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Supplementary Methods 

 

Image database and pre-processing 

The mandrill face database includes ~16k images representing 276 different mandrills originating 

from the wild studied population (Gabon; 12.9k images), the semi-captive population of the 

Centre International de Recherche Medicale de Franceville (CIRMF, Gabon; 2.7k images) and 

other sources (internet, the Wildlife Reserves of Singapore, Zoo of Grandy; 0.4k images). Images 

from Gabon (wild and CIRMF populations) were taken between 2012 and 2018, using different 

camera models. Pictures represent individuals that are awake and passive, awake and active (i.e. 

feeding, grooming, vocalizing) or anesthetized during one of the bi-annual captures (representing 

1.1k images). We frequently photographed active individuals using the slow burst mode of 

cameras, which allowed to capture variation in face position and expression while avoiding 

identical frames. The multiple frames obtained while using the slow burst mode are hereafter 

referred to as “a burst-mode series”. Images were then manually oriented to align pupils 

horizontally, and cropped to generate square portraits centered on the nose and excluding the 

ears. Each portrait was manually labelled based on face position and image quality. Face position 

included two levels:  

- P0: the face is in profile view (approx. >30°), either from below or above, or in frontal view but 

significantly occluded (>50%). 

- P1: the face is in frontal view (approx. <30°) and occlusion covers less than 50% of the face. 

Image quality included five levels: 

- Q0: very bad quality; it impossible to recognize the individual without contextual information, 

even for experienced field assistants. 

- Q1: poor quality; individual recognition is possible but challenging for experienced field 

assistants. 

- Q2: medium quality; individual recognition is easy for field assistants but the portrait does not 

meet Q3 criteria. 

- Q3: high, “passport” quality image; individual recognition is easy for field assistants, the face is 

in frontal view, it has a neutral expression and is not partially occluded, the image is sharp, has no 

shadow or lighting spot. This quality level excludes images that meet Q4 criteria. 

- Q4: a single image of a burst-mode series, which meets Q3 criteria.  

We excluded P0 and Q0 images from all analyses. P1Q1234 dataset (simplified as Q1234 

hereafter) contained 14,8k images. 

 

Dataset partitions 

The Q1234 dataset represents 276 individuals belonging to one or several of the following age 

classes: infant, juvenile, adolescent (only for males), subadult (only for males) and adult. Because 

the face of an individual varies considerably between its different age classes (table S2), we used 

ind-age classes rather than individuals for the identification task, that is, we treated two ind-age 

classes representing the same individual as distinct and independent classes. The Q1234 dataset 

contains 343 ind-age classes (mean number of images per class: 50.1; range: [1,419]). 

Q1234 was split into a learning set and a test set, which were different for the adult female 

and juvenile analyses. For the adult female analysis, the learning set included pictures of semi-

captive and captive males and females of all age classes, as well as wild individuals from the 

studied wild population but adult females. For the juvenile analysis, the learning set was the same 



as above but it included wild adult females and excluded wild juveniles. Each learning set was 

itself split into a training set and a validation set. The validation set was used to parameterize the 

model for the face identification task. It contained two images of each class. For a correct 

evaluation of training performances, we ensured that none of the validation image was from a 

burst-mode series that also contained images present in the training set. The training set contained 

all other images of the learning set. Because we were able to reach high performances (see 

results) despite a large imbalance between classes in the training sets, we did not attempt to 

correct for this imbalance. Last, the test set included either adult females or juveniles from the 

wild population. To maximize the quality of resemblance measurements, we selected only Q4 

images for the adult female test set. For the juvenile test set, we selected Q34 because we had 

insufficient Q4 images. The characteristics of the different image datasets are given in table S3.  

 

Face identification 

We trained a deep convolutional neural network (DNN) to identify individual (ind-age) mandrills 

as a goal to learn a deep representation of mandrill faces. We applied a transfer learning 

procedure (45) by initializing the training with VGG-Face, a network that has learned to 

recognize 2,6k different humans from 2,6M portrait pictures. VGG-Face uses a VGG-16 

architecture, which consists of 5 blocks of convolution (that filters images), nonlinear ReLU 

activation (that sets to zero all negative values) and max pooling (that selects a maximum locally) 

layers (CB), a flatten layer (Fl) that converts a 2D matrix of feature activations into a vector, two 

fully connected layers (FC) and a softmax classification layer (SM). VGG-16 can thus be written 

as CB1–CB2–CB3–CB4–CB5–Fl–FC1–FC2–SM. For transfer learning, we replaced SM by a 

new layer of dimension fitting the number of classes in the new mandrill identification task, 

which varied with datasets. We included two dropout layers (with 50% dropout probability), one 

after each FC layer, to limit the risk of overfitting. We trained the network using a stochastic 

gradient descent with momentum optimizer with initial learning rate of 10
-5

 for CB layers and 10
-

3
 for FC and SM layers. The learning rate decreased by a factor 10 every 5 epochs. Learning 

continued until the validation loss did not decrease further after three consecutive epochs, which 

required approximately 15 epochs (Fig. S1). In order to match the input size of VGG-Face, 

mandrill portraits were downsized to 224×224×3 prior to analyses. We set the batch size (the 

number of images used for optimization during one iteration) to 32. This is small value compared 

to standard practice; however, as previously demonstrated (46), we found that a small batch size 

reduced overfitting significantly compared to larger sizes (64 or 128; results no shown). We 

limited overfitting further by using “data augmentation” (47). The transformations used in data 

augmentation were chosen to reproduce the spurious variation that could occur during the manual 

processing of images (i.e. cropping and alignment). Each iteration, images were shifted 

horizontally and vertically (by a number of pixels random selected within the range [-40; 40]), 

rotated (range of degree: [-20; 20]) and scaled (range of factor: [-0.7; 1.2]). We did not flip 

images horizontally, assuming that some bilaterally asymmetrical features could be important for 

individual recognition. All deep learning analyses were ran on a single NVIDIA GeForce GTX 

1080 GPU with MATLAB. 

 

Face verification 

After evaluating performance in face identification with the validation sets, we retrained the 

DNN using the full learning set to maximize the number of images. VGG-Mandrill, the newly 

trained DNN, was then used to extract deep feature activation vectors, a compact and informative 

representation of a mandrill face. The distance between feature activation vectors predicts the 



resemblance between images (48). In this study, we followed previously published procedures 

(21) and used a χ
2
 distance calculated with normalized features. Normalization was achieved by 

first subtracting to each activation of a vector the minimal value found for this feature across the 

entire learning set. This set to zero the lower boundary of the feature space (this step of the 

normalization is necessary only for testing the effect of activations before ReLU transformation; 

see below). Next, we divided each activation by the maximum value found for this feature across 

the entire learning set (or by 0.05 if the maximum value was under this threshold, to avoid 

division by a small number). This set to one the upper boundary of the feature space. Last, we 

normalized each feature vector by its L2-norm (Euclidean normalization).  

Studies on face verification, the task of identifying whether two faces represent the same 

individual or not, performed best when learning a distance metric in the deep feature space (39). 

Because the various features in the deep feature space contribute differently to predicting facial 

resemblance, a learned distance metric aims at finding the feature weights that optimize face 

verification. Following a previous study (21), we used a linear support vector machine (SVM) to 

learn a distance metric. We randomly selected 15k pairs of images representing different 

individuals and 15k pairs representing same individuals, and for each pair we calculated the χ
2
 

difference (f1[i]-f2[i])
2
/(f1[i]+f2[i]), where f1 and f2 are the normalized feature vectors of the two 

images in a pair and i the index of a feature. Then, we ran the SVM with the χ
2
 differences as 

explanatory variables and 0 (different-individual pairs) or 1 (same-individual pairs) as a response 

variable. The SVM output the accuracy of the face verification task as well as the weight of each 

feature. Weights were eventually used to calculate a weighted χ
2
 distance as χ

2
(f1, f2) = Σiωi(f1[i]-

f2[i])
2
/(f1[i]+f2[i]), where ω is the vector of feature weights. 

 

Face verification with test sets 

We evaluated the SVM trained for face verification on test tests and compared different feature 

spaces. Feature activations were extracted from FC1 (as a vector of length 4,096), FC2 (vector of 

length 4,096) or both layers (FC12: vector of length 8,192). We further analyzed the importance 

of the nonlinear transformation of the deep feature space by extracting activations either before or 

after the ReLU activation function. For this evaluation, we built a balanced dataset with an equal 

number of same-individual and different-individual pairs of portrait images, all from test sets. 

The number of different-individual pairs was set to match the number of same-individual pairs; 

different-individual pairs were randomly selected. 

 

Supplementary Results 

 

Reproductive skew and number of kin 

For each female involved in the study, we calculated an average number of maternal half-sisters 

(MHS) and paternal half-sisters (PHS) present in the study group at the end of the study, as 

follows (table S1). MHSmin represents the minimum number of MHS. MHS are accurately 

known from non-ambiguous behavioral observations or genetic analyses. MHSmax represents the 

probable maximum number of MHS. MHSmax was obtained by considering that each adult 

female gave birth to a living offspring (of either sex) every 18 months from 4yrs-old to the end of 

the study. We removed known deaths from MHSmax and divided this figure by two to consider 

only female MHS. The number of MHS for each study female was the mean between MHSmin 

and MHSmax. For PHS, and based on patterns of reproductive skew and on known or estimated 

dates of birth in the study group, we estimated that the alpha males sired on average 60% of 

offspring each year. We considered that non-dominant males sired, on average, 15% of offspring 



each year. We calculated the number of PHS based on the total number of offspring born each 

year, on the alpha males’ tenure and male presence in the group, and on whether female’s father 

was the alpha male during her conception or not. We obtained the figures presented in table S1. 

Note that we did not use these figures for our statistical analyses -based on true MHS and PHS-; 

these figures only served to estimate the number of MHS and PHS available, on average, for a 

female mandrill (see the Introduction in the main text). 

 

Face identification 

VGG-Mandrill was able to identify mandrill faces with high accuracy and generalization capacity 

(i.e. limited overfitting; Fig. S1). The highest accuracy was 91.1% for the adult female learning 

set and 91.9% for the juvenile learning set (table S4). The highest accuracies were reached with 

the sets including the largest number of images. More precisely, a wider image set (i.e. with more 

classes) was better than a deeper image set (i.e. with more images per class), and maximizing the 

number of images was more important than maximizing their quality (adding poor quality images 

increased performance). 

 

Face verification 

The accuracy of face verification was evaluated on test sets directly, using either Q1234-12-Tr+V 

(which yielded the highest accuracy in face identification) or Q234-25-TR+V (which is more 

stringent regarding both image quality and the number of images per class) for training the DNN 

to identify faces and for learning the distance metric. The highest accuracy was 83% for the adult 

female test set (table S5), and 90% for the juvenile test set (table S6). The higher accuracy with 

the juvenile set compared to the adult female set is expected given that same-individual pictures 

in this set are on average more similar than same-individual pictures in the adult female set, 

which contains only a single image per burst-mode series. 

 We found a difference in the best parameter settings between the adult female and 

juvenile sets only for the type of learning set. With the adult female set, the highest accuracy was 

reached using the fullest learning set (Q1234-12-Tr+V), as in the face identification task. With 

the juvenile set, the highest accuracy was reached with the more stringent learning set (Q234-25-

Tr+V), as opposed to the face identification task. Note, however, that the influence of the type of 

learning set is less (maximum ± 3%) than that of other parameters. 

 The choice of the DNN layer at which feature activations are extracted influenced the 

accuracy of face verification by up to ± 5%. For either test set, FC1 activations yielded higher 

performance compared to FC2 and FC12 activations. A more influencing factor is the use of a 

new metric learned specifically for face verification. A learned distance metric raised the 

accuracy by up to 15 % (with the adult female set) and 17 % (with the juvenile set). Last, the 

non-linearization of activations was even more influencing. Extracting activations after a ReLU 

transformation boosted performance by up to 17 % (with the adult female set) and 25 % (with the 

juvenile set). 

Based on these results, for both the adult female and juvenile analyses we estimated 

resemblance between pairs of mandrill faces by: 

- training the DNN to perform face identification on Q1234-12-Tr+V learning set, 

- extracting the FC1 feature activation vectors (after ReLU transformation) of Q1234-12-Tr+V 

images, 

- training a SVM classifier with these vectors to verify face identity and compute feature weights, 

- extracting the FC1 feature activation vectors (after ReLU transformation) of test sets, 

- calculating the weighted distance between every pairs of images in each test set, 



- averaging pairwise distances for every different pairs.  



Supplementary Figure 

 

 
 

 

Fig. S1. Learning curve in the face identification task. Evolution of accuracy for the training 

set (f-Q1234-12-Tr; in red) and validation set (f-Q1234-12-V; in green) during a typical run. The 

accuracy stabilized after 15 epochs at around 91% for the validation set; the run thus 

automatically stopped after 18 epochs (based on a stabilization of the loss). The small difference 

between the training accuracy and the validation accuracy indicates limited or no effect of 

overfitting.  



Supplementary Tables 

 

Table S1. Estimated number of MHS and PHS. For each female involved in the study, an 

average number of maternal half-sisters (MHS) and paternal half-sisters (PHS) available were 

calculated (see above). 

 

 Mean number (SD) Variance 

MHS 4.7 (2.5) 6.1 

PHS 9.9 (8.8) 77.9 

 

 

 

  



Table S2. Kinship and social behavior among pairs aged less than 2 yrs apart. Statistics 

obtained from Generalized Linear Mixed Models (proc GENMOD, SAS Studio) with a negative 

binomial distribution performed to study the relationships between grooming and spatial 

association recorded across 38 adult females aged less than 2 yrs apart (N=64 with 8 MHS, 34 

PHS and 22 NK) and a set of explanatory variables, including kinship. Note that the statistical 

model on aggression did not converge. 

 

 Explanatory variables χ
2
 P 

Grooming Kinship 0.67 0.71 

 Rank difference 1.11 0.57 

 Age difference 7.19 <0.01 

 Kinship*Age difference 6.49 0.04 

Association Kinship 11.30 <0.01 

 Rank difference 6.19 0.05 

 Age difference 0 1 

 Kinship*Age difference 7.04 0.03 

 

  



Table S3. Characteristics of image sets. The name of image sets is coded as followed: whether 

the dataset is for the adult female (f) or juvenile (j) analysis – the level of image quality (e.g., 

Q1234 = all qualities retained) – the minimal number of images per class before the 

training/validation partition (either 12 or 25) – the use of the image sets (Tr: training, V: 

validation, Te: test). Wild: wild population, ad.: adult, fem.: female, #: number of. 

 

Set name Sex & age categories # images # classes Mean image/class 

f-Q1234-12-Tr all but ad. fem. from Wild 8429 158 53.3 

f-Q1234-25-Tr all but ad. fem. from Wild 8218 141 58.3 

f-Q234-12-Tr all but ad. fem. from Wild 7914 132 60.0 

f-Q234-25-Tr all but ad. fem. from Wild 7386 108 68.4 

f-Q1234-12-V all but ad. fem. from Wild 316 158 2 

f-Q1234-25-V all but ad. fem. from Wild 182 141 2 

f-Q234-12-V all but ad. fem. from Wild 264 132 2 

f-Q234-25-V all but ad. fem. from Wild 216 108 2 

f-Q4-Te ad. fem. from Wild 421 55 7.6 

j-Q1234-12-Tr all but juv. from Wild 13772 202 68.2 

j-Q1234-25-Tr all but juv. from Wild 11901 155 76.8 

j-Q234-12-Tr all but juv. from Wild 13155 200 65.7 

j-Q234-25-Tr all but juv. from Wild 11548 155 74.5 

j-Q1234-12-V all but juv. from Wild 404 202 2 

j-Q1234-25-V all but juv. from Wild 310 155 2 

j-Q234-12-V all but juv. from Wild 400 200 2 

j-Q234-25-V all but juv. from Wild 310 155 2 

j-Q1234-Te all but juv. from Wild 472 50 9.4 

j-Q34-Te juv. from Wild 383 50 7.6 

 

  



Table S4. Performance of VGG-Mandrill in face identification. The accuracy (± sem) is 

averaged over 5 runs. Highest accuracy in bold. 

 

Training set Validation set Accuracy ± sem 

Adult females 
  

f-Q1234-12-Tr f-Q1234-12-V 0.911 ± 0.118 

f-Q1234-25-Tr f-Q1234-25-V 0.898 ± 0.163 

f-Q234-12-Tr f-Q234-12-V 0.883 ± 0.297 

f-Q234-25-Tr f-Q234-25-V 0.867 ± 0.304 

Juveniles 
  

j-Q1234-12-Tr j-Q1234-12-V 0.919 ± 0.321 

j-Q1234-25-Tr j-Q1234-25-V 0.906 ± 0.478 

j-Q234-12-Tr j-Q234-12-V 0.872 ± 0.677 

j-Q234-25-Tr j-Q234-25-V 0.851 ± 0.694 

 

  



Table S5. Performance of face verification on the female adult test sets. The accuracy (± sem) 

is averaged over 5 runs. Highest accuracy in bold. 

 

Learning set Layer ReLU Metric Learning Accuracy ± sem 

Q1234-12-Tr+V FC1 No No 0.639 ± 0.016 

Q1234-12-Tr+V FC2 No No 0.636 ± 0.014 

Q1234-12-Tr+V FC12 No No 0.655 ±  0.012 

Q1234-12-Tr+V FC1 Yes No 0.705 ± 0.018 

Q1234-12-Tr+V FC2 Yes No 0.652 ± 0.016 

Q1234-12-Tr+V FC12 Yes No 0.646 ± 0.010 

Q1234-12-Tr+V FC1 No Yes 0.679 ± 0.019 

Q1234-12-Tr+V FC2 No Yes 0.652 ± 0.017 

Q1234-12-Tr+V FC12 No Yes 0.699 ± 0.013 

Q1234-12-Tr+V FC1 Yes Yes 0.834 ±  0.015 

Q1234-12-Tr+V FC2 Yes Yes 0.785 ± 0.016 

Q1234-12-Tr+V FC12 Yes Yes 0.796 ± 0.010 

Q234-25-Tr+V FC1 No No 0.601 ± 0.011 

Q234-25-Tr+V FC2 No No 0.611 ± 0.018 

Q234-25-Tr+V FC12 No No 0.612 ± 0.017 

Q234-25-Tr+V FC1 Yes No 0.680 ± 0.009 

Q234-25-Tr+V FC2 Yes No 0.662 ± 0.009 

Q234-25-Tr+V FC12 Yes No 0.659 ± 0.014 

Q234-25-Tr+V FC1 No Yes 0.648 ± 0.013 

Q234-25-Tr+V FC2 No Yes 0.655 ± 0.016 

Q234-25-Tr+V FC12 No Yes 0.656 ± 0.014 

Q234-25-Tr+V FC1 Yes Yes 0.820 ± 0.015 

Q234-25-Tr+V FC2 Yes Yes 0.776 ± 0.010 

Q234-25-Tr+V FC12 Yes Yes 0.785 ± 0.010 

  



Table S6. Performance of face verification on the female juvenile test sets. The accuracy (± 

sem) is averaged over 5 runs. Highest accuracy in bold. 

 

Learning set Layer ReLU Metric Learning Accuracy ± sem 

Q1234-12-Tr+V FC1 No No 0.616 ± 0.008 

Q1234-12-Tr+V FC2 No No 0.603 ± 0.012 

Q1234-12-Tr+V FC12 No No 0.603 ± 0.011 

Q1234-12-Tr+V FC1 Yes No 0.740 ± 0.007 

Q1234-12-Tr+V FC2 Yes No 0.692 ± 0.018 

Q1234-12-Tr+V FC12 Yes No 0.699 ± 0.002 

Q1234-12-Tr+V FC1 No Yes 0.613 ± 0.009 

Q1234-12-Tr+V FC2 No Yes 0.634 ± 0.010 

Q1234-12-Tr+V FC12 No Yes 0.634 ± 0.011 

Q1234-12-Tr+V FC1 Yes Yes 0.868 ± 0.010 

Q1234-12-Tr+V FC2 Yes Yes 0.862 ± 0.009 

Q1234-12-Tr+V FC12 Yes Yes 0.856 ± 0.014 

Q234-25-Tr+V FC1 No No 0.645 ± 0.012 

Q234-25-Tr+V FC2 No No 0.627 ± 0.018 

Q234-25-Tr+V FC12 No No 0.619 ± 0.013 

Q234-25-Tr+V FC1 Yes No 0.769 ± 0.010 

Q234-25-Tr+V FC2 Yes No 0.704 ± 0.008 

Q234-25-Tr+V FC12 Yes No 0.715 ± 0.005 

Q234-25-Tr+V FC1 No Yes 0.641 ± 0.009 

Q234-25-Tr+V FC2 No Yes 0.672 ± 0.012 

Q234-25-Tr+V FC12 No Yes 0.679 ± 0.009 

Q234-25-Tr+V FC1 Yes Yes 0.897 ± 0.010 

Q234-25-Tr+V FC2 Yes Yes 0.855 ± 0.013 

Q234-25-Tr+V FC12 Yes Yes 0.866 ± 0.009 

 

  



Table S7. Sample sizes and face distance (mean and SD) across pairs of females. For 

comparison, we included all pairs of photographs of the same female, at different ages 

(
1
Maximum difference in age: 6.9 yrs, 

2
Maximum difference in age: 2.0 yrs). 

 

  
Number of pairs of females 

(pairs of pictures) 

Mean face distance 

(SD) 

Juvenile females 

PHS 16 (111) 12.89 (2.13) 

MHS 5 (181) 15.80 (1.0) 

NK 27 (1297) 15.07 (2.27) 

Identical females
1
 53 (2087) 10.34 (2.66) 

Adult females 

PHS 50 (2219) 12.83 (2.17) 

MHS 30 (1564) 12.94 (2.08) 

NK 79 (3209) 13.83 (1.89) 

Identical females
2
 18 (2071) 9.64 (3.37) 
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