OMTM, Volume 17

Supplemental Information

Increasing CRISPR Efficiency

and Measuring Its Specificity in HSPCs

Using a Clinically Relevant System

Jenny Shapiro, Ortal Iancu, Ashley M. Jacobi, Matthew S. McNeill, Rolf Turk, Garrett R. Rettig, Ido Amit, Adi Tovin-Recht, Zohar Yakhini, Mark A. Behlke, and Ayal Hendel

Supplemental Information

Supplemental Figures and Legends

Figure S1. Screening for most active *RAG2* **and** *RAG1* **gRNAs.** Five potential gRNAs were identified by DESKGENTM CRISPR software for *RAG2* (left) and *RAG1* (right) genes. The DNA sequence of each guide was cloned into the px330 plasmid and genome editing experiments were performed in the K562 cell line. The most active gRNAs (*RAG2* gRNA 2 and *RAG1* gRNA 3) were chosen for downstream experiments. Bars represent mean indel editing percentages analyzed by TIDE \pm SEM (n=3). Editing percentages are designated above the bars.

Figure S2. On-target editing detection in CD34+ HSPCs by NGS compared to TIDE and ICE chromatogram decomposition algorithms. (A) Amplicons of *RAG2* and *RAG1* on-target sites from CD34+ HSPCs (Figure 1) were Sanger sequenced, and chromatograms were analyzed by decomposition with TIDE software. Indel-editing frequencies quantified by NGS (Figure 1) were plotted against the TIDE quantification values. (B) Chromatograms were analyzed by decomposition with ICE software, and indel-editing frequencies were plotted against the TIDE analysis.

Α

Figure S3: *RAG2* and *RAG1* gRNAs off-target sites were found dispersed throughout the genome. Off-target sites identified by GUIDE-seq in HEK293-Cas9 cells using Alt-R 2-part XT gRNA were categorized according to their genomic location either in exons, introns, intron-exon junction, non-coding RNA, or non-transcribed DNA.

Figure S4: Correlation between the GUIDE-seq read counts and the number of mismatches. GUIDE-seq read counts identified in HEK293-Cas9 cells, following editing with *RAG2* (**A**) and *RAG1* (**B**) Alt-R 2-part XT gRNAs were plotted against the number of mismatches in each site (Spearman correlation).

Figure S5: Correlation between rhAmpSeq and GUIDE-seq. Genomic DNA (gDNA) samples of the HEK293-Cas9 and HEK293 cells used in the GUIDE-seq experiments were subjected to rhAmpSeq analysis. The rhAmpSeq indel-editing percentages of *RAG2* (**A**) and *RAG1* (**B**) sites are plotted against the GUIDE-seq measurements, presented as a percentage normalized to 100% of the on-target site (Spearman correlation). P< 0.01.

Supplemental Tables

Gene	gRNA name	gRNA sequence	Genomic position
RAG2	gRNA 1	AGAAACTATGTCTCTGCAGA	Chr11:36594156-36594175
	gRNA 2*	TGAGAAGCCTGGCTGAATTA	Chr11:36594109-36594128
	gRNA 3	AACATAGCCTTAATTCAGCC	Chr11:36594119-36594138
	gRNA 4	AAATTCATCAGTGAGAAGCC	Chr11:36594098-36594117
	gRNA 5	TTCTCACTGATGAATTTTGA	Chr11:36594077-36594096
RAG1	gRNA 1	TGGGAAAGAGGCTGCCATGC	Chr11:36573303-36573322
	gRNA 2	TCCCAAGGTGGGTGGGAAAG	Chr11:36568025-36579756
	gRNA 3*	AACTGAGTCCCAAGGTGGGT	Chr11:36573322-36573341
	gRNA 4	GAACTGAGTCCCAAGGTGGG	Chr11:36573323-36573342
	gRNA 5	AGCCTCTTTCCCACCCACCT	Chr11:36573310-36573329

Table S1: Five potential gRNA sequences for RAG2 and RAG1 genes, were identified by DESKGENTM CRISPR software. Asterisks indicate the gRNAs used in all subsequent experiments.

Table S2 (Submitted separately as an Excel file): GUIDE-seq in HEK293-Cas9 cells edited with Alt-R 2part XT gRNA. Full list of *RAG2* and *RAG1* off-target sites, as identified by GUIDE-Seq and their genomic details.

Supplemental Methods and Materials

gRNA Competition: Five 20 bp gRNAs, closest to the initiation start codon, were chosen for each target gene by DESKGENTM CRISPR bioinformatics tool (see **Table S1** for sequences).¹ The chosen oligonucleotides were cloned, as previously described,² into px330 sgRNA expression plasmid vectors (Addgene plasmid #42230) containing a human codon-optimized SpCas9 expression cassette and a human U6 promoter driving the expression of the sgRNA. Human K562 cells were cultured in RPMI 1640, supplemented with 10% fetal bovine serum, 100 U/ml penicillin, 0.1 mg/ml streptomycin, and 1% L-glutamine (Biological Industries Ltd). 1*10^6 cells were electroporated with 5 µg of each of the cloned expression plasmids. Electroporation was performed in 100 µl nucleofection buffer (containing 100 mM KH2PO4, 15 mM NaHCO3, 12 mM MgCl2 × 6H2O, 8 mM ATP, 2 mM glucose (pH 7.4)) using the Lonza 2b Nucleofector (program T-016). 72 h post-electroporation gDNA was extracted by QuickExtract (Lucigen Corporation, WI), and indel editing frequencies were determined by chromatogram decomposition (TIDE software³).

On-target indel-editing frequency quantification using decomposition analysis: The following specific primers were used to amplify the gDNA sequences flanking the on-target sites of the genes of interest: RAG2_Fw: 5'-ACGGATTCTTGGGAAATGTG-3', RAG2_Re: 5'-GATGGTGTCATTTTTGGCAAT-3', and RAG1_Fw: 5'- CCTTAAGGTTTTTGTGGAAGGA-3', RAG1_Re: 5'- GGGCTTTTAACAATGGCTGA-3'. Amplicons were Sanger sequenced, and indel-editing frequencies were quantified by chromatogram decomposition using the TIDE software compared to mock-electroporated controls.

Supplemental References

- 1. Hough, SH, Ajetunmobi, A, Brody, L, Humphryes-Kirilov, N, and Perello, E (2016). Desktop Genetics. *Per Med* **13**: 517-521.
- 2. Ran, FA, Hsu, PD, Wright, J, Agarwala, V, Scott, DA, and Zhang, F (2013). Genome engineering using the CRISPR-Cas9 system. *Nat Protoc* **8**: 2281-2308.
- 3. Brinkman, EK, Chen, T, Amendola, M, and van Steensel, B (2014). Easy quantitative assessment of genome editing by sequence trace decomposition. *Nucleic Acids Res* **42**: e168.