1.46 — 1.37 (m, 4H), 0.90 (d, J = 6.6 Hz, 6H). *C NMR (126 MHz, Chloroform-d) & 199.8,
168.9, 158.3, 152.7, 141.5, 138.8, 135.4, 131.4, 129.8, 128.5, 128.1, 127.9, 127.2, 126.7, 125.2,
123.0, 121.5, 113.1, 64.3, 50.2, 50.1, 46.8, 44.3, 26.9, 25.5, 24.3, 22.9, 22.7, 14.9. HRMS
(ESI/TOF) m/z: [M+H]" Caled. for C34Ha3N>O5 527.3273; Found 527.3273. FTIR (ATR) cm™:
3300 (br), 3029, 2980, 2955, 2876, 1676, 1640.

(55,8R,98,108,13R,14S8,17R)-10,13-dimethyl-17-(5-0x0-6-phenylhexan-2-yl)dodecahydro-3 H-
cyclopentala]phenanthrene-3,7,12(2H,4H)-trione (5¢). Prepared according to the general
procedure (3) for the alkylation of acyl azoliums (in situ activation) using dehydrocholic acid
(40.3 mg, 1.0 equiv.) and the respective benzyl Hantzsch ester. PC-1 was used as the
photocatalyst. The reaction mixture was purified by column chromatography (wet loaded with
toluene, 20-80% ethyl acetate/hexanes) to yield the desired product as a white solid (19 mg,
40%). '"H NMR (500 MHz, Chloroform-d) § 7.32 (dd, J = 8.1, 6.7 Hz, 2H), 7.28 — 7.23 (m, 1H),
7.22 —7.18 (m, 2H), 3.68 (s, 2H), 2.99 — 2.77 (m, 3H), 2.52 (ddd, /= 17.0, 9.2, 5.1 Hz, 1H), 2.42
(ddd, J=16.7, 8.7, 6.7 Hz, 1H), 2.36 — 2.18 (m, 6H), 2.17 — 2.08 (m, 2H), 2.05 — 1.91 (m, 4H),
1.87 - 1.74 (m, 2H), 1.61 (td, J = 14.3, 5.0 Hz, 1H), 1.39 (s, 3H), 1.35-1.26 (m, 2H), 1.25 - 1.17
(m, 2H), 1.03 (s, 3H), 0.76 (d, J = 6.6 Hz, 3H). *C NMR (126 MHz, Chloroform-d) & 212.0,
209.0, 208.74, 208.69, 134.3, 129.4, 128.7, 127.0, 56.9, 51.7, 50.3, 49.0, 46.9, 45.6, 45.5, 45.0,
42.8, 39.0, 38.6, 36.5, 36.0, 35.3, 35.3, 29.2, 27.5, 25.1, 21.9, 18.7, 11.9. HRMS (ESI/'TOF) m/z:
[M+Na]" Caled. for C3;H404Na 499.2824; Found 499.2824 FTIR (ATR) cm™: 3028, 2991, 2967,
1721, 1705, 1691.
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Control Experiments

Control experiments were set up according to general procedure (1) for the alkylation of acyl
azoliums using the respective acyl imidazole and benzyl Hantzsch ester.

0 o Az-1 (15 mol %)
)j\ A+ EtO.C CO,Et Cs,C0; (15 mol %)‘ )CJ)\/
Ph”” N >
N || PC-1 (1 mol %) - Ph
= Me” N7 Me CH4CN (0.1 M)
H 467 nm LEDs, 16 h
entry deviation from standard product
1 none 63
2 no base 0
3 no azolium 0
4 no photocatalyst 0
5 no light 0
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Cyclic Voltammetry Graphs
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Enantioselective Variant SFC traces

Me_ _Ph
(0] Az-6 (15 mol %) 0
)]\ -~ Et0,C CO,Et Cs,CO; (15 mol %) )H/Ph
o “{\\/N | PCA(1mol%) . ™ T

Iz

8Reactions in SynLED photoreactor warm to ~30 °C over time.

Me

Entry

CH3CN (0.1 M), temp

Me

36 h, Blue LEDs (467 nm)

Temperature

Enantiomeric ratio

1
2

30 °C?

5°C

60:40
66:34

‘ DAD1 A, Sig=250,4 Ref=360,100 (AVD\avd09_94_36h 2020-02-01 09-17-021006-P1-F1-avd09_06_rac_pure D)
=]

mAl - & & oF
= b
140-| . &
w3 racemic
100
«  (Az-1)
60|
40
20
| ) )
T T T T T T T T
3 32 3.4 36 38 4 42 4.4 min
[T I 3]
# Time Type Area Height Width Area% Symmetry
[1] 363 [mMT | 11936 | 1629 | 0.137 | 50.225 | 5.71E-3 |
2] 418 [wmmt [ 1829 | 1428 | 0.1381 | 49.775 | 0 |
DAD1 A, Sig=250,4 Ref=360,100 (AVD\avd09_94_3 2020-02-01 08-35-66\003-P1-E4-avd09_94C_1_36h D)
mal |
80|
80; ;é‘«
. Entry 1 o ‘
] B A
40— S o
| o 8
=g
Ll
20—
q . .
T T T T T T T T
3 32 34 36 38 4 42 44 min|
[ I 3
# Time _ Type Area Height Width __Area% Symmetry
3612 [ MMT 257.4 35 0.1224 | 60.287 | 2.4%-4
2] 4116 [mvT | 1696 | 204 | 0143 [ 39713 | 0 |
DAD1 A, Sig=250,4 Ref=360,100 (AVD\avd09_94_36h 2020-02-01 09-17-02\004-P1-D3-avd09_94C_2_36h.0)
mA=
70
= Entry2
50~
40 &
| AF &
20 3 ;(‘r &
: 3 3
20= Bl 8 &
E ey
10= =
o3 L I .
103
T T T T T T T T
3 32 34 36 38 4 42 4.4 min|
[T J ]

# Time _ Type Area Height

Width
0.1307

Area% Symmetry

[MvT | 66 | 8.4

| 0.1304

| 34073 | 2.55E4
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Selected NMR Spectra
"H NMR spectra of 3a (500 MHz, CDCl3)
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"H NMR spectra of 3b (500 MHz, CDCl5)
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"H NMR spectra of 3¢ (500 MHz, CDCls)
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"H NMR spectra of 3d (500 MHz, CDCl5)
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"H NMR spectra of 3e (500 MHz, CDCl5)
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"H NMR spectra of 3f (500 MHz, CDCls)
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"H NMR spectra of 3g (500 MHz, CDCl3)
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"H NMR spectra of 3h (500 MHz, CDCl5)
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"H NMR spectra of 3i (500 MHz, DMSO)
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"H NMR spectra of 3k (500 MHz, CDCl5)
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"H NMR spectra of 31 (500 MHz, CDCl5)
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"H NMR spectra of 3m (500 MHz, CDCl5)
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"H NMR spectra of 3n (500 MHz, CDCl5)
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"H NMR spectra of 30 (500 MHz, CDCl3)
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"H NMR spectra of 3p (500 MHz, CDCl5)
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"H NMR spectra of 3q (500 MHz, CDCl5)
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"H NMR spectra of 3r (500 MHz, CDCl5)

OMe
(0] 175000

F800V00

~70000
165000
MeO
160000
155000
150000
145000
140000
135000
~30000
25000
120000
115000

10000

I v

r-5000

1.85 %
M
P

N 187
1.89
2.001
2.95
291

T
100 95 90 85

0 65 60 55 45 4. 35 30 25 20 15 1.0 05 0.0

o

5.0
1 (ppm)

13C NMR spectra of 3r (126 MHz, CDCls)

11000

196.8
—163.7
—158.7
131.2
130.6
129.9
127.2
_naa
1140
557
555
446

L
\
\

10000

o 19000

8000

MeO 17000

6000

5000

4000

3000

i 12000

‘ ! 11000

|

-1000

T T T T T T T T T T T T T T T T T T T T T
200 190 180 170 160 150 140 130 120 110 f 200 ) 90 80 70 60 50 40 30 20 10 0
ppm,

S34



"H NMR spectra of 3s (500 MHz, CDCl3)
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"H NMR spectra of 3t (500 MHz, CDCls)
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"H NMR spectra of 3u (500 MHz, CDCl5)

)
T 7 T T T
5 33 8 gg
= S = < < 0
10.0 95 9.0 8.5 .0 7.5 7.0 6.5 6.0 55 5.0 4.5 4.0 3.5 3.0 25 .0 1.5 1.0 0.5 0.0
1 (ppm)
13C NMR spectra of 3u (126 MHz, CDCl5)
o 0o
N NV
I
200 190 180 1770 160 150 140 130 120 110ﬂ (10% 90 80 70 60 50 40 30 20 10 0
ppm,

S37

70000

65000

60000

55000

50000

45000

40000

35000

30000

25000

20000

15000

10000

5000

r-5000

80000

75000

70000

65000

60000

55000

50000

45000

40000

35000

30000

25000

20000

15000

10000

5000

5000




"H NMR spectra of 3v (500 MHz, CDCl3)
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"H NMR spectra of 3w (500 MHz, CDCls)
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"H NMR spectra of 3x (500 MHz, CDCl3)
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"H NMR spectra of 3y (500 MHz, CDCl3)
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"H NMR spectra of 4b (500 MHz, CDCl5)
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"H NMR spectra of 4¢ (500 MHz, CDCl5)
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