### Ovarian Cancer Exosomes Trigger Differential Biophysical Response in Tumor-Derived Fibroblasts

Amy H. Lee<sup>1</sup>, Deepraj Ghosh<sup>2</sup>, Nhat Quach<sup>2</sup>, Devin Schroeder<sup>2</sup>, Michelle R. Dawson<sup>\*1,2</sup>

1. Brown University, School of Engineering, Center for Biomedical Engineering, Providence, RI, 02912, USA.

2. Brown University, Department of Molecular Pharmacology, Physiology, and Biotechnology, Providence, RI, 02912, USA.

\* Correspondence addressed to <u>michelle\_dawson@brown.edu</u>







# Supplemental Table 1

| Pathways of<br>Interest                | # miRNAs | Involved<br>Genes                                                                                                                    | Involved miRNAs                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Proteoglycans in<br>Cancer             | 261      | CAMK2D, ACTB,<br>ROCK1, SMAD2, CAV1,<br>RHOA, AKT2, WNT5A,<br>CD44                                                                   | miR-7-1-3p, miR-940, miR-106b, let-7a-5p, let-7b-5p,<br>let-7c-5p, let-7e-5p, let-7f-5p, let-7g-5p, let-7i-5p,<br>miR-182-5p, miR-429, miR-195, miR-200b,<br>miR-3613, miR-3714, miR-4470, miR-4728,<br>miR-4668, miR-6768, miR-8063, miR-497,<br>miR-513a-5p, miR-939-5p                                                                                                                                      |
| Pathways in<br>Cancer                  | 233      | PDGFRA, WNT16,<br>TGFBR1, SMAD2,<br>ROCK1, RHOA,<br>CCNA1, Rac2,<br>COL4A5, AKT2,<br>MAPK3, FN1, CDK4,<br>FOXO1, PTEN, JAK1,<br>BRAF | miR-7-1-3p, let-7e-5p, let-7g-5p, let-7b-5p, let-7f-5p,<br>let-7f-5p, miR-15a, miR-106b, miR-940, miR-182-5p,<br>miR-200b, miR-429, miR-200c, miR-3613-3p,<br>miR-3714, miR-1290, miR-6768-5p, miR-6876-5p,<br>miR-939-5p, miR-664b-3p, miR-497, miR-513a-5p                                                                                                                                                   |
| TGF-B Signaling                        | 154      | ROCK1, SMAD2,<br>SMAD6, RhoA,<br>PPP2CA, SMURF2,<br>ACVR2A, BAMBI                                                                    | miR-7-1-3p, miR-106b-5p, miR-940, miR-224-3p,<br>miR-429, miR-195-5p, miR-301a-3p, miR-3613-3p,<br>miR-3149, miR-8063, miR-664b, miR-494-3p,<br>miR-940, miR-522-3p, let-7a-5p, let-7b-5p, let-7c-5p,<br>let-7d-5p, let-7e-5p, let-7f-5p, let-7g-5p, let-7i-5p                                                                                                                                                 |
| Wnt Signaling<br>Pathway               | 249      | FZD7, CTNNBIP1,<br>CAMK2D, Wnt2B,<br>Wnt16, RhoA, SMAD4,<br>VANGL1, Rac2, CCND2                                                      | miR-7-1-3p, miR-15a-5p, miR-30b-5p, miR-30e-5p,<br>miR-940, let-7a-5p, let-7b-5p, miR-26a-5p, has-<br>miR195-5p, miR-182-5p, miR-205-5p, miR-224-3p,<br>miR-3613-3p, miR-3619-5p, miR-4668-5p, miR-6124,<br>miR-6876-5p, miR-6768-5p, miR-664b-3p,<br>miR-497-5p, miR-513a-5p                                                                                                                                  |
| Ras Signaling<br>Pathway               | 274      | RASAL1, PRKCA,<br>PDGFRA, KRAS, PAK1,<br>FGF11, RAB5A, Rac2,<br>PIK3CB, Akt3, FZD6,<br>RhoA, MAPK9,<br>CAMK2D                        | miR-7-1-3p, miR-30e-5p, miR-106b-5p, miR-15a-5p,<br>miR-155-5p, miR-200b-3p, miR-224-3p, miR-429,<br>miR-182-5p, miR-195-5p,miR-3613-3p, miR-1290,<br>miR-3149, miR-6124, miR-4668-5p, miR-4728-5p,<br>miR-4470, miR-6768-5p, miR-6756-5p, miR-8063,<br>miR-8089, miR-7111, miR-513a-5p, miR-664b-3p,<br>miR-497-5p, let-7a-5p, let-7b-5p, let-7c-5p, let-7d-5p,<br>let-7e-5p, let-7f-5p, let-7g-5p, let-7i-5p |
| Focal Adhesions                        | 261      | ACTB, MYLK4, Rock1,<br>COL4A5, RAF1, RhoA,<br>FYN, CAV3, VCL,<br>PAK3, ACTN1, PARVG,<br>ITGA2, FN1, PXN                              | miR-15a-5p, miR-8075, miR-7-1-3p, miR-940,<br>let-7a-5p, miR-30e-5p, miR-429, miR-195-5p,<br>miR-182-5p, miR-200b-3p, miR-3613-3p, miR-1290,<br>miR-4728-5p, miR-4470, miR4668-5p, miR-6124,<br>miR-6768-5p, miR6756-5p, miR-6165, miR-6808-5p,<br>miR-8063, miR-664b-3p, miR-513a-5p, miR-497-5p,<br>miR-1207-5p                                                                                              |
| Adherens<br>Junction                   | 233      | ACTN2, SMAD2,<br>SNAI2, RHOA, CDH1,<br>CTNND1, PVRL4,<br>MAPK1, RAC1, WASF1                                                          | miR-7-1-3p, miR-940, miR-182-5p, miR-205-5p,<br>miR-3613-3p, miR-3714, miR-4668-5p, miR-4728-5p,<br>miR-6893-5p, miR-6808, miR-8063, miR-940,<br>miR-589-3p, let-7a-5p, let-7b-5p, let-7e-5p                                                                                                                                                                                                                   |
| Regulation of<br>Actin<br>Cytoskeleton | 199      | ARPC5, PFN1, ACTN2,<br>PGGFRA, MYLK4, VCL,<br>MYH9, KRAS, FGF2,<br>PAK6, FN1, ROCK2,<br>PXN                                          | miR-182-5p, miR-224-3p, miR-429, miR-200b-3p,<br>miR-195-5p, miR-3613-3p, miR-3714, miR-1290,<br>miR-4668-5p, miR-4728-5p, miR-4689, miR-6124,<br>miR-5196-5p, miR-6768-5p, miR-6876-5p,<br>miR-6756-5p, miR8063, miR-8089, miR-8075,<br>miR-664b-3p, miR-513a-5p, miR-940, miR-497-5p                                                                                                                         |



#### SEC-Exosomes vs. Cell Lysates



Supplemental Figure 3 A. \_\_\_\_\_ B.







## Supplemental Table 2:

| Α. |             | Mean     | Median | CV    |
|----|-------------|----------|--------|-------|
|    | Control (I) | 0.807192 | 0.833  | 0.126 |
|    | Control (F) | 0.760992 | 0.761  | 0.144 |
|    | CI-EXO (I)  | 0.768791 | 0.7945 | 0.145 |
|    | CI-EXO (F)  | 0.81214  | 0.826  | 0.104 |
|    | SEC-EXO (I) | 0.790073 | 0.8195 | 0.132 |
|    | SEC-EXO (F) | 0.714079 | 0.763  | 0.238 |











# Supplemental Table 3:

| MYL9  | F: ACC CCA CAG ACG AAT ACC TG    |
|-------|----------------------------------|
|       | R: AAA GGC GTT GCG AAT CAC AT    |
| RHOA  | F: TAT CGA GGT GGA TGG AAA GC    |
|       | R: TAT CGA GGT GGA TGG AAA GC    |
| ROCK1 | F: TTA CTG ACA GGG AAG TGA GGT T |
|       | R: AGG TAG TTG ATT GCC AAC GAA A |
| ROCK2 | F: AAC AGG CAT GGT ACA TTG TGA T |
|       | R: GGA AAA CAC CTA CAG ACC ACC   |
| 18s   | F: GTA ACC CGT TGA ACC CCA TT    |
|       | R: CCA TCC AAT CGG TAG TAG CG    |