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Supplementary Figure S1 Structural measurements from Makimine mélange and the NMR. (A) Foliation and 

lineation in coastal Makimine mélange. (B) Foliation and lineation in inland Makimine mélange. (C) Foliation, 

including a regional dataset (44) and stretching lineation from the NMR. (D) Fold hinge lines in metabasalt 

and metapelite from the NMR. (E) S and C planes measured in chlorite-actinolite schists of the NMR.  

 

 

 

 

 

 



 

Supplementary Figure S2 EBSD data collected from deformed quartz and clinopyroxene in inland Makimine 

mélange. (A) Boudinaged quartzite lens and pinch and swell in quartzite layers within inland Makimine 

mélange metasediment. (B) Quartz C axis pole figure constructed from data in map (C). EBSD map of 

recrystallized quartz in pelite from inland Makimine mélange. Pixels are contoured by their misorientation 

with respect to the mean orientation of their parent grain (misorientation to mean orientation, M.t.M). 



Recrystallized grains (red boundaries) have low M.t.M values indicating low degrees of internal distortion. (D) 

Histogram of recrystallized quartz grain size, excluding grains that bisect the map border. (E) Histogram of all 

quartz grains, excluding grains that bisect the map border. Relict grains are plotted in red, recrystallized in 

blue. (F) Pole figures showing the orientation of 69 pyroxene grains from inland Makimine metabasalt. There 

is a weak [001] preferred orientation. (G) EBSD misorientation map (M.t.M) of a pyroxene grain, internal 

distortion is generally < 2 
o
. Photo credit (A); C. Tulley, Cardiff University. 

 

Supplementary Figure S3. EBSD data collected from a quartz vein deformed in amphibolite from the NMR.    

(A)  Quartz vein deformed parallel to the metamorphic foliation in amphibolite from the NMR. B) Quartz C 



axis pole figure constructed from data in map (C). (C) EBSD map of recrystallized quartz from a boundinaged 

vein. Pixels are contoured by their misorientation with respect to the mean orientation of their parent grain 

(misorientation to mean orientation, M.t.M). Recrystallized grains (red boundaries) have low M.t.M values 

indicating low degrees of internal distortion. The white square outlines a frame which failed to acquire any 

data. (D) Histogram of recrystallized grain size, excluding grains that bisect the map border. (E) Histogram of 

all grains, excluding grains that bisect the map border. Relict grains are plotted in red, recrystallized in blue. 

Photo credit (A); C. Tulley, Cardiff University. 
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