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Supplemental Material 

 

Confirming measurement invariance of the longitudinal confirmatory factor 

analysis of psychological distress 

Statistical Analyses. 

 For longitudinal models, such as the longitudinal factor analysis model (LCFA) of 

psychological distress, the assumption of measurement invariance can be tested by 

systematically constraining parameters and comparing model fit of competing models 

(Kim & Willson, 2014). The first model is an unconstrained model using subdomain 

indicators (PGD, PTSD and depression) at each time point with autocorrelations among 

the errors. If model fit is adequate then configural invariance is confirmed, suggesting 

that the same items (PGD, PTSD and depression) measure the construct of psychological 

distress across time. Next, factor loadings are fixed to be equal across time to confirm 

metric invariance, which implies that the meaning of psychological distress does not 

change over time. Next, mean parameters are fixed across time to confirm scalar 

invariance (i.e. that participants who have the same value on the latent construct should 

have equal values on the items the construct is based). Finally, error variances of the 

indicators are fixed to be equal across time for strict invariance. It has suggested that 

strict invariance may be impossible to achieve in practice as random errors cannot be 

consistent at each time point (Wickrama, Lee, O’Neal, & Lorenz, 2016). Therefore, it has 

been suggested that the assumption of scalar invariance is sufficient to proceed to second-

order modelling and interpretation of parameters (Thompson & Green, 2006). The 

following fit indices determine adequate fit: CFI>.90, TLI>.90, RMSEA<.08, SRMR<.08 
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(Hu & Bentler, 1999; MacCallum, Browne, & Sugawara, 1996; Wickrama et al., 2016). 

Measurement invariance was said to be met if changes to fit statistics did not exceed the 

following CFI (ΔCFI) .01, RMSEA (ΔRMSEA) .015, and SRMR (ΔSRMR) .03 (Chen, 

2007; Cheung & Rensvold, 2002) 

 

Results 

Measurement model 

The results of the nested model comparisons are shown in Table 1. The LCFA of 

psychological distress with three correlated errors was an excellent fit to the data (CFI = 

1.00, TLI = .99, SRMR = .02, RMSEA = .04, χ2 = 16.17 on df = 12, χ2:df = 1. 35) 

confirming configural invariance. The metric model in which factor loadings were 

constrained to be equal across time did not substantially reduce model fit (ΔCFI = .004, 

ΔRMSEA = .016, ΔSRMR = .017).  The scalar model did not significantly decrease 

model fit according to the CFI (ΔCFI = .01) and SRMR (ΔSRMR = .03) but was above 

the threshold for RMSEA (ΔRMSEA = .023). Cheung and Rensvold (2002) suggested 

that the set of constrained parameters is fundamentally the same across time when the 

ΔCFI is less than or equal to .01, therefore we can proceed with the understanding that 

the assumption of scalar measurement invariance is met.  

The model for strict invariance was above the threshold for CFI (ΔCFI = .013) and but 

did not worsen fit according to the RMSEA (ΔRMSEA = .014) and SRMR (ΔSRMR 

= .010) meaning that overall the assumption of equal random variance across time could 

not be accepted. 
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 Table 1.  

Results from models testing measurement invariance in a longitudinal CFA model of psychological distress 

Note: M = Model. LCFA = Longitudinal Confirmatory Factor Analysis. All of the LCFA models included autocorrelated errors. 

 

 Model Comparison CFI  

(ΔCFI < .01) 

RMSEA  

(ΔRMSEA < .015) 

SRMR  

(ΔSRMR < .03) 

Configural LCFA model with autocorrelations (M1)  .979 .101 .073 

Configural LCFA with residual errors (M2)  .998 .036 .015 

LCFA with metric invariance (M3) M2 vs M3 .994 (.004) .052 (.016) .032 (.017) 

LCFA with scalar invariance (M4) M3 vs M4 .984 (.01) .075 (.023) .062 (.03) 

LCFA with strict invariance (M5) M4 vs M5 .971 (.013) .089 (.014) .071 (.009) 
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Incremental validity. 

Social and occupational functioning.  Results of the hierarchical regressions using the 

WSAS as the dependent variable at Time Points 2 and 3 are shown in Table 2.   For Time Point 2 

at the first step the results indicate the full scales of PGD, R2 = .53, p <.001; PTSD, R2 = .59, 

p <.001; and depression, R2 = .54 p <.001, all explained significant variance in social and 

occupational functioning.  Importantly, the OG-SD explained a significant amount of additional 

variance in the WSAS compared to PGD 9%, PTSD 6%, and depression 11%.   

A similar pattern of results was observed for Time Point 3.  The PGD, R2 = .63 p <.001; 

PTSD, R2 = .72, p <.001; and depression, R2 = .59, p <.001, symptom scales all explained 

significant variance in the WSAS at the first step.   At the second step the OG-SD explained 6% 

of additional variance compared to PGD, 3% more than PTSD, and 10% more than depression, 

all changes were highly significant.   
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Table 2. 

Hierarchical Regressions Predicting Impairment in Social and Occupational Functioning  

Time 

Point 

Symptom Scale Model 1 Model 2 

DV WASA 

IV Symptom scale 

DV WASA  

IV Symptom scale 

 

OG-SD 

  B SE β ΔR2 B SE β B SE β ΔR2 

2 PGD a .65*** .04 .73 .53 .37*** .06 .41 .16*** .03 .43 .09 

 PTSDb  .40*** .02 .77 .59 .26*** .03 .50 .14*** .02 .36 .06 

 Depressionc .99*** .07 .74 .54 .59*** .08 .44 .17*** .02 .44 .11 

3 PGDd .73*** .04 .79 .63 .47*** .06 .52 .15*** .02 .37 .06 

 PTSDe .46*** .02 .85 .72 .35*** .03 .65 .10*** .02 .26 .03 

 Depressionf 1.03*** .06 .77 .59 .63*** .07 .47 .17*** .02 .44 .10 

Note. DV= Dependent Variable, IV = Independent Variable, WASA = Work and Social Adjustment Scale, PGD=PG-13, 

PTSD=PCL5, Depression = PHQ9.   
aModel 1: F (1, 199) = 227.98, p <.001; R2 = .53. aModel 2: F (1, 198) = 44.09, p <.001; R2 = .62.  
bModel 1: F (1, 199) = 291.24, p <.001; R2 = .59. bModel 2: F (1, 198) = 31.14, p <.001; R2 = .65.  
cModel 1: F (1, 199) = 234.01, p <.001; R2 = .54. cModel 2: F (1, 198) = 62.51, p <.001; R2 = .65.  

dModel 1: F (1, 206) = 351.18, p <.001; R2 = .63. dModel 2: F (1, 205) = 37.64, p <.001; R2 = .69.  
eModel 1: F (1, 206) = 516.65, p <.001; R2 = .72. eModel 2: F (1, 205) = 21.25, p <.001; R2 = .74.  
fModel 1: F (1, 206) = 296.63, p <.001; R2 = .59. fModel 2: F (1, 205) = 66.36, p <.001; R2 = .69.  

All results are significant after alpha correction. *** p < .001. 
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