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Figure S1 (A, left) Generalized form for a recurrent neural network trained on a genomic se-
quence alignment. (A, right) Generalized form of each gated recurrent unit, where r, z, &,, and &,
correspond to the reset gate, update gate, activation, and candidate activation, respectively (Cho
et al., 2014). (B) Cartoon depicting the neural network architectures used in ReLERNN for indi-
vidually sequenced genomes or (C) pooled sequences. Tensor shapes are shown for the default
parameters [batchsize = 64, padsize = 5].
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Figure S2 ReLERNN training and test results. (Top) Scatter plot of raw (unnormalized) predictions
for 1000 test examples using ReLERNN with the same parameters used in Figure 2. Mean abso-
lute error and mean squared error are shown. (Bottom) Line graph showing the convergence of
loss (measured by mean squared error) over time (epochs) during training on the same data as
above, for both the training set (blue lines) and the validation set (purple lines).
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Figure S4 Recombination rate predictions for a simulated Drosophila chromosome (black line)
using ReLERNN (red line). The recombination landscape was simulated for n = 4 chromosomes
under mutation-drift equilibrium using msprime (Kelleher et al., 2016), with per-base crossover
rates derived from D. melanogaster chromosome 2L (Comeron et al., 2012). Gray ribbons repre-
sent 95% confidence intervals. R? is reported for the general linear model of predicted rates on
true rates and mean absolute error was calculated across all 100 kb windows.
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Figure S5 Mean squared error for ReLERNN predictions on 10 replicates of 1000 test simulations
using 100% correctly phased input genotypes and completely unphased genotypes. All simu-
lations used the recombination map derived from D. melanogaster chromosome 2L (Comeron
etal., 2012).
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Figure S6 Recombination rate predictions from Pool-seq data for a simulated Drosophila chro-
mosome (black line) using ReLERNN (red line). The recombination landscape was simulated for

n = 50 chromosomes and a read depth of 50X, under mutation-drift equilibrium using msprime
(Kelleher et al., 2016), with per-base crossover rates derived from D. melanogaster chromosome
2L (Comeron et al., 2012). Gray ribbons represent 95% confidence intervals. R? is reported for
the general linear model of predicted rates on true rates and mean absolute error was calculated

across all 100 kb windows.
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Figure S7 Recombination rate predictions from Pool-seq data for a simulated Drosophila chro-
mosome (black line) using ReLERNN (red line). The recombination landscape was simulated for

n = 50 chromosomes and a read depth of 250X, under mutation-drift equilibrium using msprime
(Kelleher et al., 2016), with per-base crossover rates derived from D. melanogaster chromosome
2L (Comeron et al., 2012). Gray ribbons represent 95% confidence intervals. R? is reported for
the general linear model of predicted rates on true rates and mean absolute error was calculated
across all 100 kb windows.
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Figure S8 Recombination rate predictions for a simulated Drosophila chromosome (black line) us-
ing ReLERNN (red line). The recombination landscape was simulated for n = 20 chromosomes
under mutation-drift equilibrium using msprime (Kelleher et al., 2016), with per-base crossover
rates derived from D. melanogaster chromosome 2L (Comeron et al., 2012). Here the per-base
mutation rate was assumed to be 50% less than the rate used for simulation. Gray ribbons rep-
resent 95% confidence intervals. R? is reported for the general linear model of predicted rates on
true rates and mean absolute error was calculated across all 100 kb windows.
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Figure S9 Recombination rate predictions for a simulated Drosophila chromosome (black line)
using ReLERNN (red line). The recombination landscape was simulated for n = 20 chromosomes
under mutation-drift equilibrium using msprime (Kelleher et al., 2016), with per-base crossover
rates derived from D. melanogaster chromosome 2L (Comeron et al., 2012). Here the per-base
mutation rate was assumed to be 50% greater than the rate used for simulation. Gray ribbons
represent 95% confidence intervals. R? is reported for the general linear model of predicted rates
on true rates and mean absolute error was calculated across all 100 kb windows.
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Figure S10 Recombination rate predictions for a simulated Drosophila chromosome (black line)
using ReLERNN (red line). The recombination landscape was simulated for n = 20 chromosomes
under mutation-drift equilibrium using msprime (Kelleher et al., 2016), with per-base crossover
rates derived from D. melanogaster chromosome 2L (Comeron et al., 2012). Here the per-base
mutation rate was assumed to be equal to the true rate, but p,,,. was assumed to be me Gray
ribbons represent 95% confidence intervals. R? is reported for the general linear model of pre-
dicted rates on true rates and mean absolute error was calculated across all 100 kb windows.
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Figure S11 Recombination rate predictions for a simulated Drosophila chromosome (black line)
using ReLERNN (red line). The recombination landscape was simulated for n = 20 chromosomes
under mutation-drift equilibrium using msprime (Kelleher et al., 2016), with per-base crossover
rates derived from D. melanogaster chromosome 2L (Comeron et al., 2012). Here the per-base
mutation rate was assumed to be equal to the true rate, but p,,,. was assumed to be ””’T Gray
ribbons represent 95% confidence intervals. R? is reported for the general linear model of pre-
dicted rates on true rates and mean absolute error was calculated across all 100 kb windows.
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Figure S12 Recombination rate predictions for a simulated Drosophila chromosome (black line)
using ReLERNN (red line). The recombination landscape was simulated for n = 20 chromosomes
under mutation-drift equilibrium using msprime (Kelleher et al., 2016), with per-base crossover
rates derived from D. melanogaster chromosome 2L (Comeron et al., 2012). Here the per-base
mutation rate was assumed to be equal to the true rate, but p,,,. was assumed to be 2p,,... Gray
ribbons represent 95% confidence intervals. R? is reported for the general linear model of pre-
dicted rates on true rates and mean absolute error was calculated across all 100 kb windows.
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Figure S13 (A) Fine-scale rate predictions generated by ReLERNN for simulated recombination
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Figure S14 Distribution of absolute error (|7, .i.ics = Fir!) fOr each method across 5000 simulated
chromosomes (1000 for FastEPRR). Independent simulations were run under a model of demo-
graphic equilibrium. Sampled chromosomes indicate the number of independent sequences
that were sampled from each msprime (Kelleher et al., 2016) coalescent simulation. LDhelmet
was not able be used with n = 64 chromosomes, and FastEPRR was not able to be used with
n=4.
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Figure S15 Distribution of absolute error (|7, .i.res = Fir!) for each method across 5000 simulated
chromosomes (1000 for FastEPRR). Independent simulations were run under a model of popula-
tion size expansion (see methods). Sampled chromosomes indicate the number of independent
sequences that were sampled from each msprime (Kelleher et al., 2016) coalescent simulation.
LDhelmet was not able be used with n = 64 chromosomes, and FastEPRR was not able to be used
with n = 4.
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Figure S16 Distribution of absolute error (|7, .i.res = Fir!) fOr €ach method across 5000 simulated
chromosomes after model misspecification. For the CNN and ReLERNN, predictions were made
by training on demographic simulations while testing on sequences simulated under equilibrium.
For LDhat and LDhelmet, the lookup tables were generated using parameters values that were
estimated from simulations where the model was misspecified in the same way as described for
the CNN and ReLERNN above. Sampled chromosomes indicate the number of independent se-
quences that were sampled from each msprime (Kelleher et al., 2016) coalescent simulation. LD-
helmet was not able be used with n = 64 chromosomes and the demographic model could not be
intentionally misspecified using FastEPRR.
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Figure S17 Distribution of absolute error (|7, .i.res = Fir!) fOr €ach method across 5000 simulated
chromosomes after model misspecification. For the CNN and ReLERNN, predictions were made
by training on equilibrium simulations while testing on sequences simulated under a model of
population size expansion. For LDhat and LDhelmet, the lookup tables were generated using pa-
rameters values that were estimated from simulations where the model was misspecified in the
same way as described for the CNN and ReLERNN above. Sampled chromosomes indicate the
number of independent sequences that were sampled from each msprime (Kelleher et al., 2016)
coalescent simulation. LDhelmet was not able be used with n = 64 chromosomes and the demo-
graphic model could not be intentionally misspecified using FastEPRR.
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tions and testing on sequences simulated under equilibrium (right). Here, marginal error is rep-
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Figure S21 Historical population size estimates were inferred for Cameroon, Rwanda, and Zam-
bia using three separate methods, all of which disagree with one another. Inferences are based
on 10 samples for both stairwayplot (grey line) and SMC++ (orange line), and 2 samples for
MSMC (purple line).
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Figure S22 Historical population size estimates were inferred for Cameroon, Rwanda, and Zam-
bia using three separate methods. Here, inferences are based on 10 samples for both stairway-
plot (grey line) and SMC++ (orange line), and 10 samples for MSMC (purple line).
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Figure S23 ReLERNN test results for Cameroon, Rwanda, and Zambia when trained under as-
sumptions of mutation-drift equilibrium. (Top) Scatter plot of raw (unnormalized) predictions for
1000 test examples using ReLERNN with the same parameters used in Figure 2. Mean absolute
error and mean squared error are shown for each population. (Bottom) Line graph showing the
convergence of loss (measured by mean squared error) over time (epochs) during training on the
same data as above, for both the training set (blue lines) and the validation set (purple lines).
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Figure S24 Genome-wide recombination landscapes for D. melanogaster populations from
Cameroon (teal lines), Rwanda (purple lines), and Zambia (orange lines). Rates are compared to
those experimentally derived by Comeron et al. (2012) (black lines). All rates have been scales to
1 Mb windows by using a weighted average (see Materials and Methods). Sample sizes (n = 10)
are the same for all populations.
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points. (Right) Recombination rate estimates for all genomic windows overlapping windows pre-
dicted as either hard/soft sweeps (purple) or as neutral (white) by diploS/HIC (Kern and Schrider,
2018).
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Figure S26 Confusion matrix showing the fraction of test simulation windows assigned to each
of five prediction categories by diploS/HIC (Kern and Schrider, 2018): hard, hard-linked, soft, soft-
linked, and neutral. The y-axis shows the location of the window being classified relative to the
selected window.
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Figure S27 (Top) Recombination landscapes for Zambian D. melanogaster surrounding In(2L)t,
sampled at different inversion frequencies. The grey box denotes the inversion boundaries of
In(2L)t in Drosophila (Corbett-Detig and Hartl, 2012). (Bottom) Recombination rate estimates
from genomic windows within the inversion, within a 3 Mb region flanking the inversion, and 3
Mb outside the inversion, sampled at different inversion frequencies.
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19



	Introduction
	Results
	ReLERNN: an accurate method for estimating the genome-wide recombination landscape
	Performance on simulated chromosomes
	ReLERNN compares favorably to competing methods, especially for small sample sizes and under model misspecification
	ReLERNN retains high accuracy on simulated low-quality genomic datasets
	Recombination landscapes are largely concordant among populations of African D. melanogaster

	Discussion
	Materials and Methods
	The ReLERNN workflow
	Testing the accuracy of ReLERNN on simulated recombination landscapes
	Comparative methods
	Training on missing genotypes and inaccessible regions of the genome
	Recombination rate variation in D. melanogaster
	Data availability

	Acknowledgments



