Electric Fields at Breast Cancer and Cancer Cell Collective Galvanotaxis

Kan Zhu¹, Nicholas R. Hum^{2,3}, Brian Reid¹, Qin Sun^{1,4}, Gabriela G. Loots^{2,3*}, and Min Zhao^{1*}

 ¹ Institute for Regenerative Cures, Departments of Dermatology, Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, CA 95616
² Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
³University of California, Merced, School of Natural Sciences, Merced, CA.
⁴ School of Life Science, Yunnan Normal University, Yunnan, China

* Correspondence: MZ (minzhao@ucdavis.edu) or GGL (loots1@llnl.gov)

sFig. 1. Correlation between Tumor weight (size) and electric current density. Compilation of all tumors tested. Data of current magnitude are from Fig. 1d. Solid line: linear regression (r^2 =0.8319); r: correlation coefficient (P=0.0042).

sFig. 2. Migration persistence of metastatic sublines in EFs. (a) Cells in isolation; (b) Cells in monolayer. At least 50 cells were analyzed for each condition. Data are shown as mean \pm s.e.m. * p < 0.05, ** p < 0.01 compared with its no EF control; # p < 0.05, ## p < 0.01 compared with parental 4T1 cells of the same condition.

sFig 3. 4T1-GFP metastatic subline generation. Cytometric analysis of GFP intensity of (a) naïve lung tissue, (b) WT 4T1, (c) 4T1-GFP-Luc in culture, (d-f) primary cell populations from tissues of interest, (g-i) established metastatic cell lines following 2 FACS isolations