Supplementary Information

Manuscript title: **CX-5461 Activates the DNA Damage Response and demonstrates** therapeutic efficacy in High-Grade Serous Ovarian Cancer

Sanij et al.,

## BRCA1-Mutated\_UP GSEA

|              | CX-5461 |     |         |     |     |     | (   | CX-5461 |     |              |      |      |       |       |     |     |      |     |     |     |      |     |                  |
|--------------|---------|-----|---------|-----|-----|-----|-----|---------|-----|--------------|------|------|-------|-------|-----|-----|------|-----|-----|-----|------|-----|------------------|
| resistant se |         |     |         |     |     |     |     | se      | n   | si           | iti  | V    | e     |       |     |     |      |     |     |     |      |     |                  |
| 0C.9         | AR8     | M.1 | NAMOCHI | W   | .21 | S.3 | C.7 | S.II    | 128 | 06           | CAR3 | 0V.1 | 0.704 | 7112D |     | 80  | CARS | 08  | 11  | 2   | 3432 | 742 | OVCA cell lines  |
| JHO          | OVC     | JHO | KUR     | X59 | EFO | JHO | JHO | RMG     | OAN | 6 <b>N</b> 0 | OVC  | FU   | COL   | VOL   | CHI | A27 | OVO  | X20 | RMG | ES. | OVO  | OAW | SampleName       |
| ⊢            |         |     |         |     |     |     |     |         |     |              |      |      |       |       |     |     |      |     |     |     |      |     | 8082911 NCK1     |
|              |         |     |         |     |     |     |     |         |     |              |      |      |       |       |     |     |      |     |     |     |      |     | 8121734 ASF1A    |
|              |         |     |         |     |     |     |     |         |     |              |      |      |       |       |     |     |      |     |     |     |      |     | 7951046 MRE11A   |
|              |         |     |         |     |     |     |     |         |     |              |      |      |       |       |     |     |      |     |     |     |      |     | 7903032 MTF2     |
|              |         |     |         |     |     |     |     |         |     |              |      |      |       |       |     |     |      |     |     |     |      |     | 7901867 USP1     |
|              |         |     |         |     |     |     |     |         |     |              |      |      |       |       |     |     |      |     |     |     |      |     | 8169792 SH2D1A   |
|              |         |     |         |     |     |     |     |         |     |              |      |      |       |       |     |     |      |     |     |     |      |     | 7943297 CEP57    |
|              |         |     |         |     |     |     |     |         |     |              |      |      |       |       | L   |     |      |     |     |     |      |     | 8124144 DEK      |
| H            |         |     |         |     |     | -   |     |         |     |              |      |      |       |       |     |     |      |     |     |     |      |     | 7902269 SFRS11   |
| H            |         |     | -       |     |     |     |     | -       |     |              |      |      |       |       |     |     |      |     |     |     |      |     | 811/510 HMGN4    |
|              | -       |     | -       |     | -   |     |     |         |     | -            |      |      |       |       |     |     |      |     |     |     |      |     | 7901192 PAD54T   |
|              |         |     | -       | -   | -   |     | -   |         |     |              |      |      |       |       |     |     |      |     |     |     |      |     | 7913864 STMN1    |
| H            |         |     | -       | -   | -   |     | -   |         |     |              |      |      |       |       |     |     |      |     |     |     |      |     | 8003679 PPA1     |
| H            |         |     | ⊢       | -   |     |     |     |         |     |              |      |      | -     | -     |     |     |      |     |     |     |      |     | 8090772 TOPBP1   |
|              |         |     |         |     |     |     |     |         |     |              |      |      |       | H     | -   |     |      |     |     |     |      |     | 7974066 PNN      |
| E            |         |     |         |     |     |     |     |         |     |              |      |      |       |       |     |     |      |     |     |     |      |     | 7904314 TTF2     |
|              |         |     |         |     |     |     |     |         |     |              |      |      |       |       |     |     |      |     |     |     |      |     | 8143663 EZH2     |
|              |         |     |         |     |     |     |     |         |     |              |      |      |       |       |     |     |      |     |     |     |      | H   | 7970317 TFDP1    |
|              |         |     |         |     |     |     |     |         |     |              |      |      |       |       |     |     |      |     |     |     |      |     | 7913712 SFRS13A  |
|              |         |     |         |     |     |     |     |         |     |              |      |      |       |       |     |     |      |     |     |     |      |     | 8028916 SNRPA    |
|              |         |     |         |     |     |     |     |         |     |              |      |      |       |       |     |     |      |     |     |     |      |     | 8146357 MCM4     |
|              |         |     |         |     |     |     |     |         |     |              |      |      |       |       |     |     |      |     |     |     |      |     | 8043413 RPIA     |
|              |         |     |         |     |     |     |     |         |     |              |      |      |       |       |     |     |      |     |     |     |      |     | 8083709 SMC4     |
|              |         |     |         |     |     |     |     |         |     |              |      |      |       |       |     |     |      |     |     |     |      |     | 8109712 HMMR     |
| L            |         |     |         |     |     |     |     |         |     |              |      |      |       |       |     |     |      |     |     |     |      |     | 7924603 LBR      |
| H            | -       |     | -       |     |     |     |     |         |     |              |      |      | -     |       | -   |     |      |     |     |     |      |     | 8130102 KATNAI   |
| H            | -       | -   | -       |     | -   |     | -   | H       |     |              |      |      | -     | -     | ⊢   |     | _    |     |     |     |      |     | 7900699 CDC20    |
| H            |         |     |         |     | -   |     | -   |         |     |              |      | -    |       |       |     |     | -    |     |     |     | -    |     | 8041867 MSH2     |
| H            | -       |     |         | -   |     |     |     | H       |     | -            |      |      |       | -     | ⊢   |     |      |     |     |     |      |     | 8108954 TCERG1   |
| H            | -       | ⊢   | -       |     |     |     |     | -       |     | -            |      |      |       |       |     |     |      |     |     |     |      |     | 7968563 RFC3     |
| H            |         |     |         |     |     |     | ⊢   |         |     |              |      |      |       | H     |     |     |      |     |     |     | -    |     | 7901363 CDKN2C   |
| F            |         |     |         |     |     |     |     |         |     |              |      |      |       |       |     |     |      |     |     |     |      |     | 8092640 RFC4     |
|              |         |     |         |     |     |     |     |         |     |              |      |      |       |       | ⊢   |     |      |     |     |     |      | H   | 8034806 DDX39    |
| F            |         |     |         |     |     |     |     |         |     |              |      |      |       |       |     |     |      |     |     |     |      |     | 8025697 ILF3     |
| F            |         |     |         |     |     |     |     |         |     |              |      |      |       |       |     |     |      |     |     |     |      |     | 8040712 CENPA    |
|              |         |     |         |     |     |     |     |         |     |              |      |      |       |       |     |     |      |     |     |     |      |     | 8082350 MCM2     |
|              |         |     |         |     |     |     |     |         |     |              |      |      |       |       |     |     |      |     |     |     |      |     | 8012403 AURKB    |
|              |         |     |         |     |     |     |     |         |     |              |      |      |       |       |     |     |      |     |     |     |      |     | 8033912 DNMT1    |
|              |         |     |         |     |     |     |     |         |     |              |      |      |       |       |     |     |      |     |     |     |      |     | 8048340 RQCD1    |
|              |         |     |         |     |     |     |     |         |     |              |      |      | L     |       | L   |     |      |     |     |     |      |     | 7953351 NCAPD2   |
|              |         |     |         |     | L   |     |     |         |     |              |      |      |       |       |     |     |      |     |     |     |      |     | 7968658 EXOSC8   |
|              |         |     |         |     |     |     |     |         |     |              |      |      |       |       |     |     |      |     |     |     |      |     | 8104912 SKP2     |
| F            |         |     |         |     |     |     |     |         |     |              |      |      |       |       |     |     |      |     |     |     |      |     | 0040043 CAD      |
|              |         |     |         |     |     |     |     |         |     |              |      |      |       |       |     |     |      |     |     |     |      |     | 7960340 FOVE     |
| F            |         |     |         |     |     |     |     |         |     |              |      |      |       |       |     |     |      |     |     |     |      |     | 7934026 DMA2     |
| H            |         |     |         |     |     |     |     |         |     |              |      |      |       |       |     |     |      |     |     |     |      |     | 8055426 MCM6     |
|              |         |     |         |     |     |     |     |         |     |              |      |      |       |       |     |     |      |     |     |     |      |     | 7901123 NASP     |
|              |         |     |         |     |     |     |     |         |     |              |      |      |       |       |     |     |      |     |     |     |      |     | 7953218 RAD51AP1 |
| F            |         |     |         |     |     |     |     |         |     |              |      |      |       |       |     |     |      |     |     |     |      |     | 8019857 NDC80    |
|              |         |     |         |     |     |     |     |         |     |              |      |      |       |       |     |     |      |     |     |     |      |     | 8072687 MCM5     |
|              |         |     |         |     |     |     |     |         |     |              |      |      |       |       |     |     |      |     |     |     |      |     | 7902913 CDC7     |
|              |         |     |         |     |     |     |     |         |     |              |      |      |       |       |     |     |      |     |     |     |      |     | 7986068 BLM      |

## MYC\_Oncogenic\_Signature\_UP GSEA



Gene set enrichment analysis of microarray expression data of 12 CX-5461-sensitive and 11 - resistant cell lines. The analysis identified that the BRCA1-mutated and induced MYC targets GSEA gene sets to be enriched in CX-5461-sensitive OVCA cell lines. The heatmaps demonstrate relatively high (red) or low (blue) gene expression in the indicated sample. The gene lists are provided in Supplementary Data 2&3.



Correlation between drug sensitivity measurements of CX-5461 and various PARPi in OVCA cell lines obtained from the Genomics of Drug Sensitivity database. Pearson correlation was used to measure correlation between the  $IC_{50}$  values. Two-sided test. Although a correlation between the sensitivity profiles of CX-5461 and PARPi ranging from 0.305 to 0.658 was observed, this was not significant.



Supplementary Figure 3. A) Assessment of HR proficiency in HGSOC cell lines as reported in Kondrashova et al., Nature Communications 2018. We have re-used the data under the Creative Commons Attribution 4.0 International License [http://creativecommons.org/licenses/by/4.0/]. RAD51 foci formation was assessed 6 hours post exposure to 10 Gy ionizing radiation (IR) in HGSOC cell line OVCAR8, OVCAR8 derivative with RAD51C KO, and patient-derived HGSOC cell line with homozygous BRCA1 hypermethylation (WEHICS62). Cells were treated with 10 µM EdU then irradiated and incubated for 6 hours. Cells were fixed with 4% paraformaldehyde and immunofluorescence for RAD51 was performed. Cells were incubated for 30 minutes at room temperature in Click-IT reaction (100 mM Tris pH 8.5, 10 nM Alexa Fluor 647-azide (Invitrogen, A10277,), 1mM CuSO4 and 100 mM Ascorbic Acid) then washed with PBS and counterstained with DAPI. Representative images of three biological replicates. B) Quantification of S-phase (EdUpositive) cells exhibiting > 10 RAD51 foci per cell. n=170 EdU-positive cells were counted per condition over three independent experiments. Mean  $\pm$  SEM. Statistical analysis was performed using a two-sided student t test. ND, denotes foci not detected. C) RAD51 foci formation assessed 6 hours post exposure to 10 Gy IR n OVCA cell lines. Quantification of cells exhibiting > 10 RAD51 foci per cell (right panel). n=250 cells were counted per condition over two biologically independent experiments for OVCAR4 and three independent experiments for all other cell lines, mean ±SEM. Statistical analysis was performed using a two-sided one-way ANOVA, Tukey's multiple comparisons test (Adjusted p-values are shown). D) Analytical cell cycle analysis of BrdU incorporation as a function of DNA content using FACS. Cells were treated with vehicle, 100 nM or 1µM CX-5461 for 48 hours and 72 hours and labelled with BrdU for 30 minutes prior to harvest. The boxes represent S-phase BrdU-labelled populations, G0/G1, G2M and Sub G0/G1 cell populations as well as cells with > 4n DNA content. The gating strategy for quantitating % cell populations is provided in the top panel. Representative of n=3. E) FUCCI-labelled cells were treated with vehicle, 100 nM or 1 µM CX-5461 for 48 hours and 72 hours. Representative flow cytometry profile is shown of *n*=3. Each quadrant represents G0/G1, S-phase, G2, and M populations as marked on the profile and gating strategy for quantitating % cell population is provided in the top panel.







|     | 1h    | OVCAR4                |  |  |
|-----|-------|-----------------------|--|--|
|     | - + - | 1 μ <b>Μ CX-5461</b>  |  |  |
| kDа | +     | 10 μ <b>Μ ΤΜΡ</b> γΡ4 |  |  |
| 62  |       | рСНК2 (Т68)           |  |  |
| 56  |       | рСНК1 (S345)          |  |  |
| 42  |       | Actin                 |  |  |

Ε

CX-5461 does not stabilise GQ DNA structures in HGSOC cell lines. A) Coimmunofluorescence (Co-IF) of GQ DNA and UBF as a nucleolar marker in OVCAR8 and OVCAR8 RAD51C KO cells treated with either vehicle, 100 nM CX-5461, 1 µM CX-5461 or 10 µM TMPyP4 for 24 hours. Representative images of three biological replicates. B) Quantitation of GQ DNA immunofluorescence. Signal intensities were analyzed using Cell Profiler. n = 75 cells per treatment condition examined over three biologically independent experiments. Error bars represent mean ± SD. C-D) Co-IF of GQ DNA and UBF in OVCAR4 cells, treated as indicated. Signal intensities were analyzed using Cell Profiler and normalized to corresponding vehicle controls. Representative images of three biological replicates. n=240 cells per treatment condition examined over three independent experiments. Error bars represent mean  $\pm$  SD. Statistical analyses of difference in GQ signal intensity in **B** and **D** were performed using a two-sided Mann-Whitney t test (p-values are shown). NS: non-significant *p*-value (p-value > 0.05). E) CX-5461, but not TMPyP4, induces DDR. Cells were treated with vehicle, 1µM CX-5461 or 10µm TMPyP4 for 1 hour. Total protein lysates were analyzed by western blotting. Representative blots of n = 3 biologically independent experiments. Blots shown are of samples derived from the same experiment and were processed in parallel. Actin loading controls were processed by re-probing the blots. Full scans of immunoblots are provided in Supplementary Figure 10.



ct.5461 ct.5461 EdU -ve EdU +ve

Vehicle

÷

vehicle

pATR(T1989)/ UBF

A) Co-IF analysis of R-loops and UBF in OVCAR4 cells treated with vehicle or 1 µM CX-5461 for 1 hour. Representative images of three biological replicates. Cells emphasized by white circles are enlarged in (B). Scale bar denotes 10 µm. C) Quantitation of R-loops signal intensity observed in assays of panel A, was performed using Cell Profiler and normalized to the median of vehicle treated controls. n = 260 cells per treatment condition examined over three independent experiments. Error bars represent mean  $\pm$  SD. Statistical analysis was performed using a two sided Mann-Whitney t test (approximate p-value is shown). **D**) Co-IF analysis of pATR (T1989) and UBF in OVCAR4 cells labelled with EdU and treated with vehicle or 1 µM CX-5461 for 3 hours. Representative images of three biological replicates. EdU negative cells emphasized by white circles are enlarged in (E). Scale bar denotes 10 µm. F) Quantitation of signal intensity of the colocalized regions was performed using Cell Profiler and normalized to the median of vehicle treated controls. n = 229 EdU positive and n = 59 EdU negative cells per treatment condition were examined over three independent experiments. Error bars represent mean  $\pm$  SD. Statistical analysis was performed using a two-sided one-way ANOVA, Krsukal-Wallis multiple comparisons test (adjusted approximate p-values are shown).





CX-5461 leads to R-loops stabilisation, activation of ATR and a G2/M cell cycle arrest. A) Co-IF analysis of R-loops and pATR (T1989) in OVCAR4 cells treated with vehicle or 1  $\mu$ M CX-5461 for 1 hour (representative images from one experiment) and 3 hours (two independent experiments). *n*=100 cells per condition were analysed using Cell Profiler. Signal intensity was normalized to median vehicle control. Error bars represent mean ± SD. Statistical analysis was performed using a two-sided one-way ANOVA, Kruskal-Wallis multiple comparison test (adjusted approximate p-values are shown). B) FUCCI-labelled cells were sorted in G1, S and G2 populations using BD FACSAria Fusion 4 (BD Medical Technology) before being treated with vehicle, 100 nM or 1  $\mu$ M CX-5461 for 48 hours and 72 hours. Quantitation of cell cycle profiles using the FUCCI system following CX-5461 treatment are shown. Error bars represent mean ± SD of *n*=2.





Ε





< 0.0001

ct.5461

RNAse H

٦

R-loops stabilization contributes to CX-5461-mediated DDR but is not essential for CX-5461 efficacy A) OVCAR8 RAD51C KO cells were stably transduced with ribonuclease H 1 (RNase H) construct (kindly provided by Dr. Sonia Guil, Josep Carreras Leukaemia Research Institute, Barcelona, Spain). RNA was extracted and mRNA expression was confirmed using qRT-PCR. Expression levels were normalised to NONO mRNA and expressed as fold change relative to vehicle, n=3, error bars represent mean  $\pm$  SEM. B) Co-IF analysis of R-loops and UBF in empty-vector or RNAse H-transduced OVCAR8 RAD51C KO cells treated with vehicle or 1 µM CX-5461 for 3 hours. Quantitation of signal intensity was performed using Cell Profiler. n = 500 cells per treatment condition were examined over three biologically independent experiments. Error bars represent mean  $\pm$  SD. Statistical analysis was performed using a twosided Mann-Whitney t test (p-values are shown). C) Co-IF analysis of pRPA32 (S33) and UBF in cells treated as in (B). Quantitation of signal intensity using Cell Profiler of n=1100 cells per condition over three independent experiments, error bars represent mean  $\pm$  SD. Statistical analysis was performed using a two-sided Kolmogorov-Smirnov test (p-values are shown). **D**) Western blot analysis of cells treated with either vehicle, 100nM or 1µM CX-5461 for 24 hours. Representative blots of n = 3 biologically independent experiments. Blots shown are of samples derived from the same experiment and were processed in parallel. Actin loading controls were processed by re-probing the blots. Full scans of immunoblots are shown in Supplementary Figure 10. E) CX-5461 inhibits clonogenic survival of empty-vector and RNAse Hoverexpressing OVCAR8 RAD51C KO cells. n=9 (three technical replicates were performed over three independent experiments), error bars represent mean  $\pm$  SEM.

## A OVCAR8





A) Representative images of DNA fibre analysis of two independent experiments presented in Figure 6C. OVCAR8 cells were sequentially labelled and either processed or treated with 1  $\mu$ M CX-5461, 50 mM Mirin or the combination of both drugs for 3 hours. Fibres were processed for DNA fibre analysis; n=150 replication tracks were analysed over two biologically independent experiments. Replication Fork length was calculated based on the length of the IdU tracks measured using ImageJ software.

**B)** Combined CX-5461 with BMN-673 treatment does not further reduce rDNA transcription rate compared to single agent CX-5461 in OVCA cells. Cells were treated with vehicle, 1 $\mu$ M CX-5461, 100 nM BMN-673 or in combination for 3 hours. RNA was extracted and 47S rRNA precursor levels were determined using primers specific to the 5'ETS. Expression levels were normalised to NONO mRNA and expressed as fold change relative to vehicle (*n*=3), error bars represent mean ± SEM, statistical analysis was performed using a two-sided one-way ANOVA, Tukey's multiple comparisons test, compared to vehicle samples (adjusted p-values are shown). NS denotes non-significant p-values (greater than 0.05).



CX5461 (40 mg/kg) + Olaparib (50mg/kg) combination treatment n=13





C WEHICS62

CX-5461 24h 100 nM E4h 100 nM Chicle CA-5461 Chence Careta Careta







F



A) Effect of CX-5461 and olaparib treatment as described in Figure 8A&B on weight loss during treatment period. B) Responses observed in HGSOC PDX#62 with BRCA1 promoter methylation to CX-5461 and olaparib treatment in vivo. Recipient mice bearing the PDX were randomized to treatment with vehicle, 40 mg/kg CX-5461 twice a week, 100 mg/kg olaparib once daily or CX-5461/olaparib combination for 3 weeks. The PDX were harvested at a tumor volume of 700 mm<sup>3</sup>. Mean tumor volume (mm<sup>3</sup>) (solid lines) ±95% CI (shaded region) and tumour volume of all individual mice (hashed lines) and corresponding Kaplan-Meier survival analysis. Censored events are represented by crosses on Kaplan-Meier plot. n indicates individual mice. C) Co-IF analysis of R-loops and UBF in WEHICS62 cells treated with vehicle or 100 nM CX-5461 for 24 hours. Quantitation of signal intensity was performed using Cell Profiler, n=500 cells per treatment condition examined over three independent experiments, error bars represent mean ± SD. Statistical analysis was performed using a twosided Mann-Whitney test (approximate p-values are shown). **D**) Western blot analysis of empty vector or RNAse H overexpressing WEHICS62 cells treated with either vehicle, 100nM or 1µM CX-5461 for 24 hours. Representative blots of n = 3 biologically independent experiments. Blots shown are of samples derived from the same experiment and were processed in parallel. Actin loading controls were processed by re-probing the blots. Full scans of immunoblots are shown in Supplementary Figure 10. E) CX-5461 inhibits clonogenic survival of empty-vector and RNAse H-overexpressing WEHICS62 cells. n=9 (three technical replicates were performed over three independent experiments), mean  $\pm$  SEM. F) Co-IF analysis of pATR (T1989) and UBF in cells treated as indicated. Representative images of n=3. Quantitation of signal intensity of 500 cells per condition over three independent experiments is presented in Fig 9E.

# Supplementary Figure 10 Uncropped immunoblots from Figure 3E



Actin



#### **Supplementary Methods**

DNA Fibre Assay using Genomic Vision Molecular Combing System: WEHICS62 cells were plated into a 6-well plate at a density of 500,000 cells per well. On the following day, the medium was replaced with culture medium containing 50 µM CldU and incubated at 37°C for 30 minutes. The media was removed, the cells washed three times with phosphate buffered saline (PBS pH 7.4), and new pre-warmed media containing 250µM IdU was added and the cells incubated at 37°C for 30 minutes. After exposure to the second nucleotide analog, cells were washed three times with warm PBS and either processed or treated with pre-warmed media containing vehicle control, 1 µM CX-5461, 2mM Hydroxyurea (Sigma-Aldrich, H8627) (HU) as single agents or in combination for 3 hours at 37°C. Labelled cells were trypsinized, pelleted, washed twice with PBS and resuspended in a pre-warmed solution (50°C) composed of PBS with 0.05% trypsin (no phenol red). Cellular suspensions were then mixed carefully with an equal volume of 1.2% low melt agarose (BioRad, 1613111). This mixture was dispensed into a plug mold (BioRad, 1703713) and allowed to set at 4°C for 1 hour. Solidified plugs were then pushed out of the mold and transferred into 2 ml polypropylene tubes containing 0.5M EDTA pH8, 1% (v/v) Sarkosyl (Sigma-Aldrich, 61743), and proteinase K (Roche Applied Science, 3115828001). The agarose plugs were incubated in this buffer at 50°C overnight. Following incubation, agarose plugs were washed extensively (1M Tris, 0.1M EDTA pH8) and digested with β-agarase (New England Biolabs, M0392S) overnight in 0.5M MES Hydrate (Sigma-Aldrich, M5287) pH5.5 at 42°C. Samples were then poured carefully into a FiberComb reservoir (Genomic Vision, RES-001) and the DNA solution combed onto silanized coverslips (Genomic Vision, COV-002) at a constant speed of 250µm/s, using the Molecular Combing System by Genomic Vision (MCS-001). For easy handling following combing, coverslips were adhered to glass SuperFrost® Plus slides (Menzel Gläser) using cyanoacrylate glue and then baked in an incubator at 65°C for 2 hours to irreversibly crosslink DNA to the surface. Next, samples were immersed in a solution containing 0.5M NaOH and 1M NaCl for 8 minutes at room temperature to denature the combed DNA, before being washed thoroughly with PBS. Coverslips were subsequently dehydrated by incubating them in increasing concentrations of 70%, 90% and 100% of ethanol for 5 minutes each, followed by air drying. To minimise non-specific binding of antibodies, blocking buffer containing 0.1% Triton X-100 and 5% BSA was applied to all slides for 30 minutes at room temperature prior to staining. DNA fibres attached to coverslips were then probed with rat anti-BrdU antibody (1:100, Abcam ab6323) specific to CldU and mouse anti-BrdU antibody (1:50, Becton

Dickinson, 347580) specific to IdU for 1 hour at 37°C in a humidified chamber. Following staining, slides were washed three times with PBS and subsequently incubated with Alexa Fluor 488-conjugated goat anti-rat antibody (Invitrogen,A-11006) and Alexa Fluor 594-labelled donkey anti-mouse antibody (Invitrogen, A-21203) at 1:200 dilutions, for 1 hour at 37°C. Lastly, slides were washed three times in PBS, mounted and visualized using the Nikon C2 confocal microscopy at 40X magnification. Images were taken of 100 fibres per condition. Only high-quality and well separated DNA fibres (not entangled DNA regions) were measured using ImageJ software (1.47v, NIH). The ratio of IdU:CldU tracks in each fibre was calculated and graphed using GraphPad Prism.

| Supplementar | y Table 1. | TP53 mutation stat | us assessed by high | ph resolution melting | g analysis acros | s ovarian cancer cell lines. |
|--------------|------------|--------------------|---------------------|-----------------------|------------------|------------------------------|
|--------------|------------|--------------------|---------------------|-----------------------|------------------|------------------------------|

| Cell Line       | Histology                         | p53 Status                                                             | Source                                                                               | CX-5461 GI50 doses (mean) | SD    | N |
|-----------------|-----------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------|-------|---|
| 2008            | Endometrioid                      | WT                                                                     | Stephen Howell at University of California, San Diego                                | 106.7                     | 19.5  | 3 |
| 59M             | Endometrioid                      | c.577_592del<br>(homo),<br>p.His193LysfsX49                            | European Collection of Cell Cultures                                                 | 1386                      | 541.6 | 3 |
| A2780           | Adenocarcinoma<br>SEROUS          | WT                                                                     | Furgheen Collection of Cell Cultures                                                 | 82.33                     | 82.97 | 3 |
| Caov3           | Serous                            | c.406C>T<br>(homo),p.GIn136Stp                                         |                                                                                      | 400.2                     | 202.0 | 2 |
| CH1             | SEROUS                            | c.948C>T                                                               | National Cancer Institute                                                            | 409.3                     | 302.9 |   |
| COL 0704        | (Adenocarcinoma)                  | (net),p.PrositoPro                                                     | Lloyd Kelland at the Institute of Cancer Research, Sutton, UK                        | /3.5                      | 3.536 | 2 |
| Colo720E        | Adenocarcinoma                    | c.1118del (het),<br>p.Lys373ArgfsX49:<br>c.413C>T<br>(het),p.Ala138Val | European Collection of Cell Cultures                                                 | 413.5                     | 138.7 | 4 |
| EFO21           | Serous                            | c.370T>C<br>(homo),p.Cys124Ar                                          | Reuteche Sammlung von Mikroorganismen und Zellkuturen                                | 1835                      | 1082  | 2 |
| EFO27           | Mucinous                          | c.817C>T<br>(het) n Arg273Cvs                                          | Deutsche Sammlung von Mikroorganismen und Zellkuturen                                | 417                       | 55.49 | 3 |
| ES2             | Serous                            | c.722C>T<br>Homo),p.Ser241Phe                                          | American Type Culture Collection                                                     | 181.3                     | 221.7 | 4 |
| FUOV1           | Serous                            | c.535C>G<br>(homo),p.His179As<br>p                                     | Deutsche Sammlung von Mikroorganismen und Zellkuturen                                | 25.33                     | 26.56 | 3 |
| IGROV1          | Endometriod,serous,<br>clear cell | c.377A>G (het)<br>,p.Tyr126Cys                                         | National Cancer Institute                                                            | 422.3                     | 203.7 | 3 |
| JHOC5           | Clear Cell                        | WT                                                                     | RIKEN                                                                                | 731                       | 149.8 | 5 |
| JHOC7           | Clear Cell                        | WT                                                                     | RIKEN                                                                                | 3267                      | 2003  | 3 |
| JHOC9           | Clear Cell                        | WT                                                                     | RIKEN                                                                                | 731                       | 251.8 | 3 |
| JHOM1           | Mucinius                          | c.637C>T<br>(het),p.Arg213Stp                                          | RIKEN                                                                                | 861.2                     | 1243  | 5 |
| JHOS3           | Serous                            | c.783-1G>T (homo)                                                      | RIKEN                                                                                | 3177                      | 1482  | 3 |
| KURAMOCHI       | Serous                            | c.841G>T (homo)                                                        | Health Science Research Resources Bank                                               | 1082                      | 711.5 | 3 |
| MCAS            | Mucinous                          | WT                                                                     | Health Science Research Resources Bank                                               | 357.6                     | 197.3 | 5 |
| OAW28           | Serous                            | c.455del (homo),<br>p.Pro152ArgfsX18:                                  | European Collection of Cell Cultures                                                 | 3850                      | 1431  | 3 |
| OAW42           | Serous                            | WT                                                                     | European Collection of Cell Cultures                                                 | 226.7                     | 25.58 | 3 |
| OV90            | Serous                            | c.643A>C<br>(Homo),p.Ser215Ar<br>g                                     | American Type Culture Collection                                                     | 5170                      | 3365  | 4 |
| OVCA432         | Serous                            | WT                                                                     | Dr Nuzhat Ahmed, Womens Cancer Research Centre, Royal Women's<br>Hospital, Melbourne | 206.7                     | 92.42 | 3 |
| OVCAR3          | Serous                            | c.743G>A<br>(homo),p.Arg248GIn                                         | National Cancer Institute                                                            | 12                        | 6.245 | 3 |
| OVCAR4          | Serous                            | c.388C>G (homo)<br>,p.Leu130Val                                        | National Cancer Institute                                                            | 613.3                     | 395.8 | 3 |
| OVCAR5          | Adenocarcinoma                    | WT                                                                     | National Cancer Institute                                                            | 100.5                     | 57.28 | 2 |
| OVCAR8          | Serous                            | c.376-1G>A (homo)                                                      | National Cancer Institute                                                            | 859                       | 303.8 | 3 |
| RMGI            | Clear Cell                        | WT                                                                     | Health Science Research Resources Bank                                               | 143                       | 103.2 | 4 |
| KINGII<br>SKOV2 | Clear Cell                        | VV I                                                                   | Health Science Research Resources Bank                                               | 3370                      | 495   | 2 |
| TOV112D         | Endometrioid                      | c.524G>A<br>(homo),p.Arg175His                                         | Invasional Cancer Institute                                                          | 301.3                     | 103.3 | 3 |
| TOV21G          | Clear Cell                        | WT                                                                     | American Type Culture Collection                                                     | 308                       | 43.15 | 3 |
| 101210          | Olear Oeli                        |                                                                        | American Type Guildre Gollection                                                     | 500                       | 140   | 4 |

| Supplementary Table 2. Antibodies/Reagents |                   |               |                 |  |  |  |
|--------------------------------------------|-------------------|---------------|-----------------|--|--|--|
| Antibody                                   | Company           | Catalogue No. | Application,    |  |  |  |
|                                            |                   |               | Dilution factor |  |  |  |
| Anti-p53 (DO-1)                            | Santa Cruz        | sc-126        | WB, 1:1000      |  |  |  |
| Anti-pp53 (S15)                            | Cell Signaling    | 9284          | WB, 1:500       |  |  |  |
| Anti-pCHK1 (S345) (133D3)                  | Cell Signaling    | 2348          | WB, 1:1000      |  |  |  |
| Anti-CHK1                                  | Santa Cruz        | 7898          | WB, 1:1000      |  |  |  |
| Anti-pCHK2 (T68) (C13C1)                   | Cell Signaling    | 2197          | WB, 1:1000      |  |  |  |
| Anti-CHK2                                  | Cell Signaling    | 2662          | WB, 1:1000      |  |  |  |
| Anti-pATM (S1981) [EP1890Y]                | Abcam             | ab81292       | WB, 1:1000      |  |  |  |
| Anti-ATM (2C1)                             | GeneTex           | GTX70103      | WB, 1:1000      |  |  |  |
| Anti-pRPA32 S4/S8                          | Bethyl            | A300-245A     | WB, 1:1000      |  |  |  |
| Anti-RPA32 (4E4)                           | Cell Signalling   | 2208          | WB, 1:1000      |  |  |  |
| Anti-pRPA32 S33                            | Novus Biologicals | NB100-544     | IF, 1:100       |  |  |  |
| Anti-Tubulin (B-5-1-2)                     | Sigma             | T5168         | WB, 1:5000      |  |  |  |
| Anti-Actin (C4)                            | MP Biomedicals    | 08691001      | WB, 1:5000      |  |  |  |
| Goat anti-Mouse HRP                        | Bio-Rad           | 172-1011      | WB, 1:2500      |  |  |  |
| Goat anti-Rabbit HRP                       | Bio-Rad           | 170-6515      | WB, 1:2500      |  |  |  |
| Rabbit anti-Rat HRP                        | Dako              | P0450         | WB, 1:5000      |  |  |  |
| Anti-ATR                                   | GeneTex           | GTX128146     | WB, 1:1000      |  |  |  |
| Anti-pATR (T1989)                          | GeneTex           | GTX128145     | WB, 1:1000;     |  |  |  |
|                                            |                   |               | IF, 1;100       |  |  |  |
| Anti-Vinculin (E1E9V)                      | Cell Signalling   | 18799         | WB, 1:1000      |  |  |  |
| anti-H2AX                                  | Abcam             | ab20669       | WB, 1:1000      |  |  |  |
| Anti-γH2AX (S139) [EP854(2)Y]              | Abcam             | ab81299       | WB, 1:1000;     |  |  |  |
|                                            |                   |               | IF, 1;100       |  |  |  |
| Anti-Rad51                                 | Abcam             | ab63801       | IF, 1:100       |  |  |  |

| Anti-53BP1 (BP13)                   | Merck Millipore  | MAB3802        | IF, 1:100      |
|-------------------------------------|------------------|----------------|----------------|
| Anti-DNA G-quadruplex (G4) (1H6)    | Merck Millipore  | MABE1126       | IF, 1:100      |
| Anti-DNA-RNA Hybrid (S9.6)          | Kerafast         | ENH001         | IF, 1:100      |
| Anti UBF (F-9) mouse antibody       | Santa Cruz       | sc-13125       | IF, 1:100      |
| UBF (WT1F) rabbit sera              | In-house         |                | IF, 1:200      |
| Goat anti-Rabbit Alexa Fluor 488    | Thermo Fisher    | A-11008        | IF, 1:100      |
|                                     | Scientific       |                | FACS, 1:800    |
| Donkey anti-Mouse Alexa Fluor 594   | Thermo Fisher    | A-21203        | IF, 1:100      |
|                                     | Scientific       |                |                |
| Goat anti-Mouse Alexa Fluor 488     | Thermo Fisher    | A-11001        | IF, 1:100      |
|                                     | Scientific       |                |                |
| Goat anti-Rabbit Alexa Fluor 594    | Thermo Fisher    | A-11012        | IF, 1:100      |
|                                     | Scientific       |                |                |
| Vectashield                         | Vectorlabs       | H-1000         | IF             |
| Vectashield with DAPI               | Vectorlabs       | H-1200         | IF             |
| Anti-BrdU antibody (B44)            | BD Biosciences   | 347580         | FACS, 20 µL/µL |
|                                     | clone (B44)      |                |                |
| Sheep anti-Mouse IgG FITC           | MP Biomedicals   | 0855520        | FACS, 1:100    |
| Propidium Iodide                    | Sigma Aldrich    | P4170          | FACS           |
| Goat anti-Rat Alexa Fluor 488       | Thermo Fisher    | A-11006        | Fibre assays,  |
|                                     | Scientific       |                | 1:200          |
| Donkey anti-Mouse Alexa Fluor 594   | Thermo Fisher    | A-21203        | Fibre assays,  |
|                                     | Scientific       |                | 1:200          |
| Anti-BrdU antibody Rat monoclonal   | Abcam            | ab6326         | Fibre assays   |
| antibody- specific to CldU          |                  | [BU1/75 (ICR1) | 1:100          |
| Anti-BrdU antibody mouse antibody - | Becton Dickinson | 347580         | Fibre assays   |
| specific to IdU                     |                  |                | 1:50           |

**Supplementary Table 3:** Primer Sequences for quantitative reverse transcription real time-PCR analysis

|                                                                                        | Forward                 | Reverse                |
|----------------------------------------------------------------------------------------|-------------------------|------------------------|
| 47S-rRNA<br>5'ETS, used in<br>Figure 1C&D<br>and Figure 4E<br>location (+952-<br>1030) | GGCGGTTTGAGTGAGACGAGA   | ACGTGCGCTCACCGAGAGCAG  |
| 47S-rRNA<br>5'ETS, used in<br>Supplementary<br>Figure 8B,<br>location (+413-<br>521    | GCTCTTCGATCGAGTTGGTGACG | CGGGCGGAGCGAGAAGGAC    |
| RNAse H1                                                                               | GGTTTCCTGCTGCCAGATTTA   | GGCTTGCAGATTTCCTGACAA  |
| Vimentin                                                                               | AGAGAACTTTGCCGTTGAAGCT  | GAAGGTGACGAGCCATTTCC   |
| NONO                                                                                   | CATCAAGGAGGCTCGTGAGAAG  | TGGTTGTGCAGCTCTTCCATCC |